Benjamin W. AbbottBrigham Young University | BYU · Department of Plant and Wildlife Sciences
Benjamin W. Abbott
PhD
About
160
Publications
132,181
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
7,681
Citations
Introduction
My research interests include: Ecosystem ecology; Renewable energy; Terrestrial-aquatic linkages; Environmental policy and education; Catchment hydrology; Biogeochemistry; Disturbance; Economic and environmental sustainability; Science communication and advocacy; Environmental stewardship
Additional affiliations
August 2016 - June 2017
July 2014 - July 2016
September 2009 - December 2014
Publications
Publications (160)
This booklet describes the past, present, and potential future of Utah Lake, the largest freshwater lake in Utah. This keystone ecosystem is a crucial link in the Pacific Flyway, an island of water in the arid Great Basin, and also at the center of one of the fastest-growing metropolitan regions of the United States. Understanding Utah Lake has nev...
Great Salt Lake is facing unprecedented danger. Without a dramatic increase in water flow to the lake in 2023 and 2024, its disappearance could cause immense damage to Utah's public health, environment, and economy. This briefing provides background and recommends emergency measures. The choices we make over the next few months will affect our stat...
River flows change on timescales ranging from minutes to millennia. These vibrations in flow are tuned by diverse factors globally, for example, by dams suppressing multi‐day variability or vegetation attenuating flood peaks in some ecosystems. The relative importance of the physical, biological, and human factors influencing flow is an active area...
The UN's Paris Agreement goal of keeping global warming between 1.5 and 2°C is dangerously obsolete and needs to be replaced by a commitment to restore Earth's climate. We now know that continued use of fossil fuels associated with 1.5–2°C scenarios would result in hundreds of millions of pollution deaths and likely trigger multiple tipping element...
Horticultural peat extraction can mobilize dissolved organic matter (DOM) and inorganic nutrients (nitrogen and phosphorous) to surface waters, harming aquatic ecosystems and water quality. However, it is uncertain how peat extraction affects solute concentration across hydrological and seasonal conditions and how biogeochemical processing in downs...
As global temperatures continue to rise, a key uncertainty of terrestrial carbon (C)–climate feedback is the rate of C loss upon abrupt permafrost thaw. This type of thawing—termed thermokarst—may in turn accelerate or dampen the response of microbial degradation of soil organic matter and carbon dioxide (CO2) release to climate warming. However, s...
The Wilson’s phalarope (Phalaropus tricolor) is a shorebird that breeds in interior North America and undertakes a long-distance migration to South America for winter. It is facing the imminent threat of becoming an endangered species due to the ecological collapse and desiccation of saline lakes in the Great Basin, a critical link in its migratory...
Supplementary information to support the article of Sayedi et al. 2024, Fire Ecology.
Background The global human footprint has fundamentally altered wildfire regimes, creating serious consequences for human health, biodiversity, and climate. However, it remains difficult to project how long-term interactions among land use, management, and climate change will affect fire behavior, representing a key knowledge gap for sustainable ma...
Climate change is rapidly altering hydrological processes and consequently the structure and functioning of Arctic ecosystems. Predicting how these alterations will shape biogeochemical responses in rivers remains a major challenge. We measured [C]arbon and [N]itrogen concentrations continuously from two Arctic watersheds capturing a wide range of...
Riverine exports of silicon (Si) influence global carbon cycling through the growth of marine diatoms, which account for ∼25% of global primary production. Climate change will likely alter river Si exports in biome‐specific ways due to interacting shifts in chemical weathering rates, hydrologic connectivity, and metabolic processes in aquatic and t...
The Intergovernmental Panel on Climate Change concludes that climate change has already caused substantial damages at the current 1.2°C of global warming and that warming of 1.5°C would elevate risks of a wide-range of climate tipping points. For example, wet-bulb temperatures are already exceeding safe levels, and the melting of the Greenland and...
Understanding methane (CH4) emission from thermokarst lakes is crucial for predicting the impacts of abrupt thaw on the permafrost carbon-climate feedback. However, observational evidence, especially from high-altitude permafrost regions, is still scarce. Here, by combining field surveys, radio- and stable-carbon isotopic analyses, and metagenomic...
Excess nutrients from agricultural and urban development have created a cascade of ecological crises around the globe. Nutrient pollution has triggered eutrophication in most freshwater and coastal ecosystems, contributing to a loss in biodiversity, harm to human health, and trillions in economic damage every year. Much of the research conducted on...
The original meaning of the Critical Zone (CZ) was spatial and pointed to one physical referent: the terrestrial surface of the entire Earth. As usage increased among researchers in the geosciences, social sciences, and humanities, new meanings led to the concept pointing to different places and ideas. Emerging trends have expanded the CZ further:...
