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Abstract

Whole genome sequencing of pathogens from multiple hosts in an epidemic offers
the potential to investigate who infected whom with unparalleled resolution, poten-
tially yielding important insights into disease dynamics and the impact of control
measures. We considered disease outbreaks in a setting with dense genomic sam-
pling, and formulated stochastic epidemic models to investigate person-to-person
transmission, based on observed genomic and epidemiological data. We constructed
models in which the genetic distance between sampled genotypes depends on the epi-
demiological relationship between the hosts. A data augmented Markov chain Monte
Carlo algorithm was used to sample over the transmission trees, providing a posterior
probability for any given transmission route. We investigated the predictive perfor-
mance of our methodology using simulated data, demonstrating high sensitivity and
specificity, particularly for rapidly mutating pathogens with low transmissibility. We
then analyzed data collected during an outbreak of methicillin-resistant Staphylo-

coccus aureus in a hospital, identifying probable transmission routes and estimating
epidemiological parameters. Our approach overcomes limitations of previous meth-
ods, providing a framework with the flexibility to allow for unobserved infection
times, multiple independent introductions of the pathogen, and within-host genetic
diversity, as well as allowing forward simulation.
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1 Introduction

A fundamental aim in the analysis of infectious disease epidemics is to identify who in-
fected whom, however, achieving this is challenging, since transmission dynamics are
generally unobserved. A probabilistic estimation of the transmission tree based on all
available data offers many potential benefits. In particular, this can lead to improved un-
derstanding of transmission dynamics, provide a mechanism to quantify factors associated
with heightened transmissibility and susceptibility to carriage and infection, and help iden-
tify effective interventions to reduce transmission. Pathogen typing can be used to clus-
ter genetically similar isolate samples, which can rule out potential transmission routes.
Whole genome sequence (WGS) data offers maximal discriminatory power through the
identification of individual point mutations, or single nucleotide polymorphisms (SNPs),
potentially leading to more accurate transmission tree reconstructions than hitherto pos-
sible. However, the joint analysis of genetic and surveillance data poses several challenges,
as the relationship between epidemic and evolutionary dynamics is complex [1].

To date, genomic data have primarily been used to analyse transmission at a popula-
tion rather than an individual level. This typically relies on a broad sample of individuals
from a large population, with the aim of estimating past population dynamics over a long
period of time. Phylogenetic analyses have been used to infer patterns of large-scale ge-
ographic spread [2]. Coalescent theory has been used with such data to estimate, among
other things, fluctuations in population size and transmission parameters [3, 4]. Methods
have also been described to estimate transmission parameters by combining sequence data
and time series incidence data [5].

In contrast, we focus on individual-level transmission, using high-frequency genomic
samples from a subpopulation (eg. hospital, school, jail, farm, community), with the
aim of reconstructing transmission routes. Such sampling presents more of a challenge in
terms of resources and data collection. However, with falling sequencing costs, gathering
genomic data is rapidly becoming a feasible component of outbreak investigations, as
demonstrated by recent studies [6–8]. We aim to estimate the transmission tree, a graph
representing the spread of a pathogen between individuals, comprising nodes (cases, which
may be defined as infected or colonized persons depending on the context), and directed
edges (transmission events). Edges may additionally be associated with a transmission
time. A transmission tree may be composed of multiple unconnected subtrees, each
representing independent chains of transmission. Each transmission chain has an origin,
representing a new introduction of the pathogen into the population. While in some
situations, it may be reasonable to regard the tree as fully connected (that is, only one
origin exists), more generally, multiple introductions of the pathogen from external sources
must be accounted for.

A number of approaches to reconstruct transmission trees for communicable pathogens
using densely sampled genomic data have been described in recent years. Many methods
have been based around the construction of phylogenetic trees, which describe the inferred
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evolutionary relationships between pathogen samples, and can be fit to sequence data
under various evolutionary models. The phylogenetic tree is a bifurcating structure in
which external nodes represent sampled isolates, while internal nodes represent the most
recent common ancestor of its descendants. Internal nodes are similarly linked, such that
the structure is fully-connected. Since phylogenetic trees may be topologically dissimilar
to transmission trees [9, 10], interpreting phylogenetic proximity as epidemiological linkage
can be misleading. Furthermore, phylogenetic trees are undirected, leaving ambiguity
around the direction of transmission even if the transmission tree is topologically identical.

Phylogenetic trees have been used in conjunction with contact tracing data using ad-
hoc approaches to rule out possible transmission links [8, 11], while other approaches have
developed more formal methods to make use of phylogenetic trees to infer transmission
trees. For instance, Ypma et al. developed a method to sample over both the transmis-
sion and phylogenetic tree given a set of sequence data, ensuring both structures remain
consistent with one another [1]. This approach required the specification of a model to
describe within-host pathogen dynamics, which remain poorly understood for the major-
ity of pathogens. Similarly, Numminen et al. describe an importance sampling approach
in which both phylogeny and transmission tree are sampled from proposal distributions
[12]. This approach required sequence data to be partitioned into clusters pre-analysis,
and the topology of the phylogeny to be fixed, but avoids the computational complexity
associated with Markov chain Monte Carlo (MCMC) based methods.

Alternatively, a second class of reconstruction methods avoids phylogenetic tree infer-
ence, using models in which transmission routes are weighted by a function of observed
genetic distance. Simply identifying the source of infection by selecting the host carrying
the most genetically similar sampled isolate has been suggested [13], although this neglects
the role of within-host diversity and sampling time, as well as uncertainty surrounding the
times of infection. While more sophisticated approaches allow for uncertainty in transmis-
sion time and provide a more realistic model for the accumulation of mutations over time,
hosts are characterized by a single pathogen genotype [14–16]. Jombart et al. describe a
Bayesian data-augmentation approach making use of genetic distance data to infer likely
transmission events, dates of infections, and unobserved cases [17]. The approach assumes
known distributions of the generation interval and time from infection to isolate collec-
tion, and does not allow for within host diversity or explicitly account for imported cases
(though multiple unconnected trees can be allowed for). These assumptions mean that,
while the approach may be suitable for an acute infection in an outbreak scenario, it is
not appropriate for pathogens such as S. aureus where long-term carriage is common, the
generation interval is not well-defined, and where within-host diversity can be substantial.

Of the above methods, all assume that a single genotype is sampled from each host,
with the exception of Numminen et al. [12]. This assumption can lead to poor tree
inference in the presence of within-host diversity [18]. Only the approach developed by
Mollentze et al. can identify importations [16]; the remainder of methods assume the
transmission tree is fully connected. Most methods described assume infection times are
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known with certainty. It is likely to be extremely useful to relax each of these assump-
tions in most infectious disease settings. Finally, while the importance sampling method
by Numminen et al. can accommodate various transmission models [12], the remainder
consider instead the probability of a transmission tree linking the set of infected individ-
uals, ignoring the probability of susceptible individuals avoiding infection.

