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Abstract: Eye-movement metrics have been shown to correlate with attention and, therefore, represent a means of identifying and analyzing
an individual’s cognitive processes. Human errors—such as failure to identify a hazard—are often attributed to a worker’s lack of attention.
Piecemeal attempts have been made to investigate the potential of harnessing eye movements as predictors of human error (e.g., failure to
identify a hazard) in the construction industry, although more attempts have investigated human error via subjective measurements. To
address this knowledge gap, the present study harnessed eye-tracking technology to evaluate the impacts of workers’ hazard-identification
skills on their attentional distributions and visual search strategies. To achieve this objective, an experiment was designed in which the eye
movements of 31 construction workers were tracked while they searched for hazards in 35 randomly ordered construction scenario images.
Workers were then divided into three groups on the basis of their hazard identification performance. Three fixation-related metrics—fixation
count, dwell-time percentage, and run count—were analyzed during the eye-tracking experiment for each group (low, medium, and high
hazard-identification skills) across various types of hazards. Then, multivariate ANOVA (MANOVA) was used to evaluate the impact of
workers’ hazard-identification skills on their visual attention. To further investigate the effect of hazard identification skills on the dependent
variables (eye movement metrics), two distinct processes followed: separate ANOVAs on each of the dependent variables, and a discriminant
function analysis. The analyses indicated that hazard identification skills significantly impact workers’ visual search strategies: workers with
higher hazard-identification skills had lower dwell-time percentages on ladder-related hazards; higher fixation counts on fall-to-lower-level
hazards; and higher fixation counts and run counts on fall-protection systems, struck-by, housekeeping, and all hazardous areas combined.
Among the eye-movement metrics studied, fixation count had the largest standardized coefficient in all canonical discriminant functions,
which implies that this eye-movement metric uniquely discriminates workers with high hazard-identification skills and at-risk workers.
Because discriminant function analysis is similar to regression, discriminant function (linear combinations of eye-movement metrics)
can be used to predict workers’ hazard-identification capabilities. In conclusion, this study provides a proof of concept that certain eye-
movement metrics are predictive indicators of human error due to attentional failure. These outcomes stemmed from a laboratory setting,
and, foreseeably, safety managers in the future will be able to use these findings to identify at-risk construction workers, pinpoint required
safety training, measure training effectiveness, and eventually improve future personal protective equipment to measure construction workers’
situation awareness in real time. DOI: 10.1061/(ASCE)CO.1943-7862.0001373. © 2017 American Society of Civil Engineers.

Author keywords: Construction safety; Hazard identification skill; Eye-tracking technology; Human error; Multivariate ANOVA
(MANOVA); Labor and personnel issues.

Introduction

The construction industry is one of the most hazardous industries
worldwide (Fung et al. 2005; Esmaeili and Hallowell 2012; Zhang
and Fang 2013). Although statistics have shown a slight improve-
ment in accident rates in the United States, this sector accounted for
19% of all domestic workplace fatalities in 2014 (U.S. Bureau of
Labor Statistics 2016). It is well known that unsafe acts caused by
human error are the main reason for up to 80% of accidents across

various industries (Garrett and Teizer 2009), and previous studies
(e.g., Shappel andWiegmann 2000; Garrett and Teizer 2009; Lopez
et al. 2010) have identified skill-based (e.g., attention failure)
and perceptual-based (e.g., failure to identify and misperceptions)
errors as the main contributors to accidents. Thus, one of the core
activities in any construction safety program meant to prevent
accidents is identifying and controlling hazards (Goetsch 1996;
Holt and Lampl 2006). However, hazard identification levels are
considerably lower than ideal for construction projects (Carter and
Smith 2006). Because a failure to identify hazards exposes workers
to injury (Wilson 1989), developing innovative methods to track
and improve workers’ hazard-identification skills is essential.

