Bengt Nordén

Bengt Nordén
Chalmers University of Technology · Department of Chemical and Biological Engineering

D.Sc., Chair Professor

About

567
Publications
29,217
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
25,677
Citations

Publications

Publications (567)
Article
Full-text available
Structural conversion of one given protein sequence into different amyloid states, resulting in distinct phenotypes, is one of the most intriguing phenomena of protein biology. Despite great efforts the structural origin of prion diversity remains elusive, mainly because amyloids are insoluble yet noncrystalline and therefore not easily amenable to...
Article
Peptide AF-16, which includes the active site of Antisecretory Factor protein, has antisecretory and anti-inflammatory properties, making it a potent drug candidate for treatment of secretory and inflammatory diseases such as diarrhea, inflammatory bowel diseases, and intracranial hypertension. Despite remarkable physiological effects and great pha...
Article
To assist polarized-light spectroscopy for protein-structure analysis, the UV spectrum of p-cresol, chromophore of tyrosine, was studied with respect to transition moment directions and perturbation by solvent environment. From linear dichroism (LD) spectra of p-cresol aligned in stretched matrices of polyvinylalcohol and polyethylene the lowest π-...
Article
Full-text available
Overstretching of DNA occurs at about 60–70 pN when a torsionally unconstrained double-stranded DNA molecule is stretched by its ends. During the transition, the contour length increases by up to 70% without complete strand dissociation. Three mechanisms are thought to be involved: force-induced melting into single-stranded DNA where either one or...
Article
Full-text available
Macromolecular associates, such as membraneless organelles or lipid-protein assemblies, provide a hydrophobic environment, i.e., a liquid protein phase (LP), where folding preferences can be drastically altered. LP as well as the associated phase change from water (W) is an intriguing phenomenon related to numerous biological processes and also pos...
Article
Full-text available
In contrast to DNA replication and transcription where nucleotides are added and matched one by one, homologous recombination by DNA strand exchange tests whole sequences for complementarity, which requires elimination of mismatched yet thermodynamically stable intermediates. To understand the remarkable sequence specificity of homologous recombina...
Article
Yeast prions provide self-templating protein-based mechanisms of inheritance whose conformational changes lead to the acquisition of diverse new phenotypes. The best studied of these is the prion domain (NM) of Sup35, which forms an amyloid that can adopt several distinct conformations (strains) that confer distinct phenotypes when introduced into...
Article
Full-text available
Hydrophobic base stacking is a major contributor to DNA double-helix stability. We report the discovery of specific unstacking effects in certain semihydrophobic environments. Water-miscible ethylene glycol ethers are found to modify structure, dynamics, and reactivity of DNA by mechanisms possibly related to a biologically relevant hydrophobic cat...
Article
Full-text available
Insulin and lysozyme share the common features of being prone to aggregate and having biomedical importance. Encapsulating lysozyme and insulin in micellar nanoparticles probably would prevent aggregation and facilitate oral drug delivery. Despite the vivid structural knowledge of lysozyme and insulin, the environment-dependent oligomerization (dim...
Article
The assembly of stacked dyes on DNA is of interest for electron transfer, light harvesting, sensing and catalysis applications. A combination of UV/vis absorption, linear dichroism (LD), and circular dichroism (CD) was applied to characterize thoroughly the aggregation with DNA of the phenothiazine dyes methylene blue, azure B, and thionine. Aggreg...
Article
Full-text available
The binding mode of thionine (3,7-diamino-5-phenothiazinium) with alternating and non-alternating DNA polynucleotides at low binding ratios was conclusively determined using linear and circular dichroism spectroscopies. The binding to [poly(dG-dC)]2 and poly(dG)·poly(dC) was purely intercalative and was insensitive to ionic strength. Intercalative...
Article
Full-text available
Interactions between human lysozyme (HL) and the lipopolysaccharide (LPS) of Klebsiella pneumoniae O1, a causative agent of lung infection, were identified by surface plasmon resonance. To characterize the molecular mechanism of this interaction, HL binding to synthetic disaccharides and tetrasaccharides representing one and two repeating units, re...