Here we describe a generalized approach to transmission tree reconstruction that over-
comes these limitations and makes use of both molecular typing information and known
exposure data. A key novelty of our approach is that we model the genetic distances be-
tween sequences rather than the microevolution of the sequences themselves. This offers
a flexible framework in which multiple independent introductions of the pathogen and
within-host diversity may be considered, as well as the transmission process itself. This
approach avoids the need to make any assumptions about the within-host pathogen pop-
ulation dynamics, which in general, are poorly understood. Furthermore, our proposed
framework allows data to be simulated forward in time, a feature lacking in the majority
of existing methods (with reverse time simulation typically required in phylogenetic meth-
ods, and only an incomplete set of genetic distances simulated from other approaches),
which is of fundamental importance in predictive modelling and model evaluation.

2 Methods

The importance of identifying transmission pathways in hospital epidemiology is one of the
major motivations for our work. We therefore describe our approach for this setting, and
analyse real and simulated hospital epidemic data. Since infection is often asymptomatic
in this setting, even with frequent patient screening, epidemics are only partially observed.
Furthermore, patients may be admitted to the ward already infected (importations), which
requires consideration of multiple disconnected transmission trees. Our approach accounts
for these complications. In line with most literature on hospital-associated infections, we
subsequently use the term ‘colonized’ to refer to patients who are either symptomatically
or asymptomatically infected with the pathogen.

We observe a set of n patients admitted and discharged from a hospital over a study
period. For each patient (j, say), we observe the day of admission t

a

j

and discharge t

d

j

, the
days and results of screening tests (positive or negative for the pathogen) taken during
their stay. We denote the set of all screening results by X. We also suppose that some (not
necessarily all) of the positive swabs have a corresponding sequenced isolate, i.e. we have
genetic information related to some of the positive tests. From a total of n

s

sequenced
isolates, we derive a symmetric pairwise genetic distance matrix  = ( 

a,b

)

a,bn

s

, with
the genetic element  

a,b

giving the genetic distance between isolates a and b. If colonized,
the day of colonization for patient j is denoted t

c

j

, and the source of infection, s
j

, is equal
to the ID of the patient from whom the pathogen was acquired, or equal to zero if the
patient was already colonized on admission. These quantities specify the transmission
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tree, but are typically unobserved. For patients who are never colonized, tc
j

= s

j

= 1.
We denote the set of colonization times and routes of infection by T . We can write the
likelihood of observing genetic and screening data, given model-specific parameters ✓ as

⇡(X, |✓) =
Z

T

⇡( |X, T, ✓)⇡(X|T, ✓)⇡(T |✓)dT (1)

We now describe the distinct components of our model, which govern the transmission
dynamics (⇡(T |✓)), the observation of screening data (⇡(X|T, ✓)), and the generation of
genetic diversity ⇡( |X, T, ✓).

2.1 Transmission model
We first define a stochastic model which describes both pathogen transmission and the
genetic distances arising between genotypes sampled from any two individuals. Each
patient j, j = 1, . . . , n, is admitted to the ward, independently carrying the pathogen with
probability p, and has marker variable �

j

, equal to 1 if the patient is positive on admission,
and zero otherwise. We assumed homogeneous mixing, such that each colonized patient
has equivalent contact with each susceptible individual. The rate of transmission to a
given susceptible patient on day t is then �C(t), where C(t) is the number of colonized
patients on day t, and � is the transmission rate per colonized individual. We assumed
that individuals colonized on day t may transmit the pathogen from day t+ 1 until their
discharge. Working in discrete time using daily intervals, the probability that a given
susceptible patient avoids colonization on day t is exp(��C(t)), thus, acquisition occurs
with probability 1 � exp(��C(t)). Each patient has the same chance of contacting any
other patient in this model, and we note that transmission is often indirect, via the hands
of healthcare workers (HCWs) [19–21]. Given an individual acquires the pathogen on
day t, the probability that the source of transmission is a particular positive individual
is simply 1/C(t), since it is assumed that colonized patients have an equal potential to
transmit. More generally, this probability will be the transmission pressure from the
potential source divided by the total transmission pressure at time t. The model for
transmission dynamics, T , can then be given as

⇡(T |✓) = p

P
j

�

j

(1� p)

n�
P

j

�

j (2)
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where 1

x

is the indicator function, returning 1 if the condition x is true, and zero
otherwise.

2.2 Observation model
During each patient’s stay in the hospital, regular screening is carried out to detect car-
riage of the pathogen. We assume that the test is highly specific, but imperfectly sensitive
– that is, false positive results are not possible, but a positive patient is correctly screened
positive with probability z (test sensitivity) [22]. Let TP (X, T ), FN(X, T ) and FP (X, T )

be the total number of true positive, false negative and false positive results in the screen-
ing data respectively, given the set of colonization times. The likelihood of observing the
screening results, given test sensitivity and transmission times is

⇡(X|T, ✓) = z

TP (X,T )
(1� z)

FN(X,T )
1

FP (X,T )=0. (3)

2.3 Genetic distance models
We defined the genetic distance to be the observed number of SNPs between isolates,
though other metrics are possible. The genetic distance between any two isolates is
assumed to be drawn from some probability distribution, which in general can depend
on any desired features of the two samples in question, or the hosts from whom they
were sampled, such as their relatedness in terms of transmission. We assume that genetic
distances are perfectly observed, and that insertions, deletions and recombinant sections
are removed from the genome such that the genetic distance is representative of the
accumulation of SNPs.

The true distribution of the observed number of SNPs between two samples is complex,
and depends on the mutation rate and the time of their most recent common ancestor,
which in turn is dependent on the within-host pathogen population dynamics, as well as
the effective transmission inoculum size. Since such factors are still poorly understood
for most pathogens, we supposed that the distribution could be approximated by either a
Poisson or a geometric distribution, dependent on the relationship between the sampled
hosts. This relationship could be modeled a number of ways, but here we focus on
two particular models, allowing for genetic diversity to be generated through alternative
dynamics.

2.3.1 Transmission diversity model

The first model, the transmission diversity model, discriminates between individuals in
a transmission chain under the assumption that the expected genetic diversity changes
predictably as sampled individuals are further apart in the tree. Typically, one would
expect that distances will increase along the chain, due to the accumulation of mutations
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within each host. Each increase in the tree distance between nodes results in the expected
genetic distance changing at a rate governed by a parameter k, which we call the trans-
mission diversity factor. Distances between isolates taken from individuals in unrelated
transmission chains are assumed to be drawn from a different specified distribution.

We proposed a distribution to describe the genetic distance between two isolates, given
the relationship between their carriers in the transmission tree. For isolates x and y, we
defined t(x, y) to be the number of links which separate the isolates in the transmission
tree, with t(x, y) = 1 if x and y are sampled from separate chains. For two samples
taken from the same host, we have t(x, y) = 0. Under the transmission diversity model,
we used the following geometric distribution: for d = 0, 1, . . .

⇡( 

x,y

= d) =

⇢
�k

t(x,y)
(1� �k

t(x,y)
)

d

t(x, y) < 1,

�

G

(1� �

G

)

d

t(x, y) = 1,

(4)

where �kt(x,y) 2 [0, 1]. Here, the parameter �
G

represents genetic diversity between sam-
ples belonging to different transmission chains. The parameter � is the geometric param-
eter for genetic distances occurring in the same transmission chain, while k denotes the
factor by which this parameter is changed upon an additional transmission link between
the samples.

