About
45
Publications
7,887
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
904
Citations
Introduction
Ben Schulze currently works at the Department of Environmental Science & Engineering, California Institute of Technology.
Current institution
Publications
Publications (45)
The air quality of the Texas Gulf Coast region historically has been influenced heavily by regional shipping emissions. However, the effects of the recently established North American Emissions Control Area on aerosol concentrations and properties in this region are presently unknown. In order to better understand the current sources and processing...
During the Marine Aerosol Cloud and Wildfire Study (MACAWS) in June and July of 2018, aerosol composition and cloud condensation nuclei (CCN) properties were measured over the N.E. Pacific to characterize the influence of aerosol hygroscopicity on predictions of ambient CCN and stratocumulus cloud droplet number concentrations (CDNC). Three vertica...
The formation of a suite of isoprene-derived hydroxy nitrate (IHN) isomers during the OH-initiated oxidation of isoprene affects both the concentration and distribution of nitrogen oxide free radicals (NO_x). Experiments performed in an atmospheric simulation chamber suggest that the lifetime of the most abundant isomer, 1,2-IHN, is shortened signi...
Faster than expected
Iodine species are one of only a handful of atmospheric vapors known to make new aerosol particles, which play a central role in controlling the radiative forcing of climate. He et al. report experimental evidence from the CERN Cosmics Leaving Outdoor Droplets, or CLOUD, chamber demonstrating that iodic acid and iodous acid rap...
Particle size measurement in the low nanometer regime is of great importance to the study of cloud condensation nuclei formation and to better understand aerosol-cloud interaction. Here we present the design, modeling, and experimental characterization of the nano-scanning electrical mobility spectrometer (nSEMS), a recently developed instrument th...
Despite decades of progress in reducing nitrogen oxide (NO x ) emissions, ammonium nitrate (AN) remains the primary inorganic component of particulate matter (PM) in Los Angeles (LA). Using aerosol mass spectrometry over multiple years in LA illustrates the controlling dynamics of AN and their evolution over the past decades. These data suggest tha...
Despite decades of emission control measures aimed at improving air quality, Los Angeles (LA) continues to experience severe ozone pollution during the summertime. We incorporate cooking volatile organic compound (VOC) emissions in a chemical transport model and evaluate it against observations in order to improve the model representation of the pr...
The ozone air quality standard is regularly surpassed in the Los Angeles air basin, and efforts to mitigate ozone production have targeted emissions of precursor volatile organic compounds (VOCs), especially from mobile sources. In order to assess how VOC concentrations, emissions, and chemistry have changed over the past decade, VOCs were measured...
Oxygenated organic molecules (OOMs) play an important role in the formation of atmospheric aerosols. Due to various analytical challenges with respect to measuring organic vapors, uncertainties remain regarding the formation and fate of OOMs. The chemical ionization Orbitrap (CI-Orbitrap) mass spectrometer has recently been shown to be a powerful t...
Despite declines in transportation emissions, urban North America and Europe still face unhealthy air pollution levels. This has challenged conventional understanding of the sources of their volatile organic compound (VOC) precursors. Using airborne flux measurements to map emissions of a wide range of VOCs, we demonstrate that biogenic terpenoid e...
The declining trend in vehicle emissions has underscored the growing significance of volatile organic compound (VOC) emissions from volatile chemical products (VCPs). However, accurately representing VOC chemistry in simplified chemical mechanisms remains challenging due to its chemical complexity including speciation and reactivity. Previous studi...
This study describes a modeling framework, model evaluation, and source apportionment to understand the causes of Los Angeles (LA) air pollution. A few major updates are applied to the Community Multiscale Air Quality (CMAQ) model with a high spatial resolution (1 km × 1 km). The updates include dynamic traffic emissions based on real-time, on-road...
The main nucleating vapor in the atmosphere is thought to be sulfuric acid (H 2 SO 4 ), stabilized by ammonia (NH 3 ). However, in marine and polar regions, NH 3 is generally low, and H 2 SO 4 is frequently found together with iodine oxoacids [HIO x , i.e., iodic acid (HIO 3 ) and iodous acid (HIO 2 )]. In experiments performed with the CERN CLOUD...