Article
Full-text available
We have discovered a well-defined extended conformation of double-stranded DNA, which we call Σ-DNA, using laser-tweezers force-spectroscopy experiments. At a transition force corresponding to free energy change Δ G = 1·57 ± 0·12 kcal (mol base pair) ⁻¹ 60 or 122 base-pair long synthetic GC-rich sequences, when pulled by the 3′−3′ strands, undergo...
Article
The cell membrane is an ordered environment, which anisotropically affects the structure and interactions of all of its molecules. Monitoring membrane orientation at a local level is rather challenging but could reward crucial information on protein conformation and interactions in the lipid bilayer. We monitored local lipid ordering changes upon v...
Article
Full-text available
QRB Discovery: introducing original research to QRB - Volume 49 - Bengt Nordén
Article
Full-text available
Einstein was wrong with his 1927 Solvay Conference claim that quantum mechanics is incomplete and incapable of describing diffraction of single particles. However, the Einstein-Podolsky-Rosen paradox of entangled pairs of particles remains lurking with its ‘ spooky action at a distance ’. In molecules quantum entanglement can be viewed as basis of...
Article
To address the mechanistic roles of ATP hydrolysis in RecA-promoted strand exchange reaction in homologous recombination, quantum mechanical (QM) calculations are performed on key parts of the RecA-DNA complex. We find that ATP hydrolysis may induce changes at the protein-DNA interface, resulting in the rearrangement of a hydrogen-bond network conn...
Article
The catalytic role of a hydrophobic environment on the rate of DNA strand exchange is demonstrated using a FRET-based assay. Polyethylene glycol (PEG) of various lengths and dimethoxyethane (DME) were used as co-solutes to decrease the dielectric constant of the solvent (increase hydrophobicity) with and without influence from space exclusion effec...
Article
A thermodynamic metric is proposed to supplement existing scales in the assessment of the way we use our natural resources. This metric has the advantage of being absolute and independent of economy, suitable for comparison of technologies, and can be used at molecular level as well as process-units and systems levels. It measures loss of useful wo...
Article
Non-natural peptides with structures and functions similar to natural peptides have emerged lately in biomedical as well as nanotechnological contexts. They are interesting for pharmaceutical applications since they can adopt structures with new targeting potentials and because they are generally not prone to degradation by proteases. We report her...
Article
Large unilamellar lipid vesicles do not normally fuse under fluid shear stress. They might deform and open pores to relax the tension to which they are exposed, but membrane fusion occurring solely due to shear stress has not yet been reported. We present evidence that shear forces in a viscous solution can induce lipid bilayer fusion. The fusion o...
Article
Full-text available
Membrane-active peptides include peptides that can cross cellular membranes and deliver macromolecular cargo as well as peptides that inhibit bacterial growth. Some of these peptides can act as both transporters and antibacterial agents. It is desirable to combine the knowledge from these two different fields of membrane-active peptides into design...
Article
Full-text available
Oct4 is a transcription factor that plays a major role for the preservation of the pluripotent state in embryonic stem cells as well as for efficient reprogramming of somatic cells to induced pluripotent stem cells (iPSC) or other progenitors. Protein-based reprogramming methods mainly rely on the addition of a fused cell penetrating peptide. This...
Article
Full-text available
The Swi5-Sfr1 heterodimer protein stimulates the Rad51-promoted DNA strand exchange reaction, a crucial step in homologous recombination. To clarify how this accessory protein acts on the strand exchange reaction, we have analyzed how the structure of the primary reaction intermediate, the Rad51/single-stranded DNA (ssDNA) complex filament formed i...
Article
Fibrillization of peptides leads to the formation of amyloid fibres, which, when in large aggregates, are responsible for diseases such as Alzheimer's and Parkinson's1, 2, 3, 4. Here, we show that amyloids have strong nonlinear optical absorption, which is not present in native non-fibrillized protein. Z-scan5 and pump–probe experiments indicate th...
Article
In recent years, multi-lipid bicellar systems have emerged as promising membrane models. The fast orientational diffusion and magnetic alignability made these systems very attractive for NMR investigations. However, their alignment was so far achieved with a strong magnetic field, which limited their use with other methods that require macroscopic...