The expected genetic distance between samples is then (1 � �k

z

)/�k

z for samples
separated by z transmission links, or (1 � �

G

)/�

G

for samples belonging to independent
chains. The likelihood contribution for the nth observed sequence is then just the product
of probabilities for the n�1 genetic distances to previously observed sequences. Under this
model, the likelihood of observing the genetic distance matrix  , given the transmission
tree structure, is:

⇡( |X, T, ✓) =

n

sY

y=2

yY

x=1

�
1

t(x,y)1�k
t(x,y)

(1� �k

t(x,y)
)

 

x,y

+ (5)

1

t(x,y)=1�G(1� �

G

)

 

x,y

�

We note that in regular circumstances, we would expect k  1, indicating steady or
increasing diversity along a transmission chain. However, we allow for k to take values
greater than 1, as this may highlight sampling bias (eg. hosts with greater within-host
diversity sampled more frequently), which would not be revealed with a fixed upper bound
of 1.

The true distribution of genetic distances between independent transmission chains
is dependent on the population which enters the hospital already colonized. This dis-
tribution will depend upon the strain types circulating in the community, and may be
multimodal, reflecting clusters of similar strains. In the absence of local and regional
sampling data which would be necessary to obtain a more suitable approximation, we use
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the geometric distribution, assuming strains are more likely to be similar than dissimilar.
Our second model is designed to avoid the challenge of approximating this distribution.

2.3.2 Importation structure model

The second model, the importation structure model, assumes that imported cases are
assigned into genetically similar groups. An individual who acquires the pathogen from
another person in a given group is assigned the same group. An importation may belong to
a previously observed group, despite not being connected in the transmission chain. The
distance between each pair of isolates in a particular group follows the same distribution,
regardless of the tree distance between the nodes, while we expect that isolates belonging
to different groups to be genetically further apart. The number, and composition, of
groups is unobserved, so must be inferred. Under the importation structure model, we
have, for d = 0, 1, 2, . . .

⇡( 

x,y

= d) =

⇢
�(1� �)

d

x and y in the same group,
�

G

(1� �

G

)

d otherwise. (6)

Similar to the previous model, the expected genetic distance between samples is then
(1 � �)/� for samples within the same group, or (1 � �

G

)/�

G

for samples belonging to
different groups. It is necessary to introduce some additional notation for this model; let
g

j

be the group to which colonized individual j belongs (equal to zero if not colonized).
We estimate an additional parameter, c, which gives the probability that the strain of
an imported case belongs to an existing group. Under this model, the likelihood of
observing the genetic distance matrix  , given the transmission tree structure and group
memberships g, is

⇡( |X, T, g, ✓) =

n

sY

y=2

yY

x=1

�
1

g

i

=g

j

�(1� �)

 

x,y

+ 1

g

x

6=g

y

�

G

(1� �

G

)

 

x,y

�
. (7)

Furthermore, the likelihood of observing n

c

groupings among the
P

j

�

j

importations
is

⇡(g|✓) = c

n

c

(1� c)

P
j

�

j

�n

c

. (8)

2.4 Inference methods
To allow for unobserved transmission dynamics, namely the set of transmission days and
sources T = {tc, s} (and additionally the set of group memberships g under the impor-
tation structure model), we used a Bayesian framework and employed a data augmented
MCMC algorithm [23] to sample over this space. Individuals with no observed positive
swabs may also have been colonized, and we allow for this possibility by sampling over
this space. A combination of Metropolis-Hastings and Gibbs sampling was used to draw
samples from the parameter space ✓, consisting of the parameters {p, z, �, �, �

G

, k} for the
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transmission diversity model, and additionally c under the importation structure model.
This approach is an extension of the analytical frameworks previously used to estimate
transmission parameters given unobserved infection days [24–26]. In addition to sam-
pling transmission days, we specify a model for genetic data in this approach, sampling
transmission routes to identify the posterior transmission tree.

Transmission trees were sampled by randomly drawing new colonization days and
sources, such that every proposed tree had a non-zero likelihood. Full details of the tree
sampling methods, acceptance probabilities and MCMC algorithm are provided in the
Appendix. By calculating the proportion of total samples for which particular trans-
mission routes existed, we derived a tree with edges weighted by posterior probability.
The R package ‘bitrugs’ (Bayesian Inference of Transmission Routes Using Genome Se-
quences) contains code to implement the MCMC algorithm, and is included in the online
supplementary materials.

Except where mentioned, parameters p, z, �, �
G

, c were assigned Beta(1,1) prior
densities. The parameters � and k were assumed to be exponentially distributed a priori,
with rate 10

�6.

Figure 1. Colonized patient episodes in the Rosie hospital neonatal ward. Patients
are shown as colonized (black) after their first MRSA positive swab result
until the end of their episode. Susceptible patients are shown in grey.
Patient marked with an asterisk (*) carry a non-outbreak sequence type.
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2.5 Data
We first investigated the performance of our models using simulated hospital data, gener-
ated under several different scenarios. Code to simulate data is included in an R package,
available in the supplementary materials. We assessed tree accuracy by comparing the
simulated true and estimated tree, and examining the receiver operating characteristic
(ROC) curve [27], identifying scenarios in which the model performed well and poorly.
We compared our estimated trees to the ‘uninformed’ tree – that is, an estimate of trans-
mission routes excluding genomic data, assigning each potential source an equal weight.
The ROC for the uninformed tree is calculated under the assumption that the times of
infection are known, an advantage over our estimation method. Calculating the area
under the curve (AUC) and comparing this with the uninformed tree can indicate the
improvement in accuracy over the naïve structure.

We then applied our methods to methicillin-resistant S. aureus (MRSA) carriage and
sequence data collected from a special care baby unit in Cambridge, UK, during an
outbreak in 2011. These data comprised a full set of patient admission and discharge
days, MRSA carriage screening results and sequenced genomes of a subset of positive
results. The genomic data have been described previously by Harris et al., who combined
genomic analysis and contact tracing to estimate routes of infection within and outside
of the hospital ward [28].

