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Abstract

The paper deals with the semi-implicit time scheme combined with a finite element
spatial approximation for a parabolic variational inequality related to American op-
tions problem. The convergence of the iterative scheme is established and a optimal
L∞-asymptotic behavior is given. Furthermore, the proposed approach is based on
a Sub-solutions method.
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1. Introduction

The American options problem in a black scholes model with constant coefficients and
without dividend may be solved by considering the following parabolic variational in-
equality (P.V.I) see [21]:

∂U

∂t
+ AU ≥ 0, U ≥ � for (t, x) ∈ (0, T ] × �(

∂U

∂t
+ AU

)
(U − �) = 0 for (t, x) ∈ (0, T ] × �

U(t, x) = �(x) for (t, x) ∈ (0, T ] × �

(1.1)
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with the initial condition
U(0, x) = �(x), x ∈ �,

where � is a bounded domain of R
N, N ≥ 1, whith smooth boundary �.�(x) denote

the payoff.
The operator A is given by:

AU = − N

�
i,j=1

(
1

2

N

�
k=1

σikσjk

)
∂2U

∂xi∂xj

+ N

�
j=1

(
1

2

N

�
i=1

σ 2
ij − r

)
∂U

∂xj

+ rU. (1.2)

To discretize (1.1) by the finite element method, we write the parabolic variational
inequality related to american options problem in a more compact form.

Assuming that there exixts a C2 function ψ̂ such that ψ̂ = � on �, after setting
u = U − ψ̂, we can reformulate the problem (1.1) to the following P.V.I:

Find u ∈ K solution of(
∂u

∂t
, v − u

)
+ a(u, v − u) ≥ (f, v − u), ∀v ∈ K, (1.3)

where K is a closed convex set defined as follows:

K =
{

v(t, x) ∈ L2([0, T ], H 1
0 (�)), v(t, x) ≥ ψ(x),

v(0, x) = ψ(x) in �, v = 0 on �.

}
. (1.4)

f is a regular function, f = −Aψ̂ in L2(�). (1.5)

ψ a positive obstacle of W 1,2(�), where ψ = � − ψ̂. (1.6)

the function ψ has at least the same regularity as �, and ψ̂ is a quite smooth function.
The bilinear form associated with operator A is given by:

a(u, v) =
∫
�

(
N

�
i,j=1

ai,j

∂u

∂xi

∂v

∂xj

+ N

�
j=1

bj

∂u

∂xj

v + a0uv

)
dx, (1.7)

and the coefficients: ai,j , bj , a0, where 1 ≤ i ≤ N, 1 ≤ j ≤ N are satisfy the following
conditions:

ai,j = aj,i = 1

2

N

�
k=1

σikσjk; a0 = r ≥ β > 0, where β is constant, (1.8)

N

�
i,j=1

ai,j εiεj ≥ γ |ε|2 ; ε ∈ R
N, γ > 0. (1.9)

bj = 1

2

N

�
i=1

σ 2
ij − r. (1.10)

For more detail on the parabolic variational inequality related to American options
problem (see [1, 16, 22]).
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The formalization of the American options problem as variational inequality and
its discretization by numerical methods, appeared only rather tardily in the article of
Jaillet, Lamberton and Lapeyre see [17]. A little later, the book of Wilmott, Dewynne
and Howison see [22] has made it much more accessible the pricing by L.C.P from
American Option problem.Then, the article of Xiao lan Zhang see [21], and the article
of Feng, Linetsky, Morales, Nocedal see [16]. For the problems at free boundary several
numerical results have was obtained for parabolic and elliptic variational and quasi-
variational inequality see [2–11].