Article
We report that DNA molecules can be intercalated and macroscopically oriented in the aqueous interstitia of a lyotropic lamellar liquid crystal. Using UV-vis linear dichroism and fluorescence spectroscopy we show that double-stranded oligonucleotides (25 base pairs) in the water–octanoate–decanol system remain base-paired in the B conformation and...
Article
Full-text available
Binuclear polypyridine ruthenium compounds have been shown to slowly intercalate into DNA, following a fast initial binding on the DNA surface. For these compounds, intercalation requires threading of a bulky substituent, containing one RuII , through the DNA base-pair stack, and the accompanying DNA duplex distortions are much more severe than wit...
Article
Hoechst 33258 binds with high affinity into the minor groove of AT-rich sequences of double-helical DNA. Despite extensive studies of this and analogous DNA binding molecules, there still remains uncertainty concerning the interactions when multiple ligand molecules are accommodated within close distance. Albeit not of direct concern for most biome...
Article
A stretched poly(vinyl alcohol) (PVA) film provides a unique matrix that enables also short DNA oligonucleotide duplex to be oriented and studied by linear dichroism (LD). This matrix further allows controlling DNA secondary structure by proper hydration (A or B form), and such humid films could potentially also mimic the molecular crowding in cell...
Article
Full-text available
The interactions between anionic or zwitterionic liposomes and a water-soluble, DNA-binding photochromic spiropyran are studied using UV/vis absorption and linear dichroism (LD) spectroscopy. The spectral characteristics as well as the kinetics of the thermal isomerization process in the absence and presence of the two different liposome types prov...
Article
Full-text available
Computer-designed artificial enzymes will require precise understanding of how conformation of active sites may control barrier heights of key transition states, including dependence on structure and dynamics at larger molecular scale. F(o)F(1) ATP synthase is interesting as a model system: a delicate molecular machine synthesizing or hydrolyzing A...
Chapter
Full-text available
We review here the well-known but still hotly debated notion of entropy-enthalpy compensation (EEC) from an unconventional standpoint: in terms of correlation. Specifically, correlation could mean either that 'A' is correlated to 'B' due to that 'A' directly results from 'B', or vice versa, or that there may be some real, but hidden 'C' connected t...
Article
Its extraordinary self-assembly property, with potential to form non-periodic structures with unique addressability, makes DNA ideal for fabrication of advanced nanostructures. We here demonstrate the controllable tethering of a hexagonal DNA nanostructure in two distinct orientations at the lipid bilayer of a liposome functioning as a soft-matter...
Article
And there was light! Electrochemical studies demonstrated the activation of CO2 by two‐electron‐reduced ruthenium complex [(bpy)2Ru(Q)]2+ (1). The CO2‐reduction cycle was initiated by complex 1 as a photoactive electron mediator. MeOH was afforded with good selectivity from the multicomponent system, which also consisted of cobalt catalyst [Co(NDS)...
Article
Thermodynamic instability is a problem when assembling and purifying complex DNA nanostructures formed by hybridization alone. To address this issue, we have used photochemical fixation and orthogonal copper-free, ring-strain-promoted, click chemistry for the synthesis of dimeric, trimeric, and oligomeric modular DNA scaffolds from cyclic, double-s...
Article
Cell-penetrating peptides and antimicrobial peptides are two classes of positively charged membrane active peptides with several properties in common. The challenge is to combine knowledge about the membrane interaction mechanisms and structural properties of the two classes to design peptides with membrane-specific actions, useful either as transp...
Article
Mixed-sequence DNA molecules undergo mechanical overstretching by approximately 70% at 60-70 pN. Since its initial discovery 15 y ago, a debate has arisen as to whether the molecule adopts a new form [Cluzel P, et al. (1996) Science 271:792-794; Smith SB, Cui Y, Bustamante C (1996) Science 271:795-799], or simply denatures under tension [van Mamere...
Article
The Z-scan technique was used to determine the spectral dependence of the nonlinear absorption in well-known DNA intercalators: ethidium bromide and its homodimer. It is found that the compounds show essentially the same features of their nonlinear absorption spectra with the magnitudes of the relevant cross sections scaling with molecular weight o...
Article
Voltage-sensitive dyes are frequently used for probing variations in the electric potential across cell membranes. The dyes respond by changing their spectral properties: measured as shifts of wavelength of absorption or emission maxima or as changes of absorption or fluorescence intensity. Although such probes have been studied and used for decade...