3 Results

3.1 Simulated data
We simulated several datasets under the two genetic distance models described in order
to determine the ability of our estimation approach to recover the transmission tree as
well as the parameter values. We simulated 500 patient admissions over 250 days, and
varied model parameters to determine their impact on the ability to identify transmission
routes (see supplementary material for more details on simulation). We also investigated
the accuracy of tree reconstruction when fitting the model to data simulated under the
alternative model. For a range of plausible parameter values we were able to recover
the transmission tree well, consistently outperforming the uninformed transmission tree.
Under both models, larger outbreaks tended to be associated with more uncertainty sur-
rounding the source of infection. Figure 2 shows a simulated hospital outbreak, comprising
several unconnected subtrees. Also shown is the uninformed transmission tree, in which
edges are placed with equal weight for all potential sources of transmission, and our re-
construction under the transmission diversity model. While most transmission events are
successfully recovered, there is uncertainty within the largest transmission chains which
contain several nodes, as well as, in some cases, uncertainty as to whether a case was
imported or not. For simulations with an increased transmission rate, a higher number
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Figure 2. A hospital outbreak was simulated, and we attempted to recover the routes
of transmission. Patients are represented by open or closed circles,
representing acquisitions or importations respectively, and transmission
routes are shown as arrows. (A) The true transmission tree. (B) The
uninformed transmission tree, in which all colonized patients at the time of
transmission are considered equally likely sources of infection. (C) The
estimated transmission tree under the transmission diversity model.
Numbers beside each node represent the estimated probability that the
individual was positive on admission.

of genetically similar new infections were seen in the ward at any given time, increas-
ing tree uncertainty (Figure 4A). The transmission diversity model allows the length of
the transmission chain to have an impact on the expected genetic distances between two
given isolates and therefore allows discrimination between the set of possible sources.
For higher transmission rates, transmission chains typically become longer, resulting in
the expected genetic distance between isolates approaching the levels expected for unre-
lated individuals, adding further between-chain uncertainty. Allowing the between-chain
expected genetic distance to increase (i.e. reducing �

G

) resulted in improved accuracy
(Figure 4B). If imported strains are always highly distinct, then it is straightforward to
assign an individual to the correct chain, if not the true source of transmission. Table 1
gives an overview of tree estimation accuracy under various parameter values.

The importation structure model lends itself to the identification of independent out-
breaks rather than individual transmission routes, since by definition, it may discriminate
between groups of similar strains, but assumes a fixed distribution of distances for all
samples within a transmission chain. For this reason, tree reconstruction was often more
uncertain than under the transmission diversity model, particularly for higher transmis-
sion rates. However, the identification of isolate groups was successful for a range of
scenarios. In cases with frequent importations, the importation structure model often
performed better than the transmission diversity model, particularly when importations
were genetically similar to each other. Furthermore, this model generated better tree
reconstruction from data simulated under the transmission diversity model, than vice-
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Scenario Parameters AUC AUC
(uninf.) (inf.)

Baseline ⇤ 0.67 0.93
Low sensitivity z = 0.6 0.67 0.84
High sensitivity z = 0.9 0.68 0.94
Low transmission � = 0.001 0.62 0.96
High transmission � = 0.008 0.74 0.91
Equal diversity ratio � = 0.1, 0.68 0.91

�
G

= 0.1
Low diversity ratio � = 0.3, 0.68 0.93

�
G

= 0.1
High diversity ratio � = 0.3, 0.68 0.96

�
G

= 0.005
No increasing k = 1 0.68 0.93
chain diversity
Strongly increasing k = 0.5 0.69 0.90
chain diversity

Table 1. Estimated tree accuracy under various scenarios. Each value presented is the
mean area under the ROC curve (AUC) for estimated trees under the
transmission diversity model, based on 20 datasets simulated under the
parameters indicated. Uninformed AUC is based on assigning equal
weighting to all available sources. The more accurate reconstruction is
highlighted in bold. ⇤Baseline scenario: p = 0.05, z = 0.8, � = 0.005,
� = 0.2, �

G

= 0.05, k = 0.8.

versa. The identification of group membership depended largely on the ratio of within-
and between-group expected diversity; the smaller this value, the better the performance
(Figure 3).

A key determinant of the transmission diversity model performance was the value of
the factor k. The posterior estimate of this parameter was often associated with much
uncertainty, especially in the absence of longer transmission chains. Differentiating the
exact routes of transmission becomes difficult, or even impossible for values of k close to
1, as genetic similarity along a transmission chain diminishes. Values of k close to zero
indicate that a considerable amount of mutation occurs between transmission events, and
the genotype within the newly infected individual is very different to that found in the
source. We found that tree reconstruction was less successful when k was low (table 1),
and low values of k were typically overestimated.

In most cases, the ROC curve for estimated transmission trees indicated a consider-
ably better performance than the uninformed tree, demonstrating the gain in information
associated with the inclusion of genomic data. However, the tree reconstruction was rela-
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Figure 3. Group identification under importation structure model. Data were
simulated under a range of within and between group genetic distance
distributions, and we estimated the posterior probability that the
importation structure model placed an infected individual in the correct
group (belonging to the same group as the first importation of that group).
Baseline scenario: p = 0.05, z = 0.8, � = 0.005, c = 0.2.

tively poor where diversity was defined to be similar for related and unrelated isolates, or
when diversity could accumulate quickly in a transmission chain (Table 1). Tree accuracy
was relatively poor for lower values of test sensitivity (Figure 4C), but we nevertheless
found that our estimates consistently outperformed the uninformed tree (Table 1). How-
ever, even with perfect sensitivity, some transmission routes were not recovered, due to
colonization and subsequent discharge occurring prior to the next screening time. The
degree of uncertainty surrounding even relatively simple trees is notable, reflecting the
genetic similarity of linked cases.

We tested sensitivity to our choice of prior distributions by varying the rate parameter
of the prior exponential distributions of � and k. We found that neither the parameter
estimates nor the estimated transmission tree were affected considerably by varying this
value between 10

�2 and 10

�10.
We additionally simulated sequence data under an explicit pathogen evolutionary

model. Using the R package ‘seedy’ [29], we generated sequence data on top of trans-
mission trees simulated as before. We found that transmission trees could be recovered
well, offering a considerable improvement on the uninformed trees (see supplementary
material for further details).

3.2 MRSA outbreak data from Rosie Hospital, Cambridge, UK
An outbreak of MRSA was observed in 2011 in a special care baby unit at the Rosie
Hospital, Cambridge, UK, in which a total of 20 newborn infants were found to be MRSA-
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Figure 4. ROC curves for estimated transmission trees, based on data simulated
under various parameters. We varied transmission rate (A), the geometric
rate parameter governing between-chain genetic diversity, for which lower
values correspond to larger genetic distances (B), and test sensitivity (C).
The ROC curves shown are the average for ten datasets simulated for each
scenario.

positive. We considered a dataset spanning 450 days, including this outbreak, comprising
admission and discharge times, as well as MRSA screening results and times, for all
patients admitted during this period. A total of 1108 unique patients were admitted to
the ward in this period, and were swabbed regularly for the presence of MRSA. Figure 1
shows the colonized patient episodes and total population over the study period. Of the
20 patients with positive swabs, 18 had one positive isolate sequenced, and 15 of these
were found to be sequence type 2371 (ST2371) (patient numbers 1-15). The remaining
three sequenced isolates (carried by patients 27-29) were separated from this outbreak
type (and each other) by several thousand SNPs. Two patients (654 and 801) had a
positive swab, but no sequenced isolate. During the outbreak investigation, all HCWs
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were screened voluntarily and with consent, one of whom was found to be MRSA positive.
Twenty colonies from this individual were sequenced, revealing carriage of several ST2371
genotypes, differing by up to 10 SNPs (mean pairwise distance 3.9 SNPs). Full details
of sequencing and data collection are described in Harris et al. [28], and sequences were
uploaded to the European Nucleotide Archive (www.ebi.ac.uk/ena).