Identifying hazardous situations is a complex and multidimen-
sional cognitive process. Individuals’ failure to identify potential
risks and the resulting unsafe actions they take in hazardous situa-
tions are often caused by their failure to attend to the hazard.
Because behavioral data on eye movements represent the most
direct manifestation of visual attention, such data can provide valu-
able information about an observer’s attention and the course of his
or her behavior in hazardous situations (Huestegge et al. 2010;
Cheng et al. 2011; Borowsky et al. 2012; Bhoir et al. 2015;
Dzeng et al. 2016; Hasanzadeh et al. 2016a, 2017b, a).
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Eye-tracking technology is one of the most commonly used
techniques for measuring oculomotor behavior and, by extension,
visual attention (Popa et al. 2015). This type of technology helps
researchers investigate the impact of various stimuli (independent
variables) on the observer’s eye movements (dependent variable)
(Duchowski 2007). Because the accuracy and accessibility of
eye-tracking systems have been improved through the years, the
technology’s application has gained traction in a wide variety of
disciplines (Jie and Clark 2008). Although several studies have
pointed out the importance of studying attention to reduce acci-
dents and improve safety performance in construction projects
(e.g., Teizer 2016; Garrett and Teizer 2009; Artman 2000), to date,
there have been limited investigations into the visual attention
of construction workers and, as such, limited investigation into
the link among attention, hazard identification skills, and safety
performance.

To address this knowledge gap and improve construction safety,
this study empirically examines the relationship between workers’
hazard-identification skills and the eye movements that indicate
their attentional distributions. Given that where one looks highly
correlates with where that person is focusing his or her attention
(Hoffman and Subramaniam 1995), this study used eye-tracking
technology to decipher whether hazard identification skills mani-
fest as specific eye-movement patterns. Accordingly, this study
evaluated the impacts of workers’ hazard-identification skills
(independent variables) on their attentional distributions and visual
search strategies by measuring three fixation-related eye-movement
metrics (dependent variables) across various types of hazards
(e.g., fall, struck-by, housekeeping hazards). The proposed predic-
tive models built based on the combination of eye-movement met-
rics will enable safety managers to identify workers with lower
hazard-identification skills, and will have the immediate benefit
of pinpointing opportunities to provide proactive training, and
develop guidelines that reduce human errors and accidents on
construction sites.

Literature Review

Hazard identification studies and eye-tracking applications are two
arenas that underpin this research. To better establish the concepts
of this paper, the authors conducted a literature review on previous
hazard-identification studies, the relationship between eye move-
ments and attention, the relationship between eye movements
and hazard identification, and the eye-tracking studies in construc-
tion safety. The following review is a representative sampling from
these areas.

Hazard Identification

One of the major causes of accidents in the construction industry is
the unsafe acts of workers—or human errors—as opposed to unsafe
working conditions (Abdelhamid and Everett 2000; Garavan and
O’brien 2001; Garrett and Teizer 2009). Workers on the construc-
tion site are tasked with identifying hazards and responding prop-
erly to them in order to prevent undesirable outcomes and
uncontrolled risks (Rozenfeld et al. 2010). One of the main causes
of human error that may lead to accidents and injuries on a con-
struction site is workers’ lack of attention when detecting potential
or active hazards, which often leads to improper reactions.

Considering hazard identification’s significant role in reducing
injuries, a great deal of research has been directed toward various
hazard-identification strategies to improve safety management,
such as the accident root cause tracing model (Abdelhamid and
Everett 2000), failure mode and effect analysis (Stamatis 2003),

fault tree analysis (Brooke and Paige 2003), the information
retrieval framework and case-based reasoning (Goh and Chua
2009), and job hazard analyses (Rozenfeld et al. 2010). However,
some of these strategies are not effective for construction because
of the dynamic and complex nature of the construction industry and
the lack of standardization in construction processes (Abdelgawad
and Fayek 2012). Therefore, a substantial number of hazards re-
main unidentified, which leads to uncontrollable situations and
raises unmanaged risks. This, in turn, can significantly affect
project safety (Sneddon et al. 2004; Carter and Smith 2006; Bahn
2013).

The majority of current hazard-identification strategies fall into
two categories: retrospective and predictive approaches (Shorrock
and Kirwan 2002). The retrospective approach relies on learning
from past reported incidents to come up with a framework for fu-
ture learning (Goh and Chua 2009; Mitropoulos and Namboodiri
2011). The predictive approach, on the other hand, identifies haz-
ards in the preconstruction phase using different kinds of modeling
tools and brainstorming techniques (Hola 2010; Esmaeili et al.
2015a, b). Both retrospective and predictive approaches have some
limitations that need to be mentioned. Retrospective approaches
usually rely on databases that are often incomplete and cannot be
used in the preconstruction phase of a project (Dong et al. 2011).
Moreover, most of the predictive approaches fall short in accurately
identifying hazards in a real construction project (Borys 2012) be-
cause the dynamic nature of construction sites creates a large num-
ber of confounding factors that are difficult to incorporate into a
statistical model. Finally, and most importantly, both approaches
substantially ignore the role of human factors and the cognitive
processes at play when workers engage in hazard identification.
These approaches assume that all workers have a similar ability to
identify hazards when exposed to a risky situation (Fleming 2009).
Identifying new techniques that can assess both the human factors
and cognitive processes at play in hazard identification, as well
as which factors/processes can be applied during the construction
phase of the project, is vital to reduce injury rates and improve
safety on construction sites.