Human activity has fundamentally altered wildfire on Earth, creating serious consequences for human health, global biodiversity, and climate change. However, it remains difficult to predict fire interactions with land use, management, and climate change, representing a serious knowledge gap and vulnerability. We used expert assessment to combine op...
The concepts of resistance, recovery, and resilience are in diverse fields from behavioral psychology to planetary ecology. These “three Rs” describe some of the most important properties allowing complex systems to survive in dynamic environments. However, in many fields—including ecology—our ability to predict resistance, recovery and resilience...
River flows change on timescales ranging from minutes to millennia. These variations influence fundamental functions of ecosystems, including biogeochemical fluxes, aquatic habitat, and human society. Efforts to describe temporal variation in river flow—i.e., flow regime—have resulted in hundreds of unique descriptors, complicating interpretation a...
In Arctic catchments, bacterioplankton are dispersed through soils and streams, both of which freeze and thaw/flow in phase, seasonally. To characterize this dispersal and its potential impact on biogeochemistry, we collected bacterioplankton and measured stream physicochemistry during snowmelt and after vegetation senescence across multiple stream...
Rapid Arctic environmental change affects the entire Earth system as thawing permafrost ecosystems release greenhouse gases to the atmosphere. Understanding how much permafrost carbon will be released, over what time frame, and what the relative emissions of carbon dioxide and methane will be is key for understanding the impact on global climate. I...
Nitrogen regulates multiple aspects of the permafrost climate feedback, including plant growth, organic matter decomposition, and the production of the potent greenhouse gas nitrous oxide. Despite its importance, current estimates of permafrost nitrogen are highly uncertain. Here, we compiled a dataset of >2000 samples to quantify nitrogen stocks i...
Elevated nitrate from human activity causes ecosystem and economic harm globally. The factors that control the spatiotemporal dynamics of riverine nitrate concentration remain difficult to describe and predict. We analyzed nitrate concentration from 4450 sites throughout France to group sites that exhibit similar trend and seasonal behaviors during...
Climate change is an existential threat to the vast global permafrost domain. The diverse human cultures, ecological communities, and biogeochemical cycles of this tenth of the planet depend on the persistence of frozen conditions. The complexity, immensity, and remoteness of permafrost ecosystems make it difficult to grasp how quickly things are c...
The physical and chemical changes that accompany permafrost thaw directly influence the microbial communities that mediate the decomposition of formerly frozen organic matter, leading to uncertainty in permafrost-climate feedbacks. Although changes to microbial metabolism and community structure are documented following thaw, the generality of post...
Unsustainable agriculture practices are undermining the world's future ability to reliably produce food. Assistance programmes, such as those offered by the Natural Resource Conservation Service (NRCS) of the United States, can increase the uptake of sustainable practices, yet implementation of these alternatives in the US remains discouragingly li...
Estimates of the permafrost-climate feedback vary in magnitude and sign, partly because permafrost carbon stability in warmer-than-present conditions is not well constrained. Here we use a Plio-Pleistocene lacustrine reconstruction of mean annual air temperature (MAAT) from the Tibetan Plateau, the largest alpine permafrost region on the Earth, to...
This article is a product of a collaboration between ecosystem scientists and energy system modelers. It is currently in review at Nature Geoscience. The main points are:
1. Climate mitigation goals of 1.5-2°C are not adequate given current understanding of ecosystem sensitivity to climate and the high social costs of carbon emissions.
2. More aggr...
Permafrost ecosystems have accumulated vast pools of organic carbon, together amounting to three times more carbon than the atmosphere and five times more than all living things. The high elevations and high latitudes where permafrost occurs are experiencing some of the most extreme climate change on Earth. Consequently, the ecological reaction of...
Hyporheic zones increase freshwater ecosystem resilience to hydrological extremes and global environmental change. However, current conceptualizations of hyporheic exchange, residence time distributions, and the associated biogeochemical cycling in streambed sediments do not always accurately explain the hydrological and biogeochemical complexity o...
Repeated sampling of spatially distributed river chemistry can be used to assess the location, scale, and persistence of carbon and nutrient contributions to watershed exports. Here, we provide a comprehensive set of water chemistry measurements and ecohydrological metrics describing the biogeochemical conditions of permafrost-affected Arctic water...
The global energy system is undergoing the largest and fastest transformation since the Industrial Revolution. Breakthroughs in renewable production and storage have made solar and wind the cheapest and cleanest energy ever available. Consequently, solar, wind, and batteries now make up more than 90% of all new energy production built each year. Be...
Human agriculture, wastewater, and use of fossil fuels have saturated ecosystems with nitrogen and phosphorus, threatening biodiversity and human water security at a global scale. Despite efforts to reduce nutrient pollution, carbon and nutrient concentrations have increased or remained high in many regions. Here, we applied a new ecohydrological f...