The non-outbreak sequence types differed by many thousands of SNPs. Fitting the
transmission diversity model to these data using a geometric distribution would make
the relative likelihood of an observed distance of a much smaller magnitude arising from
unrelated transmission chains very low, forcing the model to link all outbreak strains where
possible. This in turn results in an overestimation of the frequency of transmission events.
This suggests that a geometric distribution is not an adequate approximation of between
transmission chain genetic distances when multiple strain types are present. For this
reason, we fitted the transmission diversity model to a restricted dataset, omitting the non-
ST2371 strain types. Alternatively, a multimodal distribution could be chosen to account
for distant strain clusters, although such a model would likely be overparameterized given
the available data. The importation structure model avoids this issue, so we used all
available data in this case. For both models, we assumed that test sensitivity was beta
distributed with mean 0.8 and standard deviation 0.04 a priori, in line with previous
estimates [25]. We used the sequenced isolates from the colonized HCW to inform our
prior density of within-host diversity, �. All other priors were as described in section 2.4.

Parameter Transmission diversity Importation structure
(95% CrI) (95% CrI)

Probability of 0.012 (0.007, 0.019) 0.017 (0.009, 0.024)
importation, p
Test sensitivity, z 0.72 (0.65, 0.79) 0.70 (0.64, 0.77)

Transmission rate 89.9 (38.8, 158.2) 80.6 (30.1, 153.7)
� ⇥ 10�5

Within host/group 0.20 (0.18, 0.23) 0.22 (0.19,0.25)
diversity �
Between host/group 0.17 (0.18, 0.23) 1.6 (1.4, 1.9)⇥10�4

diversity, �
G

Chain diversity 1.2 (0.71, 1.82) —
factor, k

Table 2. Posterior mean estimates and 95% credible intervals for parameters of each
model fitted to the Rosie hospital outbreak data.

We first ran the MCMC algorithm under the transmission diversity model. Posterior
mean estimates and credible intervals of model parameters are summarized in table 2.
We estimated that 1.2% (95% CrI: 0.7%, 1.9%) of patients were positive on admission.
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The rate of transmission was low, and we estimated a total of 4.8 (3, 7) acquisitions
on the ward. Three transmission events had a posterior probability above 0.5, and no
transmission was inferred to or from the non-outbreak types (Figure 5). Around 26% of
colonized individuals were the source of one or more secondary cases (Figure 6a). Isolates
from patient 654 were not sequenced, therefore we sampled over possible genetic types for
this individual. With a high posterior probability (97%), this patient was involved in a
transmission event with patient 10, although the direction of transmission was uncertain.
We estimated the transmission diversity factor k to be 1.2 (0.7, 1.8), the wide credible
interval reflecting the paucity of transmission events, most of which formed a transmission
chain of length 1 (Figure 6b). Within-host diversity was estimated to be 3.9 (3.3, 4.6)
SNPs, an estimate dominated by the prior density based on the samples from the HCW.
As such, the expected distance from source to recipient was approximately 3 SNPs. With
the non-outbreak strain types excluded, the expected distance to unrelated strains was
4.9 (4, 6.1) SNPs. We generated the posterior predictive distributions for the number of
observed importations, acquisitions and overall diversity. We found that the true observed
values from the dataset fell within the 95% central quantile of the predictive distribution,
providing no indication that the model was a poor fit (see Appendix).

Figure 5. Colonized patient episodes in the Rosie hospital neonatal ward. Horizontal
bars represent patient episodes, with ID marked alongside. Grey bars
denote susceptibility, while black represents the period after the patient’s
first MRSA positive swab. Arrows denote inferred routes of transmission,
with darker arrows representing higher posterior probabilities, the values of
which are given alongside. Patients carrying non-outbreak types are shown
at the top of the figure.

The importation structure model placed a high posterior probability on the existence
of four groups, reflecting the four sequence types observed in the study. We estimated



17

the expected pairwise distance between isolates belonging to the same group to be 3.7 (3,
4.5) SNPs. Under this model, the probability of importation was estimated to be slightly
higher, while the transmission rate was lower. We estimated that patients 1 and 3, who
were originally missed by the infection control team at the hospital, were part of the main
outbreak group, in accordance with the previous study [28].

Figure 6. Properties of the transmission network, estimated under the transmission
diversity model. The posterior distribution of secondary infections for each
colonized individual (left), and of the number of connected nodes in each
subtree (right).

4 Discussion

The genetic diversity and structured importation models we have described here allow
the combined analysis of genetic and epidemiological data. We applied these methods
to the transmission of MRSA in hospitals, demonstrating the simultaneous estimation
of model parameters and a transmission tree. More generally, the approaches we have
developed can be applied to the analysis of disease transmission in a community where
high-frequency sampling of sequence data is available. These methods offer flexibility not
available in previous approaches, as they allow multiple introductions of the pathogen into
the population, incorporation of within-host genetic diversity, unobserved colonization
times, and the provision of estimates of uncertainty for each potential transmission route.
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While we have used whole genome sequence data, this approach may also be used with
lower resolution genetic data, provided a distance metric between isolates can be defined.
A major advantage of our framework over existing methods is the ability to simulate
forward from our models. This allows one to perform predictive analyses, as well as
model evaluation procedures.

A considerable degree of uncertainty was associated with the resulting estimated trans-
mission trees, even for small outbreaks, despite the densely sampled genomic data and
well-defined periods of potential contact. As has been previously demonstrated, individ-
ual transmission routes are generally unlikely to be identified with high confidence using
genetic distance data alone [30]. This reflects the high genetic similarity of individuals in
the same transmission chain, and we believe that quantification of uncertainty is of much
importance âĂŞ methods which provide an optimal tree with no measure of uncertainty
may be misleading. While we have demonstrated the general improvement in tree accu-
racy associated with the availability of genomic data, in most cases, much uncertainty is
likely to remain regarding transmission routes.

Some previous studies aiming to reconstruct transmission trees using densely-sampled
genetic data have used a phylogenetic approach, implicitly assuming that a transmission
tree will map closely to the phylogenetic tree [8, 11, 31]. However, this assumption
may not hold [9, 10]. A fundamental limitation of phylogeny-based approaches is that
the relationship between the transmission and phylogenetic trees depends on the within-
host evolutionary dynamics which, in the absence of dense within-host sampling, are not
identifiable. By simultaneously sampling over the phylogenetic tree and the transmission
tree, one can account for unknown coalescent times and dependencies between genetic
distances [1]. While this approach offers a more realistic model for the emergence of
diversity, it also requires a reliable model of within-host pathogen population dynamics.
Furthermore, this method requires sampling over the space of phylogenetic trees (and
therefore unobserved sequence data), resulting in a considerably more computationally
intensive approach than our proposed framework. Even with such a model, the method
cannot differentiate between importations and acquisitions, crucial when considering an
outbreak in a hospital setting. Data on within-host dynamics are currently scarce, and
these dynamics may vary widely between individuals. As such, robust specification of
such models is challenging.