In this paper, we establish an L∞-asymptotic behavior using the semi-implicit dis-
cretization scheme combined with a finite element spatial approximation and subsolution
method. This method is introduced in P. Cortey-dumont [14] , [15] , M. Boulbrachene
[5] , [8] , and M. Boulbrachene, P. Cortey-dumont [7], which characterizes the continu-
ous solution (resp. the discrete solution) as the least upper bound of the set of continuous
subsolutions (resp. the discrete subsolution) will also be crucial to prove the asymptotic
behavior in uniform norm for the variational inequality related toAmerican options prob-
lem. The approximation method developed in this paper stands on the construction a
sequence of continuous subsolutions denoted

(
βk

)
k≥1 such that

βk ≤ uk and
∥∥βk − uk

h

∥∥∞ ≤ Ch2 | ln h |2, ∀k = 1, . . . , n,

and the construction a sequence of discrete subsolution
(
αk

h

)
n≥1 such that

αk
h ≤ uk

h and
∥∥αk

h − uk
∥∥∞ ≤ Ch2 | ln h |2, ∀k = 1, . . . , n,

we obtain ∥∥uk − uk
h

∥∥∞ ≤ Ch2 | ln h |2, ∀k = 1, . . . , n,

and the estimate of convergence of the continuous and discrete iterative scheme

∥∥uk − u∞∥∥∞ ≤
(

1

1 + β�t

)k ∥∥u0 − u∞∥∥∞ ,

∥∥uk
h − u∞

h

∥∥∞ ≤
(

1

1 + β�t

)k ∥∥u0
h − u∞

h

∥∥∞ .

In this situation we establish an L∞-asymptotic behavior that is:

‖ un
h − u∞ ‖∞≤ C

[
h2 | ln h |2 +

(
1

1 + β�t

)n]
.

It is worth mentioning that the construction of second membre f and the approx-
imation method presented in this paper is entirely different from the one developed in
[2].

The outline of the paper is as follows. In section 2, we transform the parabolic
variational inequality into a non-coercive elliptic variational inequality by the semi-
implicit scheme, then we associate with the continuous V.I a fixed point mapping and we
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use that in proving the existence of a unique continous solution, and we prove some related
qualitative properties. In Section 3, we discretize the parabolic variational inequality by
the semi-implicit Euler discretization scheme combined with a finite element method,
then we associate with the discrete V.I a fixed point mapping and we use that in proving
the existence of a unique discrete solution, and we give analogous qualitative properties
for the discrete problem. In section 4, we introduce two auxiliary problems which allow
us to define sequences of continuous and discrete subsolution. Finally, in Section 5, we
establish the asymptotic behavior in L∞-norm for the American Options problem.

2. Study of the continuous problem

2.1. The time discretization

Now, we apply the semi-implicit scheme of the continuous parabolic variational inequal-
ity (1.3), we have for uk ∈ K and k = 1, . . . , n(

uk − uk−1

�t
, v − uk

)
+ a(uk, v − uk) ≥ (f, v − uk), ∀v ∈ K, (2.1)

where �t = T

n
, tk = k�t.

The inequality (2.1) is equivalent to

b(uk, v − uk) ≥ (f + λuk−1, v − uk), ∀v ∈ K, (2.2)

such that 
b(uk, v − uk) = λ

(
uk, v − uk

) + a(uk, v − uk),

λ = 1

�t
= n

T
.

(2.3)

Notation:
(., .) denotes the inner product in L2 (�) .

‖.‖L∞ = ‖.‖∞ , ‖.‖H 1 = ‖.‖1 and ‖.‖L2 = ‖.‖2 .

2.2. Existence and uniqueness for the continuous P.V.I

Using the preceding assumptions, we shall prove the existence of a unique solution for
problem (2.2) by means of the Banach fixed point theorem.

2.2.1 Fixed Point Mapping Associated with the continuous P.V.I (2.2)

We define the following mapping

T : L∞+ (�) → L∞+ (�) (2.4)

w → T (w) = ξ,
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such that ξ is the solution of the following problem:

b(ξ, v − ξ) ≥ (f + λw, v − ξ), ∀v ∈ K, (2.5)

where L∞+ (�) is the positive cone of L∞(�).

2.2.2 Iterative continuous algorithm

We choose u0 as the solution of the following continuous equation

b(u0, v) = (F, v), ∀v ∈ K, (2.6)

where F is a regular function given.
Now we give the following continuous algorithm:

uk = T uk−1, k = 1, . . . , n, uk ∈ K, (2.7)

where ,uk is the solution of the continuous P.V.I (2.2).