Article
Cell-penetrating peptides (CPPs) are able to traverse cellular membranes and deliver macromolecular cargo. Uptake occurs through both endocytotic and nonendocytotic pathways, but the molecular requirements for efficient internalization are not fully understood. Here we investigate how the presence of tryptophans and their position within an oligoar...
Article
Cell surface proteoglycans (PGs) appear to promote uptake of arginine-rich cell-penetrating peptides (CPPs), but their exact functions are unclear. To address if there is specificity in the interactions of arginines and PGs leading to improved internalization, we used flow cytometry to examine uptake in relation to cell surface binding for penetrat...
Article
Enthalpy-entropy compensation (EEC) has a definite physical sense. Here, we review EEC from a new standpoint, using the notion of correlation. The latter has two basic meanings: (a) `A' is correlated to `B' means `A' results from `B' or vice versa; (b) this same means there is some real, but hidden `C' in connection to both `A' and `B'). In accorda...
Article
"…︁ The Molecular Frontiers Foundation seeks to increase the interest of young people in science by recognizing that creative inquisitiveness is a skill that can be honed and rewarded …︁" Read more in the Editorial by Bengt Nordén.
Article
Catalysts are agents that by binding reactant molecules lower the energy barriers to chemical reaction. After reaction the catalyst is regenerated, its unbinding energy recruited from the environment, which is associated with an inevitable loss of energy. We show that combining several catalytic sites to become energetically and temporally phase-sh...
Article
Full-text available
Opposite enantiomers of [Ru(phenanthroline)(3)](2+) affect the persistence length of DNA differently, a long speculated effect of helix kinking. Our molecular dynamics simulations confirm a substantial change of duplex secondary structure produced by wedge-intercalation of one but not the other enantiomer. This effect is exploited by several classe...
Article
We report that short, synthetic, double- as well as single-stranded DNA can be aligned in stretched humid poly(vinyl alcohol) (PVA) matrix, and the secondary structure (nucleobase orientation) can be characterized with linear dichroism (LD) spectroscopy. Oligonucleotides of lengths varying between 10 (3.4 nm) and 60 bases (20.4 nm) were investigate...
Article
We report on the successful covalent functionalization of carbon nanotube (CNT) forests, in situ grown on a silicon chip with thin metal contact film as the buffer layer between the CNT forests and the substrate. The CNT forests were successfully functionalized with active amine and azide groups, which can be used for further chemical reactions. Th...
Article
Full-text available
In various chemical systems enthalpy-entropy compensation (EEC) is a well-known rule of behavior, although the physical roots of it are still not completely understood. It has been frequently questioned whether EEC is a truly physical phenomenon or a coincidence due to trivial mathematical connections between statistical-mechanical parameters - or...
Article
We report remarkable multiphoton absorption properties of DNA intercalating ruthenium complexes: (1) [Ru(phen)(2)dppz](2+); (2) [(11,11'-bidppz)(phen)(4)Ru(2)](4+); (3) [11,11'-bipb(phen)(4)Ru(2)](4+). Two-photon spectra in the range from 460 to 1100 nm were measured using the Z-scan technique. In particular, complex 2 was found to exhibit very str...
Article
Full-text available
Human RAD51 protein (HsRad51) catalyses the DNA strand exchange reaction for homologous recombination. To clarify the molecular mechanism of the reaction in vitro being more effective in the presence of Ca2+ than of Mg2+, we have investigated the effect of these ions on the structure of HsRad51 filament complexes with single- and double-stranded DN...
Article
Cell-penetrating peptides have the ability to stimulate uptake of macromolecular cargo in mammalian cells in a non-toxic manner and therefore hold promise as efficient and well tolerated gene delivery vectors. Non-covalent peptide-DNA complexes ("peptiplexes") enter cells via endocytosis, but poor peptiplex stability and endosomal entrapment are co...
Article
Powerful tools for identifying reaction intermediates and by-products of chemical reactions are crucial for the development of high-yield chemical syntheses, not only for testing theoretical mechanistic models and calculations, but also to obtain improved understanding of reaction mechanisms during trial experiments. This will enable more efficient...