The declining trend in vehicle emissions has underscored the growing significance of Volatile Organic Compound (VOC) emissions from Volatile Chemical Products (VCP). However, accurately representing VOC chemistry in simplified chemical mechanisms remains challenging due to its chemical complexity including speciation and reactivity. Previous studie...
Nitrogen oxides (NOx≡NO+NO2) are involved in most atmospheric photochemistry, including the formation of tropospheric ozone (O3). While various methods exist to accurately measure NOx concentrations, it is still a challenge to quantify the source and flux of NOx emissions. We present airborne measurements of NOx and winds used to infer the emission...
The San Joaquin Valley is an agricultural region in California that suffers from poor air quality. Since traffic emissions are decreasing, other sources of volatile organic compounds (VOCs) are gaining importance in the formation of secondary air pollutants. Using airborne eddy covariance, we conducted direct, spatially resolved flux observations o...
Los Angeles is a major hotspot for ozone and particulate matter air pollution in the United States. Ozone and PM2.5 in this region have not improved substantially for the past decade, despite a reduction in vehicular emissions of their precursors, NOx and volatile organic compounds (VOCs). This reduction in “traditional” sources has made the curren...
Nitrogen oxides (NOx) are principle components of air pollution and serve as important ozone precursors. As the San Joaquin Valley (SJV) experiences some of the worst air quality in the United States, reducing NOx emissions is a pressing need, yet quantifying current emissions is complicated due to a mixture of mobile and agriculture sources. We pe...
Oxygenated organic molecules (OOMs) play an important role in the formation of atmospheric aerosols. Due to various analytical challenges in measuring organic vapors, uncertainties remain in the formation and fate of OOMs. The chemical ionization Orbitrap mass spectrometer (CI-Orbitrap) has recently been shown to be a powerful technique able to acc...
Aerosol particles have an important role in Earth's radiation balance and climate, both directly and indirectly through aerosol–cloud interactions. Most aerosol particles in the atmosphere are weakly charged, affecting both their collision rates with ions and neutral molecules, as well as the rates by which they are scavenged by other aerosol parti...
This study describes a modeling framework, model evaluation, and source apportionment to understand the causes of Los Angeles (LA) air pollution. A few major updates are applied to the Community Multiscale Air Quality (CMAQ) Model with high spatial resolution (1 km × 1 km). The updates include dynamic traffic emissions based on real-time on-road in...
The San Joaquin Valley is an agricultural region in California that suffers from poor air quality. Since traffic emissions are decreasing, other sources of volatile organic compounds (VOCs) are gaining importance in the formation of secondary air pollutants. Using airborne eddy covariance, we conducted direct, spatially resolved flux observations o...
Nitrogen oxides (NOx ≡ NO + NO2) are involved in most atmospheric photochemistry, including the formation of tropospheric ozone (O3). While various methods exist to accurately measure NOx concentrations, it is still a challenge to quantify the source and flux of NOx emissions. We present airborne measurements of NOx and winds used to infer the emis...
Nitrogen oxides (NOx) are principle components of air pollution and serve as important ozone precursors. As the San Joaquin Valley (SJV) experiences some of the worst air quality in the United States, reducing NOx emissions is a pressing need, yet quantifying current emissions is complicated due to a mixture of mobile and agriculture sources. We pe...
Aerosol particles have an important role in Earth’s radiation balance and climate, both directly and indirectly through aerosol–cloud interactions. Most aerosol particles in the atmosphere are weakly charged, affecting both their collision rates with ions and neutral molecules, as well as the rates by which they are scavenged by other aerosol parti...
New particle formation in the upper free troposphere is a major global source of cloud condensation nuclei (CCN) 1–4 . However, the precursor vapours that drive the process are not well understood. With experiments performed under upper tropospheric conditions in the CERN CLOUD chamber, we show that nitric acid, sulfuric acid and ammonia form parti...
The population of Texas has increased rapidly in the past decade. The San Antonio Field Study (SAFS) was designed to investigate ozone (O3) production and precursors in this rapidly changing, sprawling metropolitan area. There are still many questions regarding the sources and chemistry of volatile organic compounds (VOCs) in urban areas like San A...
Biogenic organic precursors play an important role in atmospheric new particle formation (NPF). One of the major precursor species is α-pinene, which upon oxidation can form a suite of products covering a wide range of volatilities. Highly oxygenated organic molecules (HOMs) comprise a fraction of the oxidation products formed. While it is known th...