2.2.3 A monotonicity property of the continuous solution

Let F = f + λuk−1, F̃ = f + λũk−1 be two right-hand sides and uk = ∂ (F, ψ),

ũk = ∂
(
F̃ , ψ̃

)
the correspending solutions to the continuous P.V.I (2.2), respectively.

Lemma 2.1. If F ≥ F̃ and ψ ≥ ψ̃ then uk ≥ ũk.

Proof. This proof is an adaptation of [5] .

Starting from u0 and ũ0 solutions to equation (2.6) with right-hand sides F and F̃ ,

respectively. Then u0 ≥ ũ0 implies f + λu0 ≥ f + λũ0 and ψ ≥ ψ̃.

Therefore, applying standard comparison result in coercive VI (see [12]), we get

u1 ≥ ũ1.

Now assume that
uk−1 ≥ ũk−1,

it follows that
f + uk−1 ≥ f + ũk−1,

and
ψ ≥ ψ̃.

Finally, we get
uk ≥ ũk.

This completes the proof. �
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2.2.4 A lipschitz dependence property of the continuous solution

Proposition 2.2. Under the above notations and conditions of lemma 2.1, we have∥∥uk − ũk
∥∥∞ ≤

∥∥∥F − F̃

∥∥∥∞ . (2.8)

Proof. This proof is an adaptation of [5] . Let

� =
∥∥∥F − F̃

∥∥∥∞ .

it is easy to see that

F ≤ F̃ +
∥∥∥F − F̃

∥∥∥∞ .

F ≤ F̃ + �.

and
ψ ≤ ψ̃.

Using Lemma 2.1, we have

∂ (F, ψ) ≤ ∂
(
F̃ + �, ψ̃

)
.

≤ ∂
(
F̃ + �, ψ̃ + �

)
= ∂

(
F̃ , ψ̃

)
+ �.

where
ψ̃ ≤ ψ̃ + �.

Thus,
∂ (F, ψ) ≤ ∂

(
F̃ , ψ̃

)
+ �.

Therefore
uk ≤ ũk + �.

Interchanging the roles of F and F̃ , we similarly get

ũk ≤ uk + �.

Therefore, ∥∥uk − ũk
∥∥∞ ≤

∥∥∥F − F̃

∥∥∥∞ .

This completes the proof. �

Proposition 2.3. Under conditions of Lemma 2.1 and assumption (1.8), the mapping T

is a contraction in L∞(�), i.e.,

‖T (w) − T (w̃)‖∞ ≤ 1

1 + β�t
‖w − w̃‖∞ (2.9)
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Therefore, T admits a unique fixed point, which coincides with the solution of continuous
V.I (2.2).

Proof. For w, w̃ in L∞(�), we consider ξ = T (w) = ∂(f + λw, ψ) and ξ̃ = T (w̃) =
∂(f + λw̃, ψ̃) solution to continuous variational inequality (2.2) with right-hand sid
F = f + λw, F̃ = f + λw̃.

Now, setting

φ = 1

λ + β

∥∥∥F − F̃

∥∥∥∞ .

Then, it is clear that

F ≤ F̃ +
∥∥∥F − F̃

∥∥∥∞ .

≤ F̃ + a0 + λ

β + λ

∥∥∥F − F̃

∥∥∥∞ .

(because a0 ≥ β > 0).
≤ F̃ + (a0 + λ)φ.

Using to Lemma 2.1, it follows that

∂(F, ψ) ≤ ∂(F̃ + (a0 + λ)φ, ψ̃).

On the other hand, one has

∂(F̃ , ψ̃) + φ = ∂(F̃ + (a0 + λ)φ, ψ̃ + φ).

Indeed, ξ̃ + φ is solution of

b(ξ̃ + φ, (v + φ) − (ξ̃ + φ)) ≥ (F̃ + (a0 + λ)φ, (v + φ) − (ξ̃ + φ))

ξ̃ + φ ≥ ψ + φ, v + φ ≥ ψ + φ, ∀v ∈ K

Thus
∂(F, ψ) ≤ ∂(F̃ + (a0 + λ)φ, ψ̃) ≤ ∂(F̃ + (a0 + λ)φ, ψ̃ + φ).

hence
ξ ≤ ξ̃ + φ.

Similarly, interchanging the roles of w and w̃, we also get

ξ̃ ≤ ξ + φ.