Climate change is causing larger wildfires and more extreme precipitation events in many regions. As these ecological disturbances increasingly coincide, they alter lateral fluxes of sediment, organic matter, and nutrients. Here, we report the stream chemistry response of watersheds in a semiarid region of Utah (USA) that were affected by a megafir...
Human alteration of nutrient cycles has caused persistent and widespread degradation of water quality around the globe. In many regions, including Western Europe, elevated nitrate (NO3⁻) concentration in surface waters contributes to eutrophication and noncompliance with environmental legislation. Discharge, NO3⁻ concentrations and the vulnerabilit...
Permafrost is perennially frozen ground, such as soil, rock, and ice. In permafrost regions, plant and microbial life persists primarily in the near-surface soil that thaws every summer, called the ‘active layer’. The cold and wet conditions in many permafrost regions limit decomposition of organic matter. In combination with soil mixing processes...
Streamflow metrics and catchment characteristics for 3,261 streams from around the world.
Human modification of water and nutrient flows has resulted in widespread degradation of aquatic ecosystems. The resulting global water crisis causes millions of deaths and trillions of USD in economic damages annually. Semiarid regions have been disproportionately affected because of high relative water demand and pollution. Many proven water mana...
Ecosystem carbon (C) dynamics after permafrost thaw depends on more than just climate change since soil nutrient status may also impact ecosystem C balance. It has been advocated that nitrogen (N) release upon permafrost thaw could promote plant growth and thus offset soil C loss. However, compared with the widely accepted C-N interactions, little...
Utah Lake is a huge and unique waterbody at the heart of Utah Valley. Though it is one of the largest freshwater lakes west of the Mississippi River, many in our community know little about its history, ecology, and importance to our future. As the population of our valley grows, we need to understand Utah Lake so we can preserve and protect this k...
Protecting water quality at catchment scales is complicated by the high spatiotemporal variability
in water chemistry. Consequently, determining pollutant sources requires costly monitoring
strategies to diagnose causes and guide management solutions. However, recent studies have
shown that spatial patterns in water chemistry can be persistent a...
Repeated sampling of spatially distributed river chemistry can be used to assess the location, scale, and stability of carbon and nutrient contributions to watershed-scale exports. Here, we provide a comprehensive set of water chemistry measurements and secondary ecosystem metrics describing the biogeochemical conditions of permafrost-affected Arct...
Mid-20th century mining in Naabeehó Bináhásdzo (Navajo Nation) polluted soil and groundwater with uranium and arsenic. The Diné and other indigenous residents of this region use groundwater for drinking, livestock, and irrigation, representing an environmental health risk. Currently, many individuals and communities on the Navajo Nation must purcha...
Permafrost collapse can rapidly change regional soil-thermal and hydrological conditions, potentially stimulating production of climate-warming gases. Here, we report on rate and extent of permafrost collapse on the extensive Tibetan Plateau, also known as the Asian Water Tower and the Third Pole. Combined data from in situ measurements, unmanned a...
Nitrate contamination affects many of the Earth’s aquifers and surface waters. Large-scale predictions of groundwater nitrate trends normally require the characterization of multiple anthropic and natural factors. To assess different approaches for upscaling estimates of nitrate recovery, we tested the influence of hydrological, historical, and bio...
Permafrost degradation is delivering bioavailable dissolved organic matter (DOM) and inorganic nutrients to surface water networks. While these permafrost subsidies represent a small portion of total fluvial DOM and nutrient fluxes, they could influence food webs and net ecosystem carbon balance via priming or nutrient effects that destabilize back...
Climate change is creating widespread ecosystem disturbance across the permafrost zone, including a rapid increase in the extent and severity of tundra wildfire. The expansion of this previously rare disturbance has unknown consequences for lateral nutrient flux from terrestrial to aquatic environments. Lateral loss of nutrients could reduce carbon...
Soils are warming as air temperatures rise across the Arctic and Boreal region concurrent with the expansion of tall-statured shrubs and trees in the tundra. Changes in vegetation structure and function are expected to alter soil thermal regimes, thereby modifying climate feedbacks related to permafrost thaw and carbon cycling. However, current und...
Soils are warming as air temperatures rise across the Arctic and Boreal region concurrent with the expansion of tall-statured shrubs and trees in the tundra. Changes in vegetation structure and function are expected to alter soil thermal regimes, thereby modifying climate feedbacks related to permafrost thaw and carbon cycling. However, current und...
Climate change is intensifying the Arctic hydrologic cycle, potentially accelerating the release of carbon and nutrients from permafrost landscapes to rivers. However, there are limited riverine flow and solute data of adequate frequency and duration to test how seasonality and catchment landscape characteristics influence production and transport...