San Antonio, the second-most populous city in Texas and the seventh-most populous city in the United States (US), has been designated a marginal non-attainment area by the US Environmental Protection Agency with respect to the 2015 ozone (O3) National Ambient Air Quality Standard. While stationary air quality monitoring sites are operated in the re...
Particle size measurement in the low nanometer regime is of great importance to the study of cloud condensation nuclei formation and to better understand aerosol–cloud interactions. Here we present the design, modeling, and experimental characterization of the nano-scanning electrical mobility spectrometer (nSEMS), a recently developed instrument t...
Oxidn. of biogenic volatile org. compds. (BVOCs) by the nitrate radical (NO₃) represents a potentially efficient secondary org. aerosol (SOA) formation pathway. However, the contribution of nighttime NO₃-BVOC chem. to urban OA prodn. remains poorly constrained. Here, we present measurements of submicrometer aerosol compn. obtained at Caltech (Pasad...
New Particle Formation (NPF) from biogenic organic precursors is an important atmospheric process. One of the major species is α-pinene, which upon oxidation, can form a suite of products covering a wide range of volatilities. A fraction of the oxidation products is termed Highly Oxygenated Organic Molecules (HOM). These play a crucial role for nuc...
Ambient aerosol size distributions obtained with a compact scanning mobility analyzer, the “Spider” differential mobility analyzer (DMA), are compared to those obtained with a conventional mobility analyzer, with specific attention to the effect of mobility resolution on the measured size distribution parameters. The Spider is a 12 cm diameter radi...
Ambient aerosol size distributions obtained with a compact, scanning mobility analyzer, the Spider DMA, are compared to those obtained with a conventional mobility analyzer, with specific attention to the effect of mobility resolution on the measured size distribution parameters. The Spider is a 12-cm diameter radial differential mobility analyzer...
Damage by severe storms of infrastructure containing chemicals can cause widespread pollution of the atmosphere and nearby bodies of water. Because atmospheric monitoring equipment is inoperable in the periods after these storms, transport and fate modeling approaches are necessary to estimate the regional atmospheric concentrations of evaporated s...
Submicron aerosol was measured to the southwest of Houston, Texas, during winter and summer 2014 to investigate its seasonal variability. Data from a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) indicated that organic aerosol (OA) was the largest component of nonrefractory submicron particulate matter (NR-PM1) (on average,...
Submicron aerosol was measured to the southwest of Houston, Texas during winter and summer 2014 to investigate its seasonal variability. Data from a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) indicated that organic aerosol (OA) was the largest component of non-refractory submicron particulate matter (NR-PM1) (on average,...
Sulfate is a major component of atmospheric fine particulate matter in the troposphere. Globally, observed sulfate concentrations are generally high in summer and low in winter. Current air quality models fail to reproduce high winter sulfate concentrations observed during substantial pollution episodes in northern China. From ambient measurement d...
The air quality of the Texas Gulf Coast region historically has been influenced heavily by regional shipping emissions. However, the effects of the recently established North American Emissions Control Area on aerosol concentrations and properties in this region are presently unknown. In order to better understand the current sources and processing...
In Xi'an, a city that frequently experiences serious PM pollution in northern China, 1476 PM10 and 1464 PM2.5 valid daily filter samples were collected at six sites from December 2014 to November 2015 and analyzed for 29 species. The annual mean PM10 and PM2.5 concentrations were 149.4 ± 93.1, 108.0 ± 70.9 μg/m3, respectively. Organic carbon (OC) i...
Gas-phase biogenic volatile organic compounds (BVOCs) are oxidized in the troposphere to produce secondary pollutants such as ozone (O3), organic nitrates (RONO2), and secondary organic aerosol (SOA). Two coupled zero-dimensional models have been used to investigate differences in oxidation and SOA production from isoprene and α-pinene, especially...
Gas-phase biogenic volatile organic compounds (BVOCs) are oxidized in the troposphere to produce secondary pollutants such as ozone (O3), organic nitrates (RONO2), and secondary organic aerosol (SOA). The nitrate radical (NO3) is especially reactive towards isoprene and monoterpenes such as α-pinene. A zero-dimensional model has been used to invest...