Finally, this yields

‖T (w) − T (w̃)‖∞ ≤ 1

λ + β

∥∥∥F − F̃

∥∥∥∞

≤ 1

λ + β
‖f + λw − f − λw̃‖∞

≤ λ

λ + β
‖w − w̃‖∞
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‖T (w) − T (w̃)‖∞ ≤ 1

1 + β�t
‖w − w̃‖∞ .

This completes the proof. �

Proposition 2.4. Under the conditions of Proposition 2.2 and the previous hypotheses,
we have the following estimate of geometric convergence∥∥uk − u∞∥∥∞ ≤

(
1

1 + β�t

)k ∥∥u0 − u∞∥∥∞ , (2.10)

where u∞ is stationary solution to the following continuous V.I.

b(u∞, v − u∞) ≥ (f + λu∞, v − u∞), ∀v ∈ K. (2.11)

Proof. For k = 1, we have
u∞ = T u∞,

and ∥∥u1 − u∞∥∥∞ = ∥∥T u0 − T u∞∥∥∞ ≤
(

1

1 + β�t

) ∥∥u0 − u∞∥∥∞ .

We assume that, for step k∥∥uk − u∞∥∥∞ ≤
(

1

1 + β�t

)k ∥∥u0 − u∞∥∥∞ ,

then, we use the Bensoussan-Lions algorithm∥∥uk+1 − u∞∥∥∞ = ∥∥T uk − T u∞∥∥∞ ≤
(

1

1 + β�t

) ∥∥uk − u∞∥∥∞ ,

thus ∥∥uk+1 − u∞∥∥∞ ≤
(

1

1 + β�t

) (
1

1 + β�t

)k ∥∥u0 − u∞∥∥∞ .

≤
(

1

1 + β�t

)k+1 ∥∥u0 − u∞∥∥∞ .

This completes the proof. �

2.2.5 The notion of continuous subsolution

Definition 2.5. ωk ∈ K is said to be a subsolution for the continuous P.V.I (2.2) if

b(ωk, v) ≤ (f + λωk−1, v), ∀v ∈ K, (2.12)

Let X be the set of such subsolutions.

Theorem 2.6. The solution of the continuous P.V.I (2.2) is the maximum elements of
the set X.

Proof. It is an easy adaptation of [15] . �
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3. The study of discrete problem

We decomposed � into triangles and let τh denotes the set of all those elements, where
h > 0 is the mesh size. We assume that the family τh is regular and quasi-uniform. We
consider the usual basis of affine functions ϕi, i = {1, . . . , m(h)} defined by ϕi(Mj) =
δij , where Mj is a vertex of the considered triangulation.We introduce the following
discrete spaces V

h of finite element constructed from polynomials of degree 1.

V
h = {vh ∈ L2(0, T , H 1

0 (�)) ∩ C(0, T , H 1
0 (�̄)), such that vh |k∈ P1, k ∈ τh}, (3.1)

and

K
h = {vh ∈ V h, vh ≥ rhψh, vh(0, x) = rhψh in �, vh = 0 on �}. (3.2)

We consider rh be the usual interpolation operator defined by

vh ∈ L2(0, T , H 1
0 (�)) ∩ C(0, T , H 1

0 (�̄)), rhv =
m(h)∑
i=1

v(Mi)ϕi(x). (3.3)

The discrete maximum principle assumption (dmp) (cf.[13]): We assume the matrix
whose generic coefficients a(ϕi, ϕj ) are M-matrix.

Theorem 3.1. [cf.[20]] Let us assume that the bilinear form a(., .) is weakly coercive
in K

h ⊂ H 1
0 (�), there exists two constants α > 0 and λ > 0 such that:

a(uh, uh) + λ ‖uh‖2 ≥ α ‖uh‖1 . (3.4)

3.1. Discretization

We discretize the space H 1
0 (�) by a space discretization of finite dimensional K

h ∈
H 1

0 (�) constructed from polynomials of degree 1. In a second step, we discretize the
problem with respect to time using the semi-implicit scheme. For this, we search a
sequence of elements uk

h ∈ K
h which approaches uk (tk) , tk = k�t , with initial data

u0
h = u0h.