Eye Movements and Attention

Attention, an important element in many cognitive tasks, has been
studied for over a century in numerous domains. Attention is de-
fined as the focus of consciousness on a particular stimulus while
ignoring other distracting objects in the environment (James 1913).
A growing number of psychological and neuropsychological stud-
ies have demonstrated the close relationship between attention and
eye movements (Yarbus 1967; Sun et al. 2008). Specifically, there
is considerable evidence that people often look directly at the
stimuli they are currently attending to (Duchowski 2007). If a
worker attends to a hazard, it is very likely that he or she will iden-
tify and perceive the hazard and consider protective actions. Owing
to the limited capacity of human information processing as well as
the hazard identification skills at play, this study examines con-
struction workers’ visual attention to determine how they choose to
attend to or ignore different types of hazards when viewing images
of real construction scenarios.

Eye Movements and Hazard Identification

The literature on hazard detection and eye-movement behavior has
often focused on driving and driving skills. These studies involve
participants either viewing pictures or scenarios (e.g., Underwood
et al. 2005), using movie-based simulators (e.g., Borowsky et al.
2012; Mackenzie and Harris 2015; Underwood et al. 2011), or
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participating in real-time experiments (e.g., Sun et al. 2016).
To automatically detect whether the participants identified the
hazards, the researchers had to reliably track participants’ eyes
to determine whether they fixated on or pursued hazardous sources.
In static experiments, participants had to press a button when they
identified a hazard, and the researchers simultaneously tracked
the participants’ eye movements (e.g., Borowsky et al. 2012). In
real-world experiments, the researchers used mobile eye trackers
and conducted their experiments in dynamic environments while
the subjects drove real cars (e.g., Sun et al. 2016). The results
of these previous studies have shown that participants’ performance
in hazard detection tasks serve as predictors of accident involve-
ment (Horswill and McKenna 2004; Wallis and Horswill 2007).
These experiments have also revealed participants’ knowledge
about types of hazards and their associated risks (Browsky and
Oron-Gilad 2013). Moreover, examining observers’ attentional
allocation and visual search strategies as they watch videos of
hazardous situations further illustrated their hazard detection skills
(Underwood et al. 2011).

Generally, when an individual identifies an imminent hazard,
he or she processes information about the scene in an in-depth
manner and monitors the location for further potential hazards.
However, there is potential danger in overfocusing attention on
one region in a scene, which may prevent the observer from
detecting and processing other active or potential hazards elsewhere
(Underwood et al. 2011). Workers with high hazard-identification
skills distribute their attention in balanced ways to identify concur-
rent risks and respond appropriately. Driving-related studies into
this behavior have helped identify oculomotor strategies used by
observers with differing hazard-identification skills (Mackenzie
and Harris 2015), with some of these studies leading to the develop-
ment of a training process to better enable the broad distribution of
attention and to improve hazard identification skills. These studies
then evaluated their training effectiveness using eye-tracking tech-
nology (e.g., Pradhan et al. 2009; Underwood 2007).

Eye-Tracking Studies in Construction Safety

Because eye tracking has immense potential to provide deeper in-
sights into construction workers’ hazard-identification patterns, in
2015, in one of the earliest studies to apply eye-tracking technology
to improve construction workers’ safety, Bhoir et al. (2015) inves-
tigated construction workers’ hazard-identification skills and visual
attention by examining participants’ eye movements and attentional
distribution when they were shown hazardous situations in con-
struction site images. Using a head-mounted EyeLink II system,
the authors calculated fixation-/gaze-related and saccade-related
metrics and generated absolute duration heat maps for each area
of interest. The results of the analysis revealed that some people
failed to fixate on hidden hazards or even a danger sign. Building
on the success of Bhoir et al. (2015), Habibnezhad et al. (2016a)
tested the hypothesis that workers’ risk perception impacts their
visual search strategies when identifying hazards. To test this
hypothesis, the authors recruited 31 construction workers and
conducted an eye-tracking experiment while also measuring work-
ers’ risk perception. After dividing workers into different clusters
according to their risk perception, the authors statistically investi-
gated differences in participants’ eye-movement metrics. They
found that (1) people with high risk perception have a lower mean
dwell-time percentage for all types of hazards compared with peo-
ple with low risk perception, (2) people with high risk perception
have a lower mean dwell-time percentage for ladder-included haz-
ards compared with people with low risk perception, and (3) people
with higher risk perception have higher first-fixation duration for

struck-by-material hazards compared with those with lower risk
perception. This study establishes the relationship between risk per-
ception and eye movements.