Our analysis has some limitations. We have assumed that the source of transmission for
each patient must come (indirectly, via HCW) from another patient present on the ward.
As previously suggested, there is a strong possibility of external sources of transmission in
this setting [28]. This would mean that the patient-to-patient transmission rate may be
overestimated in our model. Our approach would perform best when all potential contacts
are included in the analysis. Additionally, we have used a transmission model that does not
allow for heterogeneous rates of transmissibility. We believe that this model is adequate in
this setting, and did not affect our primary goal of estimating the transmission tree. We
have assumed that clearance of carriage and reinfection are not possible; while it appears
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unlikely that such events are common in this dataset, incorporating mechanisms for these
could be important in other settings and over longer time periods.

Our estimates from the Rosie hospital data suggested that within- and between-host
diversity were similar, with the former slightly higher than the latter, suggested by the
estimate of k > 1. Our estimates of within-host diversity were driven by the HCW, since
multiple isolates were not collected from patients. If the HCW was colonized for a long
period of time, a higher level of within-host diversity would be expected than within
newly colonized infant patients, potentially leading to estimates of k > 1. We believe
that repeated sampling of each patient would lead to an improved estimate of within-host
patient diversity, and that as an estimate of k > 1 would be unlikely. We repeated our
analysis with k restricted to the interval [0, 1], and found that both parameter estimates
and the inferred transmission tree were largely unaffected (supplementary material, table
2).

We chose simple geometric distributions to represent the genetic diversity both within
and between individuals, assuming the probability of each observed sequence was time-
homogeneous. We additionally experimented with equivalent Poisson distributions, how-
ever, results for the ICU data were very similar using both distributions, although this
may not hold for larger datasets with longer transmission chains. While little evidence
exists on observed genetic diversity during an epidemic, pairwise genetic distances of the
same strain type collected during a tuberculosis outbreak appear to approximate a geo-
metric distribution [11], and with a known time to coalescence t and mutation rate µ, the
genetic distance should follow a Pois(2µt) distribution. With an unknown coalescent time
and constant pathogen population size, the genetic distance between contemporaneously
sampled genomes should follow a Geometric distribution [32].

As discussed in section 2.3.1, the true distribution between independent transmis-
sion chains may be multimodal, and poorly approximated by a geometric distribution.
For this reason, we excluded non-outbreak sequence types manually before running the
transmission diversity model. Our model could be extended in the future to remove this
requirement, as for large datasets, and scenarios with concurrent outbreaks belonging to
different strain types, this approach would be inappropriate. If local sampling data were
available from the community or other regional hospital admissions, we could potentially
construct an empirical distribution for the pairwise genetic distances expected between
unlinked cases. As yet, such data are typically unavailable, though collection of such data
may be feasible in the future.

We have assumed in our analysis that genetic distances are observed without error. In
common with all existing tree estimation methods, we assumed that errors arising from
sequencing and/or alignment were negligible. In the supplementary material we explored
the impact of introducing observation error into the genetic distance matrix, finding that
network reconstruction remained largely unaffected by such errors (see Appendix).

There are several potential alterations to our model which could be considered, and
readily incorporated into our framework. The transmission chain diversity model allows
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the expected genetic distance to increase with number of transmission events, and could be
reformulated to allow distance to increase linearly, or via an alternative relationship. Time
between samples could instead be used as the factor by which diversity increases, however,
this relationship is complex, and only fully understood by accounting for within-host
dynamics [30]. Furthermore, since the time between samples from transmission pairs does
not vary greatly in this setting, we do not believe it would affect the results significantly.
However, in cases where the length of stay (or length of carriage in a non-hospital setting)
is long, which would allow times between sample pairs to vary considerably, then such an
amendment should be considered.

Furthermore, in creating this model framework, we have assumed that genetic dis-
tances are drawn independently, which is not the case in reality. Although in principle
this assumption can be relaxed, this would require considerable additional computational
complexity. This may be considered in future studies.

Identifying imported cases is challenging, especially when cases are admitted with
highly similar strains. In such a setting, our models can exhibit significantly different re-
sults – under the importation structure model, an importation of the same group is more
likely than an acquisition soon after admission from another individual on the ward, while
under the transmission diversity model, the reverse is true. As such, when strains circu-
lating in the community are very similar to those found in the hospital, the importation
structure model will generally perform better, allowing such strains to be clustered im-
portations rather than rapid acquisitions. An intensive care unit admitting patients from
elsewhere in the same hospital is an example of a setting where similar strains may be
repeatedly imported to the ward. With no prior knowledge of external diversity, it is hard
to determine which model is more suitable for identifying importations. However, if both
models are run, significant differences between estimated transmission trees suggests that
external diversity is similar to that found within the ward. Further data collection would
be required to confirm this. The classification of cases as importations or acquisitions
is key to the evaluation of infection control procedures, which for healthcare facilities in
particular is of great importance. The framework described here can be used to provide
evidence towards importation or acquisition in each case using genetic and surveillance
data.
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Appendix

Data augmentation
Since the full transmission process is typically unobserved, a data-augmented MCMC
process was used. We sampled over the time of colonisation, as well as the source of
colonisation, for each patient. Patients with no positive test results may have a coloni-
sation time and source added (and subsequently removed) during the sampling process.
Depending on assumptions made in the model, it may additionally be necessary to sample
over the genetic distances arising from positive but unsampled hosts. In order to do this,
one ‘phantom observation’ is created for this individual, creating a new row (or column)
of the genetic distance matrix  , which we denote  c

j

, when we propose to add a colonisa-
tion. This incorporates the uncertainty of unobserved colonisations to estimates of genetic
diversity (� and �

G

). Probability mass functions m(·) and m

G

(·) are defined, which are
used to generate distances from this imputed sequence to isolates in the same group, and
different groups, respectively. Since in our analyses, we have assumed that genetic dis-
tances are sampled independently, it is not necessary to create genetic observations for
unsampled hosts. However, we describe the full process in this section.

We describe here the data augmentation step for the importation structure model,
where the genetic distance between strains depends on their assigned type. Due to the
need to classify importations by MRSA type (g), the data augmentation step is more
complex than for the transmission chain diversity model. The aim of the data augmen-
tation process is to sample over the set of missing data T = {s, g, tc,�, c}, that is, the
set of sources s, MRSA groups g, colonisation times tc, admission statuses �, and a set of
unobserved genetic distances,  c. Further, we define Y

ext

(t) = {y
i,1 : t

a

i

< t, s

i

= 0} to be
the set of observed imported sequences prior to time t.