We apply the finite element method to approximate inequality (1.3), and the semi-
discrete P.V.I takes the form of(

∂uh

∂t
, vh − uh

)
+ a(uh, vh − uh) ≥ (f, vh − uh), ∀vh ∈ K

h. (3.5)

Now, we apply the semi-implicit scheme on the semi-discrete problem (3.5); for any
k = 1, . . . , n, we have for vh ∈ K

h(
uk

h − uk−1
h

�t
, vh − uk

h

)
+ a(uk

h, vh − uk
h) ≥ (f, vh − uk

h). (3.6)
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Then, problem (3.6) can be refomulated into the following coercive discrete elliptic
variational inequality:

b(uk
h, vh − uk

h) ≥ (f + λuk−1
h , vh − uk

h), ∀vh ∈ K
h. (3.7)

such that  b(uk
h, vh − uk

h) = λ
(
uk

h, vh − uk
h

) + a(uk
h, vh − uk

h),

λ = 1

�t
= n

T
.

(3.8)

3.2. Existence and uniqueness for the discrete V.I

In a similar way to that of Section 2, we shall characterize the solution of discrete V.I as
the unique fixed point of a contraction. To that end, we need a monotonicity result and
a lipschitz dependence property for the discrete V.I.

3.2.1 Fixed Point Mapping Associated with the discrete V.I (3.7)

We define the following mapping

Th : L∞+ (�) → K
h (3.9)

w → Th(w) = ξh,

such that ξh is the solution of the following problem:

b(ξh, vh − ξh) ≥ (f + λw, vh − ξh), ∀vh ∈ K
h, (3.10)

where L∞+ (�) is the positive cone of L∞(�).

3.2.2 Iterative discrete algorithm

We choose u0
h as the solution of the following discrete equation

b(u0
h, vh) = (F, vh), ∀vh ∈ K

h, (3.11)

where F is a regular function given.
Now we give the following discrete algorithm:

uk
h = Thu

k−1
h , k = 1, . . . , n, uk

h ∈ K
h, (3.12)

where uk
h is the solution of the discrete P.V.I (3.7).

Remark 3.2. Under the D.M.P., the qualitative properties and results established in the
section 2 are conserved in the discrete case.Their respective proofs will be omitted as
they are very similar to their continuous analogous ones.
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3.2.3 A monotonicity property of the discrete solution

Let F = f + λuk−1
h , F̃ = f + λũk−1

h be two right-hand sides and uk
h = ∂h (F, rhψ),

ũk
h = ∂h

(
F̃ , rhψ̃

)
the correspending solutions to the discrete P.V.I (3.7), respectively.

Lemma 3.3. [cf [5]] Under the D.M.P, If F ≥ F̃ and rhψ ≥ rhψ̃ then uk
h ≥ ũk

h.

3.2.4 A lipschitz dependence property of the discrete solution

Proposition 3.4. [cf [5]] Under the above notations and conditions of Lemma 3.3, we
have ∥∥uk

h − ũk
h

∥∥∞ ≤
∥∥∥F − F̃

∥∥∥∞ . (3.13)

Proposition 3.5. [cf [2]] Under conditions of Lemma 3.3 and assumption (1.8), the
mapping Th is a contraction in L∞(�) , i.e.,

‖Th(w) − Th(w̃)‖∞ ≤ 1

1 + β�t
‖w − w̃‖∞ . (3.14)

Therefore, Th admits a unique fixed point, which coincides with the solution of discrete
P.V.I (3.7).

Proposition 3.6. [cf [ 2]] Under the conditions of Proposition 2.4 and the previous
hypotheses, we have the following estimate of geometric convergence

∥∥uk
h − u∞

h

∥∥∞ ≤
(

1

1 + β�t

)k ∥∥u0
h − u∞

h

∥∥∞ , (3.15)

where u∞
h is stationary solution to the following discrete V.I

b(u∞
h , vh − u∞

h ) ≥ (f + λu∞
h , vh − u∞

h ), ∀vh ∈ K
h. (3.16)

3.2.5 The notion of discrete subsolution

Definition 3.7. [Cf [15]] ωk
h ∈ K

h is said to be a subsolution for the discrete V.I (2.2) if

b(ωk
h, ϕi) ≤ (f + λωk−1

h , ϕi), ∀i ∈ {1, . . . , m(h)} . (3.17)

Let Xh be the set of such discrete subsolutions.