To assess construction workers’ real-time situation awareness,
Hasanzadeh et al. (2016a) used a mobile eye tracker to measure
workers’ situation awareness in different scenarios within a
real-world construction site. Using direct measures of situation
awareness (eye movements) in parallel with subjective situation-
awareness measures, they found a strong association between these
two types of situation awareness measurements. They also found
that workers’ situation awareness and visual attention allocation
varies significantly as a function of the scenario’s workload and
the workers’ level of experience. The results from this study may
help to identify workers who have lower situation awareness, and
therefore pinpoint opportunities to provide proactive training and
develop guidelines for workers, which will reduce human errors
and accidents on construction sites. Additionally, this approach can
measure the same workers’ situation awareness after training to de-
termine whether they have improved. This was the first study to use
a mobile eye tracker on a construction site to measure construction
workers’ situation awareness.

In another study, Dzeng et al. (2016) investigated the impact of
working experience on worker attention by creating virtual images
of hypothetical scenarios that involved multiple hazards. They
found that although experienced workers were faster in identifying
both obvious and unobvious hazards, their ability to accurately
identify hazards was not significantly different from novice work-
ers. Despite the significant contributions of this study, there are
some limitations worth noting. First, viewing time was not con-
trolled in Dzeng et al.’s (2016) study, which is problematic for a
few reasons. In an actual workplace, workers are required to pro-
cess information quickly, not in the absence of time constraints.
More importantly, many of the critical eye-movement metrics that
Dzeng et al. used (e.g., number of fixations, fixation frequency) are
impacted by viewing time, but this was not taken into account in the
analysis. For instance, number of fixations can be influenced by
viewing duration, so comparing the number of fixations of one sub-
ject who focused on the area of interest for 15 s with another subject
who looked at the same area for 50 s does not permit an equivalent
comparison. Without correcting for actual trial time, these data
are uninterpretable. Furthermore, the longer the trial goes, the less
likely it is that each subsequent eye movement will be directed to-
ward the intended task (i.e., hazard identification), so with an ex-
tended viewing time, it is unclear whether the visual behavior was
solely directed toward hazard identification, thus further con-
founding matters. Second, the stimuli in Dzeng et al.’s (2016) work
consisted of virtual images of a limited number of hypothetical con-
struction scenarios, not real images taken from real constructions
sites—a choice that could confound the outcomes of the study.

In a related study, Hasanzadeh et al. (2017b) addressed some
of the limitations related to Dzeng et al.’s (2016) study. With
the fundamental objective of measuring the impacts of safety
knowledge—specifically, training, working experience, and in-
jury exposure—on construction workers’ attentional allocation,
Hasanzadeh et al. (2017b) designed a laboratory experiment in
which participants identified safety hazards presented in 35 con-
struction site images ordered randomly, each of which showed
multiple hazards varying in safety risk. During the experiment,
the eye movements of 27 construction workers were recorded using
a head-mounted EyeLink II system. The impact of worker safety
knowledge in terms of training, working experience, and injury
exposure (independent variables) on eye-movement metrics (de-
pendent variables) were then assessed by implementing numer-
ous permutation simulations. The authors found that tacit safety
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knowledge acquired from working experience and injury exposure
can significantly improve construction workers’ hazard detection
and visual search strategies. Other notable findings include the fol-
lowing: (1) there is minimal difference with or without the Occupa-
tional Safety and Health Administration (OSHA) 10-h certificate in
workers’ visual search strategies and attentional allocation when
they are exposed to or seeing hazardous situations; (2) relative
to less-experienced workers (<5 years), more-experienced workers
(>10 years) need less processing time and deploy more frequent
short fixations on hazardous areas to maintain situational awareness
of the environment; and (3) injury exposure significantly impacts a
worker’s visual search strategy and attentional allocation. The over-
all conclusion that can be made from Hasanzadeh et al.’s (2017b)
study is that obtaining sufficient safety knowledge on a jobsite and
improving safety awareness require the interaction of both tacit and
explicit knowledge gained through work experience, injury expo-
sure, and interactive safety training. Although these studies mani-
fest the promise of applying eye tracking to construction safety,
there are still gaps in knowledge about the possibility of using
eye-movement metrics to identify at-risk workers.