At each iteration, a new dataset T

⇤
= {s⇤, g⇤, tc⇤,�⇤

, 

c⇤} is proposed. Any patient
who has a colonisation added by the algorithm is assigned a colonisation time and source,
and a set of genetic distances from all other observed and inferred isolates. Let v

s

be the
number of patients never screened positive, v

q

be the number of patients who carry MRSA
at some point during their episode (either observed, or added by the algorithm), v

a

be
the number of patients for whom a colonisation time has been added by the algorithm, v0
of whom have no ‘offspring’; that is, the inferred colonised patients who infect no further
individuals. Finally, let v

n

be the number of patients who have a positive screen, but no
sequenced isolates. We define the proposal ratio q

A,A

⇤
= P (T

⇤ ! T )/P (T ! T

⇤
). At

each iteration of the algorithm, one of the following moves is made with equal probability:

• Change colonisation route/time. Select uniformly at random one of the v

q

patients (j, say) with a colonisation time. If v

q

= 0, no move is made. With
probability w, propose the patient was positive on admission (�⇤

j

= 1), otherwise
sample a colonisation time t

c⇤
j

from {ta
j

, . . . , l

j

}, where l

j

is the last potential day of
colonisation (the earliest from day of discharge, day of first positive screen, and first
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onward transmission). If an importation is proposed, then with probability w

0, we
set g

⇤
j

to the same group of one of the Y

ext

(t

a

j

) already-observed imported patients,
otherwise, set g

⇤
j

= j. If an acquisition has been proposed, we then select one of
the C(t

c⇤
j

) patients already colonised on the proposed transmission day (excluding
the chosen patient, if present on day t

c⇤
j

) to be the source of colonisation. If there
are no other colonised patients on this day, the move is rejected. We define q

T,T

⇤

according to the following table, where the row denotes the current state, and the
column is the proposed state:
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• Change genetic distances. Select one of the v
n

individuals with a positive screen,
but no genetic data (j, say). If v
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from a related or unrelated chain respectively. This move has proposal ratio
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• Add colonisation. Select at random one of the v

s

� v

a

patients (j, say) who
is currently assumed to be negative. If v

s

� v

a

= 0, no move is made. With
probability w, define this patient to be an importation, otherwise, an acquisition.
If an importation is proposed, set �⇤

j

= 1, tc⇤
j

= t

a

j

. Now, we determine whether the
proposed importation is clustered (in which case a group must be chosen) or not.
With probability w

0, propose the sequence is clustered, and select at random one of
the already-observed imported sequences Y

ext

(t

a

j

), setting the proposed MRSA group
g

⇤
j

to that of the chosen sequence. If |Y
ext

(t

a

j

)| = 0, the move is rejected. Draw a set
of n

s

+ v

a

genetic distances  c⇤
j,1, . . . , 

c⇤
j,n

s

+v

a

from probability mass functions m(·)
and m

G

(·), for strains in the same group and different groups respectively.
With probability 1 � w

0, the sequence is not clustered, so the chosen individual
is assigned to a new group; g

⇤
j

= j. Draw a set of n

s

+ v

a

genetic distances
 

c⇤
j,1, . . . , 

c⇤
j,n

s

+v

a

from the probability mass functions m

G

(·) to all other sequences.
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If an acquisition is proposed, then draw a colonisation time t

c⇤
j

from {ta
j

, . . . , t

d

j

}.
Select with equal probability a transmission source s

⇤
j

from the C(t

c⇤
j

) colonised
patients on that day. If there are no colonised patients on this day, no move is
made. Finally, select a set of n

s

+v

a

genetic distances, according to the relationship
between the chosen patient and other colonised patients.

• Remove colonisation. Choose at random one of the v0 patients who have had a
colonisation time added by the data augmentation process, and are not currently
assumed to be the source of infection for another individual. If v0 = 0, then no
move is made. Set �⇤

j

= 0, tc⇤
j

= 1, g⇤
j

= 0 and s

⇤
j

= 0.

Having established the augmented data move mechanisms, the probability ratios q
T,T

⇤

for adding or removing colonisation times may be given as follows:

Importation Importation Acquisition
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Having sampled a candidate colonisation time/source, the candidate augmented dataset
T

⇤ is accepted with probability

min
✓
1,

⇡(X, |T ⇤
, ✓)⇡(T

⇤|✓)
⇡(X, |T, ✓)⇡(T |✓) q

T,T

⇤

◆
.

The proposal probability mass functions m and m

G

, which are used to generate un-
observed sequences related to a transmission source, an external imported strain, or the
reference strain respectively, should be specified pre-analysis. Similarly, one must set w

and w

0, the probabilities of selecting an importation, and choosing an importation cluster.
These choices will not affect results, but will impact the convergence and mixing rates of
the algorithm.

Performing this process over a large number of iterations will allow us to calculate the
posterior probability that a particular transmission route exists; this can be calculated as
the proportion of iterations for which an inferred route is made.

The data augmentation process is implemented similarly for the transmission chain
diversity model. The same moves are proposed, but the imputation of groupings, g, is not
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required. For reasons of brevity, we omit the full description of the data augmentation
process for the transmission chain diversity model.

Figure 7. Estimated parameters for the importation cluster model for datasets
simulated under various scenarios. Each panel shows posterior median
estimates and 95% credible intervals for each parameter. Colours represent
the scenario under which the data were simulated; baseline (red), high
transmission (blue), high within-host diversity (green), high between-chain
diversity (purple), and high group clustering parameter (orange). True
values are shown as dashed vertical lines.

Simulations
In order to assess the performance of our model, we simulated epidemiological and genetic
data for hospital wards according to each model. We now describe in detail how data
may be simulated under either of the models described. Patient episodes are generated
with probability p of carriage on admission, and a length of stay is drawn from a Poisson
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distribution with mean D. Tests are generated every x calendar days, and positive pa-
tients are observed to be negative with probability 1� z. Patients positive on admission
are assigned a set of genetic distances to all previously observed sequences (if applica-
ble), which are drawn from distributions according to the relationship between isolates.
For the transmission chain diversity model, genetic distances are generated by randomly
drawing samples from a Geom(�

G

) distribution. For the importation structure model, an
importation sequence is defined to be unclustered if no previous importation sequences
have been recorded. If the sequence is not the first to be observed, the strain is defined
to be clustered with probability c, otherwise, it is unclustered. For genetic distances to
isolates of the same type, we draw genetic distances at random according to the distribu-
tion Geom(�), while for sequences in a different group, genetic distances are drawn from
the Geom(�

G

) distribution.
Susceptible patients become colonized at a rate of �C(t) at time t. Colonized patients

contribute to the colonized population C(t) from the day after acquisition, or the day of
importation, until the day of discharge. For a newly colonized patient j, colonized on day
t, a transmission source s

j

is chosen uniformly at random from the C(t) positive patients
present at the start of the day of colonisation. A set of genetic distances is generated ac-
cording to the relationship between this patient and all previously observed patients with
sequenced isolates. Under the importation structure model, distances are drawn from the
Geom(�) or Geom(�

G

) distributions, depending on whether the isolates are of the same
type, or different type respectively. Under the transmission chain diversity model, dis-
tances are drawn from the Geom(�k

⌧

) or Geom(�

G

) distributions, depending on whether
the isolates belong to the same transmission chain (⌧ transmission events apart), or are un-
related, respectively. At subsequent observation times resulting in positive results, genetic
distances are generated accordingly. The first observation is assigned the same distances
generated for the patient’s importation/acquisition. Subsequent sequenced isolates differ
from previous within-host sequences by x SNPs, where x ⇠Geom(�).

For the simulations in this study, we used D = 7, x = 3, and simulated admissions over
250 days. In figures 7 and 8, parameters estimated from simulated datasets are shown for
the importation clustering model and the transmission diversity model respectively.