Theorem 3.8. [Cf [15]] Under the D.M.P., the solution of the discrete.P.V.I (3.7) is the
maximum elements of the set Xh.

4. Error estimates in the L∞-norm

In this section, we introduce two auxiliary problems which allow us to define sequences
of continuous and discrete subsolution.
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4.1. Two Auxiliary Sequences of Variational inequality

Let ūk be the solution of the continuous V.I:

b(ūk, v − ūk) � (f + λuk−1
h , v − ūk) ∀v ∈ K, (4.1)

where uk
h is defined in (3.12). Let ūk

h be the solution of the discrete V.I:

b(ūk
h, vh − ūk

h) � (f + λuk−1, vh − ūk
h) ∀v ∈ K

h, (4.2)

where uk is defined in (2.7).

Lemma 4.1. [cf [15]] There exists a constant C independent of h, and k such that

‖ ūk − uk
h ‖∞ ≤ Ch2 | ln h |2, (4.3)

and
‖ ūk

h − uk ‖∞≤ Ch2 | ln h |2 . (4.4)

Now, we shall estimate the error in the L∞-norm between the uk and uk
h defined in

(2.7) and (3.12), respectively.

Theorem 4.2. ∥∥uk − uk
h

∥∥∞ ≤ Ch2 | ln h |2 . (4.5)

the following lemma plays crucial role in proving the theorem (4) .

Lemma 4.3. There exists a sequence of continuous subsolutions (βk)k≥1 such that

βk ≤ uk, ∀k = 1, . . . , n, (4.6)

and ∥∥βk − uk
h

∥∥∞ ≤ Ch2 | ln h |2, (4.7)

and a sequence of discrete subsolutions (αk
h)k≥1 such that

αk
h ≤ uk

h, ∀k = 1, . . . , n, (4.8)

and ∥∥αk
h − uk

∥∥∞ ≤ Ch2 | ln h |2 . (4.9)

Proof. Consider the continuous V.I

b(ū1, v − ū1) � (f + λu0
h, v − ū1) ∀v ∈ K.

Then, as ū1 is solution to a continuous V.I, it is also a subsolution, i.e.,

b(ū1, v) ≤ (f + λu0
h, v) ∀v ∈ K.
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and
b(ū1, v) ≤ (f + λu0

h − λu0 + λu0, v) ∀v ∈ K.

we have ∥∥u0
h − u0

∥∥∞ ≤ Ch2 | ln h | (see [19]) (4.10)

Then
b(ū1, v) ≤ (f + λ

∥∥u0
h − u0

∥∥∞ + λu0, v) ∀v ∈ K.

and using (4.10) , we get

b(ū1, v) ≤ (f + λCh2 | ln h | +λu0, v) ∀v ∈ K.

So, ū1 is a subsolution for the continuous V.I whose solution is

Ū1 = ∂(f + λCh2 | ln h | +λu0).

Then, as u1 = ∂(f + λu0) making use of Proposition (1), we have∥∥Ū1 − u1
∥∥∞ ≤ ∥∥f + λCh2 | ln h | +λu0 − f − λu0

∥∥∞

≤ Ch2 | ln h |,
and, due to Theorem (1), we have

ū1 ≤ Ū1 ≤ u1 + Ch2 | ln h | .

Now putting
β1 = ū1 − Ch2 | ln h |,

we have
β1 ≤ u1 (4.11)

and ∥∥β1 − u1
h

∥∥∞ ≤ ∥∥ū1 − Ch2 | ln h | −u1
h

∥∥∞ (4.12)

≤ ∥∥ū1 − u1
h

∥∥∞ + Ch2 | ln h |

≤ Ch2 | ln h |2 +Ch2 | ln h |

≤ Ch2 | ln h |2 .