Article
Potential roles of intercalative binding have challenged researchers since Lehrman's discovery 50 years ago, that aromatic molecules may reside in between base-pairs. Lately intercalation was found to be used also by bigger systems like operatory proteins. DNA-Recombinases and TATA-box binding protein use intercalative binding for indirect readout...
Article
Full-text available
Based upon the structural properties of DNA duplexes and their counterion-water surrounding in solution, we have introduced here a screw model which may describe translocation of DNA duplexes through artificial nanopores of the proper diameter (where the DNA counterion–hydration shell can be intact) in a qualitatively correct way. This model repres...
Article
We investigate how DNA interacts with drugs in humid polyvinyl alcohol (PVA) films by using a homologous set of cyanine dyes (YO(+), YO-PRO(2+), and YOYO(4+)) known to intercalate into DNA with increasing affinity with increasing charge. UV-vis spectroscopy shows that the PVA matrix destabilizes all three DNA-dye complexes compared to aqueous solut...
Article
Thread with care: The threading of a dumb-bell shaped ruthenium complex between two DNA strands (see figure) is dependent on rare, spontaneous duplex openings. We have investigated DNA constructs structurally mimicking hypothetical transition states, in which threading, and unthreading, proved to be greatly facilitated.
Article
Full-text available
No strings attached: At least three attachment points are needed to align a two-dimensional DNA nanoconstruct to a soft lipid membrane surface with a porphyrin nucleoside as membrane anchor. The resulting freely diffusing DNA constructs can be reversibly assembled on the surface thus enabling the possibility of a self-repairing system.
Article
We demonstrate the stepwise assembly of a fully addressable polycyclic DNA hexagon nanonetwork for the preparation of a four-ring system, one of the biggest networks yet constructed from tripodal building blocks. We find that the yield exhibits a distinct upper level <100%, a fundamental problem of thermodynamic DNA assembly that appears to have be...
Article
Bicelles are excellent membrane-mimicking hosts for a dynamic and structural study of solutes with NMR, but the magnetic fields required for their alignment are hard to apply to optical conditions. Here we demonstrate that bicellar mixtures can be aligned by shear forces in a Couette flow cell, to provide orientation of membrane-bound retinoic acid...
Article
This article presents a new design of flow-orientation device for the study of bio-macromolecules, including DNA and protein complexes, as well as aggregates such as amyloid fibrils and liposome membranes, using Linear Dichroism (LD) spectroscopy. The design provides a number of technical advantages that should make the device inexpensive to manufa...
Article
Michler's hydrol blue (MHB) is investigated with respect to photophysical properties in varied solvent environment and when bound to insulin and lysozyme fibrils. The MHB chromophore is shown to act like a molecular rotor and bind well to amyloid fibrils, where it exhibits a characteristic red-shift in its excitation spectrum and an increase in the...
Article
Magnetically triggered release from magnetic giant unilamellar vesicles (GUVs) loaded with Alexa fluorescent dye was studied by means of confocal laser scanning microscopy (CLSM) under a low-frequency alternating magnetic field (LF-AMF). Core/shell cobalt ferrite nanoparticles coated with rhodamine B isothiocyanate (MP@SiO2(RITC)) were prepared and...
Article
Full-text available
In a majority of living organisms, FoF1 ATP synthase performs the fundamental process of ATP synthesis. Despite the simple net reaction formula, ADP+Pi→ATP+H2O, the detailed step-by-step mechanism of the reaction yet remains to be resolved owing to the complexity of this multisubunit enzyme. Based on quantum mechanical computations using recent hig...
Article
An experimentally simple sequential one-pot RuAAC reaction, affording 1,5-disubstituted 1H-1,2,3-triazoles in good to excellent yields starting from an alkyl halide, sodium azide, and an alkyne, is reported. The organic azide is formed in situ by treating the primary alkyl halide with sodium azide in DMA under microwave heating. Subsequent addition...
Article
Cell-penetrating peptides (CPPs) gain access to intracellular compartments mainly via endocytosis and have capacity to deliver macromolecular cargo into cells. Although the involvement of various endocytic routes has been described it is still unclear which interactions are involved in eliciting an uptake response and to what extent affinity for pa...