Points of Departure

The majority of workers’ safety errors and subsequent unsafe
behaviors are rooted either in their inability to identify a hazard
or in their misperception of the associated risk. Previous studies
have shown that visual attention is closely related to the sequence
of eye movements used to search, and that fixations and their re-
lated metrics are reliable indicators of ongoing cognitive processes
(e.g., Wickens et al. 2015; Duchowski 2007). Although previous
studies in the field of cognitive psychology have used the search
task to examine subjects’ visual information processing and percep-
tual representation (e.g., Treisman and Gelade 1980; Wolfe 2007),
limited attempts have been made to investigate the potential of
harnessing eye movements as predictors of workers’ hazard-
identification skills in the construction industry.

One of the major barriers to studying the impact of hazard
identification skills on workers’ visual attention relates to the lack
of reliable tools for measuring variation in those processes.
However, recent advances in eye-tracking technology have pro-
vided an easy-to-use and readily available tool for measuring varia-
tion in cognitive processes using eye-movement patterns. The use
of eye-tracking technology is novel, and it provides a largely direct
measure of attention, thereby offering immense potential for inves-
tigating, understanding, and improving construction workers’
attention.

Thus, the present study explores the links among eye move-
ments, hazard identification skills, and attentional allocation. To
achieve this goal, the research team followed these steps: (1) evalu-
ate the impact of workers’ hazard-identification skills on their
visual attention across different types of hazards (e.g., fall, struck-
by, housekeeping hazards) and (2) develop a mathematical models
based on eye-movement metrics as predictors of workers’ hazard-
identification skills to identify at-risk workers by tracking their per-
formance in recognizing active and potential hazards. By focusing
on the connection between attention and eye movements, this re-
search will enable the identification of at-risk workers through
mathematical models. Accordingly, this study will challenge the
traditional reactionary paradigm of construction hazard manage-
ment by proposing a method to detect at-risk workers and predict
their possible safety errors using measurable indicators of attention,
namely eye-movement patterns and fixations.

Methodology

As described subsequently, the objectives of the study were accom-
plished by conducting five main tasks. First, images of construction
sites with different types of hazards were collected and screened
for the experiment. In the second step, the research team recruited
construction workers to participate in the study using various strat-
egies (discussed subsequently). Third, the eye-tracking experiment
was designed to track workers’ attentional allocation via their vis-
ual search strategies as they view randomly ordered scenario im-
ages. This eye-tracking technique helped establish where and how
workers distribute their attention when viewing a scene to identify
active and potential hazards. Moreover, this technique helped re-
veal the types of hazards at-risk workers missed or perceived as
less significant. Fourth, the research team determined workers’
hazard-identification skills on the basis of the number of hazards
each participant identified in each image scenario; workers were
then grouped on the basis of their hazard identification skills.
Lastly, multiple statistical analyses, including multivariate ANOVA
(MANOVA) and discriminant function analysis, were conducted
using the results of the last two steps in order to determine the im-
pact of workers’ hazard-identification skills on their eye-movement
patterns and visual attention. The results from the statistical analy-
ses were used to propose mathematical models that can classify
workers on the basis of their hazard identification skills for different
types of hazards. All procedures in this study were approved by
the University of Nebraska–Lincoln Institutional Review Board.
The following sections elaborate on the research protocol that
was undertaken to accomplish the steps. The research framework
is provided in Fig. 1.

Image Selection

The research team downselected 35 images from a pool of 150
images that were obtained from the safety managers of compa-
nies that are members of the Construction Industry Institute. These
scenario images were taken from different private residential and
commercial construction sites across the United States, and in-
cluded different types of hazards that are among the most typical
safety risks leading to accidents, such as falls to lower level, fall-
protection systems, ladders, struck-by hazards, and housekeeping
hazards. Safety managers used these images to document existing
hazards on a site and communicate improvement strategies to mit-
igate potential hazards. The selected images were of high quality,
and each had at least one hazard that could be identified.