Consider the discrete of discrete V.I

b(ū1
h, vh − ū1

h) � (f + λu0, vh − ū1
h) ∀vh ∈ K

h.
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Then, as ū1
h is solution to discrete V.I, it is also a subsolution i.e.,

b(ū1
h, ϕs) ≤ (f + λu0, ϕs) ∀ϕs, s = 1, . . . , m(h)

and
b(ū1

h, ϕs) ≤ (f + λu0 − λu0
h + λu0

h, ϕs) ∀ϕs, s = 1, . . . , m(h)

Then

b(ū1
h, ϕs) ≤ (f + λ

∥∥u0 − u0
h

∥∥∞ + λu0
h, ϕs) ∀ϕs, s = 1, . . . , m(h)

and using (4.10) , we get

b(ū1
h, ϕs) ≤ (f + λCh2 | ln h | +λu0

h, ϕs) ∀ϕs, s = 1, . . . , m(h)

So, ū1
h is a subsolution for the system of V.I whose solution is

Ū1
h = ∂h(f + λCh2 | ln h | +λu0

h).

Then, as u1
h = ∂h(f + λu0

h) making use of Proposition (4), we have∥∥Ū1
h − u1

h

∥∥∞ ≤ ∥∥f + λCh2 | ln h | +λu0
h − f − λu0

h

∥∥∞

≤ Ch2 | ln h | .

and, due to Theorem (3), we have

ū1
h ≤ Ū1

h ≤ u1
h + Ch2 | ln h | .

Now putting
α1

h = ū1
h − Ch2 | ln h |,

we have
α1

h ≤ u1
h, (4.13)

and ∥∥α1
h − u1

∥∥∞ ≤ ∥∥ū1
h − Ch2 | ln h | −u1

∥∥∞ (4.14)

≤ ∥∥ū1
h − u1

∥∥∞ + Ch2 | ln h |

≤ Ch2 | ln h |2 +Ch2 | ln h |

≤ Ch2 | ln h |2 .
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Thus, combining (4.11),(4.12) and (4.13),(4.14) we get

u1 ≤ α1
h + Ch2 | ln h |2

≤ u1
h + Ch2 | ln h |2

≤ β1 + Ch2 | ln h |2

≤ u1 + Ch2 | ln h |2

Therefore ∥∥u1 − u1
h

∥∥∞ ≤ Ch2 | ln h |2 .

Step k. we assume that ∥∥∥uk−1 − uk−1
h

∥∥∥∞ ≤ Ch2 | ln h |2, (4.15)

and we prove that ∥∥uk − uk
h

∥∥∞ ≤ Ch2 | ln h |2 .

For that, consider the continuous V.I

b(ūk, v − ūk) � (f + λuk−1
h , v − ūk), ∀v ∈ K.

Then, as ūk is solution to a continuous V.I, it is also a subsolution i.e.,

b(ūk, v) ≤ (f + λuk−1
h , v), ∀v ∈ K,

and
b(ūk, v) ≤ (f + λuk−1

h − λuk−1 + λuk−1, v), ∀v ∈ K.

Then
b(ūk, v) ≤ (f + λ

∥∥∥uk−1
h − uk−1

∥∥∥∞ + λuk−1, v), ∀v ∈ K.

and, using (4.15), we get

b(ūk, v) ≤ (f + λCh2 | ln h |2 +λuk−1, v), ∀v ∈ K.

Let ūk subsolution for the continuous V.I, whose solution is

Ū k = ∂(f + λCh2 | ln h |2 +λuk−1).

Then, as uk = ∂(f + λuk−1), making use of Proposition (2), we have∥∥Ū k − uk
∥∥∞ ≤ ∥∥ f + λCh2 | ln h |2 +λuk−1 − f − λuk−1

∥∥∞

≤ Ch2 | ln h |2,
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and, due to Theorem (1), we have

ūk ≤ Ū k ≤ uk + Ch2 | ln h |2 .

Now putting
βk = ūk − Ch2 | ln h |2,

we have
βk ≤ uk, (4.16)

and ∥∥βk − uk
h

∥∥∞ ≤ ∥∥ūk − Ch2 | ln h |2 −uk
h

∥∥∞ (4.17)

≤ ∥∥ūk − uk
h

∥∥∞ + Ch2 | ln h |2

≤ Ch2 | ln h |2 +Ch2 | ln h |2

≤ Ch2 | ln h |2 .