Simulation using ‘seedy’
While we can recover parameters from data simulated under our models in many reason-
able settings, we do not explicitly describe evolutionary dynamics, rather a process by
which pairwise genetic distances are generated. While this allows additional flexibility in
our framework, and avoids specification of processes which remain poorly understood, it
is of interest to assess the performance of our analysis using data simulated under a more
realistic evolutionary model. We used the R package ‘seedy’ (Simulation of Evolutionary
and Epidemiological Dynamics, http://cran.r-project.org/web/packages/seedy/)
v1.2.1 to generate sequence data from a hospital outbreak. This software simulates
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Figure 8. Estimated parameters for the transmission chain diversity model for
datasets simulated under various scenarios. Each panel shows posterior
median estimates and 95% credible intervals for each parameter. Colours
represent the scenario under which the data were simulated; baseline (red),
high transmission (blue), high within-host diversity (green), high
between-chain diversity (purple), and high chain diversity parameter
(orange). True values are shown as dashed vertical lines.

pathogen evolution within- and between-host during a communicable disease outbreak,
under a user-specified evolutionary model. We simulated trees as before, and passed infec-
tion times and routes to the simfixoutbreak function, which generated genome samples
at designated times. We specified the effective population size to be 3000, transmission
bottleneck size to be 1, and allowed the mutation rate and the importation diversity (that
is, the expected genetic distance between two importations) to vary.

Figure 9 shows an example of a simulated outbreak, and the estimated routes of trans-
mission, with genetic data simulated using seedy. The variable governing the expected
distance between imported cases was a key factor in the performance of the model, with
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Scenario p z � � �G k AUC

(� AUC)

µ = 0.01, 0.04 0.81 0.005 0.59 0.078 1.17 0.868

d = 5 (0.02,0.06) (0.65, 0.92) (0.003, 0.009) (0.47, 0.70) (0.075, 0.081) (0.79, 1.57) (+0.168)

µ = 0.03, 0.07 0.71 0.010 0.49 0.041 0.78 0.98

d = 5 (0.05,0.10) (0.56, 0.81) (0.006, 0.016) (0.40, 0.60) (0.039, 0.042) (0.620, 1.02) (+0.275)

µ = 0.01, 0.06 0.83 0.012 0.62 0.020 0.97 0.93

d = 25 (0.04,0.09) (0.72, 0.91) (0.008, 0.017) (0.51, 0.72) (0.019, 0.021) (0.80, 1.22) (+0.224)

µ = 0.03, 0.08 0.81 0.011 0.25 0.018 0.66 0.938

d = 25 (0.06, 0.11) (0.72, 0.88) (0.007, 0.015) (0.21, 0.29) (0.017, 0.018) (0.54, 0.82) (+0.179)

Table 3. Posterior median estimates and 95% credible intervals for parameters under
data simulated under various scenarios. The variable d is the expected
number of SNPs between imported cases, while µ represents the
per-generation mutation rate. Data were simulated under the parameters
p = 0.05, � = 0.008 and z = 0.8.

higher values typically leading to better network recovery. This effect is similar to lower
values of �

G

generating larger between-chain/group genetic distances under our models,
and providing a greater discrimination between epidemiologically-linked hosts. Table 3
provides parameter estimates and � AUC values for simulated outbreaks.

Figure 9. Transmission tree recovery using genetic data simulated using the R
package ‘seedy’. (A) The true transmission tree simulated as described in
the simulations section (p = 0.05, � = 0.008). sampled genomes were
simulated using the simfixoutbreak function in seedy (mutation rate 0.01
per generation, 20 pathogen generations per day, effective pathogen
population size 3000, transmission bottleneck size 1). (B) The uninformed
transmission tree, in which all possible transmission routes at time of
infection are shown, and are weighted by the number of possible sources.
(C) Inferred transmission tree, using the transmission diversity model.

Perturbation of the genetic distance matrix
Errors in sequencing and alignment can lead to incorrectly observed genetic distances. In
order to assess the impact of such errors, we perturbed genetic distance matrices generated
from simulated outbreaks, and compared parameter estimates and inferred transmission
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routes. Matrices were perturbed by adding a Poisson-distributed ‘noise’ variable to each
pairwise distance; we considered expected errors of 0.1, 0.5, 1 and 2 SNPs.

Figure 10. A simulated transmission tree (top left), and recovered transmission
routes under varying degrees of genetic distance observation error. The
‘noise’ variable indicates the expected additional genetic distance observed
on top of the true distance due to errors arising from sequencing and/or
alignment. The network was simulated under the transmission diversity
model with � = 0.3, �

G

= 0.01, p = 0.05 and chain diversity parameter
k = 0.7.

Figure 10 shows an example simulated outbreak, and the transmission routes inferred
using increasingly perturbed genetic distance matrix. In each of our simulation scenarios,
we found that the transmission trees remained qualitatively similar, and compared to the
tree generated under the unperturbed distance matrix, estimated trees had a � AUC
between -0.01 and 0.01.

Figure 11 shows posterior parameter estimates for each simulation scenario under
each level of matrix perturbation. While epidemiological parameters (p, �) remained
unchanged by perturbation, the genetic diversity parameters fell in line with the error-
induced increases in pairwise distances. The chain diversity parameter k remained ap-
proximately the same, though with a wide credible interval.

Posterior predictive distributions
We used posterior predictive distributions to assess model fit. Having fit our model
to the Rosie hospital data, we repeatedly drew samples from the posterior distribution
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Figure 11. Posterior median estimates for genetic diversity parameters under
different levels of genetic distance error. Matrices were perturbed by
adding a Poisson-distributed ‘noise’ variable to each pairwise distance; we
considered expected errors of 0.1, 0.5, 1 and 2 SNPs. Each coloured line
corresponds to a different simulated scenario, with varying transmission
rates (�=0.005, 0.008) and between-chain diversity values (�

G

=0.01, 0.08,
0.1, 0.3). True values of parameters are indicated with dashed horizontal
lines; four different levels of �

G

were used.

and used these to simulate new datasets, using the observed admission and discharge
times which were not part of the modelling framework. We looked at the number of
importations, judged as the number of patients whose first test result was positive, the
number of acquisitions, defined to be the number of patients with a negative test followed
by a positive test as well as the overall genetic diversity, the expected pairwise distance
between any two isolates.

Parameter Estimate (95% credible interval)
p 0.0109 (0.0057,0.0186)
z 0.765 (0.696,0.825)
� 0.0010 (0.0004,0.0019)
� 0.206 (0.180,0.233)
�

G

0.157 (0.143,0.171)
k 0.86 (0.56,0.99)

Table 4. Posterior median estimates and 95% credible intervals for the Rosie hospital
dataset, with k constrained to the interval [0, 1].
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Figure 12. Posterior predictive distributions for number of acquisitions (left) number
of importations (centre) and the overall average pairwise diversity (right).
Values observed from the Rosie hospital dataset are marked as vertical
blue lines, while the bounds of the 95% central quantile of the posterior
predictive distribution are marked as dashed red lines.