Participants

Construction workers were solicited to participate in this study via
(1) invitation flyers posted at construction sites in Lincoln and
Omaha, Nebraska; (2) invitations extended directly via stopping
by construction companies’ main offices and contacting facility
managers at the University of Nebraska–Lincoln; and (3) flyers
with a one-page summary of the research project sent to Associated
Builders and Contractors (ABC) members and department advisory
boards. As a result, a total of 31 construction laborers (30 males,
1 female) participated in this study. Given that empirical research of
this nature affords the opportunity to collect multiple data points
per individual for each trial, a smaller sample size is appropriate
relative to larger survey-style studies. However, this study met the
sample size requirement discussed by Pernice and Nielsen (2009),
who stipulated that sample sizes vary greatly in eye-tracking stud-
ies, ranging from 6 for qualitative studies to 30 for quantitative
studies.
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The participants were mostly young to middle aged (93% were
between the ages of 20 and 55 years). All participants had normal
or corrected-to-normal vision. The experiment was conducted in a
single 30-min session for each worker. The data for four partici-
pants was omitted from the analysis because acceptable levels
of calibration on the eye tracker could not be achieved. Six partic-
ipants were also omitted because they were the univariate outliers
in the hazard identification calculation (three out of six) and
because of interruptions during the eye-tracking experiment (three
out of six). The final analyses were based on the data from the
remaining 21 workers. All participants received gift cards as
compensation.

Experimental Design

The eye-tracking experiment was designed to present 35 randomly
ordered construction scenario images, each of which displayed
multiple hazards varying in safety risk. Each image appeared on
the screen for a maximum of 20 s. Workers were asked to wear
an EyeLink II with a high spatial resolution and a sampling rate

of 500 Hz in order to track and record their eye movements.
The EyeLink II is a head-mounted eye-tracking system that uses
cameras to track the movement of the pupil. Participants were
asked to scan each picture and look for potential or active hazards;
they then reported the results of their exploration as to whether they
found any hazards by pushing button A for “Yes” or B for “No” on
a response pad. At the conclusion of each trial, subjects were asked
about the number, types, likelihood, and severity of the safety
issues they found in each scenario’s image. In addition to the
eye-tracking experiment, workers took a short survey asking about
their demographic information, including age, gender, race, nation-
ality, years of experience, obtained certifications, and training. This
protocol was followed while asking for the number of hazards and
while conducting the eye-tracking experiment to ensure that the
results were comparable.

Hazard Identification Index

To evaluate the hazard identification skills of workers, the hazard
identification index (HIIij) was calculated for each worker (j)
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Fig. 1. Research framework (image by Sogand Hasanzadeh)
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(adopted from Carter and Smith 2006). The hazard identification
index is defined as HIIij ¼ Hi=Htot, where Htot represents the total
number of identifiable (potential and active) hazards in image i
based on the professional safety mangers’ opinions, and Hi indi-
cates the number of hazards identified by the worker j in image i.
To compute the total hazard identification index for worker j
(HIIT;ij), the mean of HIIij was calculated across all 35 images:
HIIT;ij ¼ AverageðHIIijÞ. Then, based on the workers’ average
performance in identifying hazards across 35 images, they were
divided into three HII groups, namely low (HIIT;ij < 0.3), medium
(0.3 ≤ HIIT;ij ≤ 0.6), and high (HIIT;ij > 0.6) HII groups.

Eye-Tracking Data Analysis

The first step in extracting eye-movement metrics and establishing
dependent measures is to define areas of interest (AOI) in each
image. Areas of interest are visual environments of interest the re-
search team defined (Jacob and Karn 2003). To identify the AOIs,
an initial focus group consisting of five safety managers with more
than 10 years of experience independently reviewed and discussed
the hazardous situations depicted in the pictures. Then, the focus
group qualitatively studied participants’ search strategies and scan-
paths to decipher hazardous areas the workers identified. Lastly, by
overlaying and comparing the results of both of the previous steps,
the AOIs were defined according to the different types of hazards
that existed in the construction scenario images. The AOIs included
fall to lower level (i.e., a worker is in the proximity of an unpro-
tected building edge or roof, unguarded roof, floor openings, scaf-
folding, or skylights), fall-protection systems (i.e., misuse of a
lanyard or other fall-protection systems), ladder (i.e., improper
use of a ladder, such as using an inappropriate type or length of
ladder, ignoring ladder-extension rules, using an unstabilized lad-
der or an unsecured straight ladder, and behaving in an unsafe
manner when working on the ladder), struck-by (i.e., probability
of being struck by heavy equipment or falling objects like tools,
collapsing masonry, or concrete walls), housekeeping hazards
(i.e., slippery working and walking surface conditions, unsafe
material storage, and unsanitary work environment conditions), and
all hazard types (i.e., combined eye-tracking metrics for ladder-,
fall-, struck-by–, and housekeeping-related hazardous areas within
scenario images).