Consider the discrete V.I

b(ūk
h, vh − ūk

h) � (f + λuk−1, vh − ūk
h), ∀vh ∈ K

h.

Then, as ūk
h is solution to a discrete V.I, it is also a subsolution i.e.,

b(ūk
h, ϕs) ≤ (f + λuk−1, ϕs) ∀ϕs, s = 1, . . . , m(h)

and

b(ūk
h, ϕs) ≤ (f + λuk−1 − λuk−1

h + λuk−1
h , ϕs) ∀ϕs, s = 1, . . . , m(h)

Then, we have

b(ūk
h, ϕs) ≤ (f + λ

∥∥∥uk−1 − uk−1
h

∥∥∥∞ + λuk−1
h , ϕs) ∀ϕs, s = 1, . . . , m(h)

and, using (4.15), we get

bi(ūk
h, ϕs) ≤ (f + λCh2 | ln h |2 +λuk−1

h , ϕs) ∀ϕs, s = 1, . . . , m(h).

Let ūk
h subsolution for the system of V.I, whose solution is

Ū k
h = ∂h(f + λCh2 | ln h |2 +λuk−1

h ).

Then, as uk
h = ∂h(f + λuk−1

h ) making use of Proposition (4), we have∥∥Ū k
h − uk

h

∥∥∞ ≤
∥∥∥f + λCh2 | ln h |2 +λuk−1

h − f − λuk−1
h

∥∥∥∞

≤ Ch2 | ln h |2 .
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and, due to Theorem 3, we have

ūk
h ≤ Ū k

h ≤ uk
h + Ch2 | ln h |2 .

Now putting
αk

h = ūk
h − Ch2 | ln h |2,

we have
αk

h ≤ uk
h, (4.18)

and ∥∥αk
h − uk

∥∥∞ ≤ ∥∥ūk
h − Ch2 | ln h |2 −uk

∥∥∞ (4.19)

≤ ∥∥ūk
h − uk

∥∥∞ + Ch2 | ln h |2

≤ Ch2 | ln h |2 +Ch2 | ln h |2

≤ Ch2 | ln h |2 .

Thus, combining (4.16),(4.17) and (4.18),(4.19) we get

uk ≤ αk
h + Ch2 | ln h |2

≤ uk
h + Ch2 | ln h |2

≤ βk + Ch2 | ln h |2

≤ uk + Ch2 | ln h |2

Therefore ∥∥uk − uk
h

∥∥∞ ≤ Ch2 | ln h |2 .

�

5. Asymptotic behavior in L∞-norm for
the American Options problem

This section is devoted to the proof of principal result of the present paper, where we prove
the theorem of the asymptotic behavior in L∞-norm for parabolic variational inequality
related to American options problem. More precisely, we evaluate the variation in L∞
between uh (T , x) , the discrete solution calculated at the moment T = n�t and u∞, the
stationary solution of continuous variational inequality.
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Theorem 5.1. Under the results of the proposition (3) and theorem (4), we have

∥∥un
h − u∞∥∥∞ ≤ C

[
h2 | ln h |2 +

(
1

1 + β�t

)n]
. (5.1)

where C is a constant independent of h and n.

Proof. We have
uk

h = uh (t, x) for t ∈ ](k − 1) �t; k�t[ , (5.2)

thus
un

h = uh (T , x) , (5.3)

then ∥∥uh (T , x) − u∞∥∥∞ = ∥∥un
h − u∞∥∥∞ ≤ ∥∥un

h − un
∥∥ + ∥∥un − u∞∥∥ .

Using the Theorem 5.1 and the Proposition 3.4, we have

∥∥un
h − u∞∥∥∞ ≤ C

[
h2 | ln h |2 +

(
1

1 + β�t

)n]
.

�

6. Conclusion

In this paper, we study the finite element approximation of the variational inequality
related to American options problem. We establish an L∞-asymptotic behavior similar
to that in [2] using the subsolution method. The type of estimation that we get here
enables us to locate the free boundary,thing crucial in practice of the American options.
A future work we will consolidate our theoretical results by numerical simulation, where
efficient numerical monotone algorithms will be treated.
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