The EyeLink Data Viewer was used to gather and analyze the
two-dimensional eye-movement patterns of construction workers.
This software provides a large database of metrics, including
those needed to analyze eye-movement behavior within the re-
spective AOIs. To explore the determinants of oculomotor behav-
ior, previous eye-tracking studies have incorporated several
metrics derived from the fixation measure (defined as a relatively
stationary eye position over a minimum duration, such as 100–
200 ms, although much longer fixations can also be observed
as a function of an individual’s processing goals) as dependent
variables.

The selection of eye movement metrics depends on the cogni-
tive processes investigated in each study. In this study, three
fixation-related metrics per AOI were chosen: fixation count
(i.e., the number of times the observer fixated on the specific area),
the dwell-time percentage (i.e., relative to the duration of the trial,
what proportion of time was spent fixating on each AOI), and run
count (i.e., the average number of times each participant returned
their gaze to a specific AOI). These metrics have been used
frequently in previous eye-tracking work as dependent variables
(e.g., Bhoir et al. 2015; Hasanzadeh et al. 2017b) to determine
which information in a scene workers attended to.

Statistical Analyses

Eye-movement metrics were also calculated for each group
(low, medium, and high HII) across the various types of hazards
(AOIs). To measure whether workers’ hazard-identification skills
(the independent variable) impact their visual search strategy,
the dependent variables described previously were collected during
each experiment and were used for the analysis. Because there are
multiple dependent variables, MANOVA was selected as the
statistical method. Multivariate ANOVA is an extension version
of ANOVA that not only illustrates the predictive power of the
independent variables, but can also provide insights about the in-
terrelationships and differences in a set of dependent variables
(Hair et al. 2010). Multivariate ANOVA tests a set of dependent
variables simultaneously rather than one at a time, which helps
prevent the inflating alpha (Type I error) problem (Spicer 2005).
This method helps identify a combination of dependent variables
(eye-movement metrics) that determine the visual search strategies
of workers with different hazard identification skills. In the present
data set, because eye-movement metrics are correlated, using
separate analyses of their determinants may well be confounded.
Thus, the research team also examined the effects of workers’
hazard-identification skills on two sets of eye-movement variables
(canonical functions) that can jointly be mapped onto the complex
content of workers’ unsafe behaviors.

As far as power is concerned, having fewer than five dependent
variables helped improve the power of the MANOVA test, which
exceeds what can be obtained with a single ANOVA (Hair et al.
2010). Although having a larger sample size would be better,
the only limit required by the test is that the number of participants
in each group needs to be more than the number of dependent
variables.

Before conducting any multivariate test, it is important to deter-
mine whether any critical assumptions have been violated. If the
results of these tests are satisfactory, then multivariate test statistics
are appropriate (Hair et al. 2010). The first assumption in this test
deals with the independence of observations. Having different par-
ticipants in each group without any extraneous or unmeasured
effects enabled the research team to meet the first assumption.

Second, MANOVA is especially sensitive to univariate and
multivariate outliers. To check this assumption, boxplots were stud-
ied (examples are provided in Fig. 2), and Mahalanobis distances
were calculated to identify univariate and multivariate outliers. The
boxplot uses the interquartile range (IQR) rule, and values of more
than 1.5 IQR and less than 3 IQR are labeled as univariate outliers.
Additionally, the Mahalanobis distance of each participant was
compared with the chi-square distribution for the same degree
of freedom. If the probability of Mahalanobis distance was less than
0.001 (critical value), the subject was considered a multivariate out-
lier and was removed from the analysis. Using the boxplots and
Mahalanobis distance tests, no univariate or multivariate outlier
was observed (probability of Mahalanobis distance > 0.001).

A third assumption recommends having multivariate normality
among dependent variables across groups. Unfortunately, there is
no direct test available for multivariate normality. However, if the
univariate normality of all dependent variables is met, then the de-
partures from multivariate normality are inconsequential. There-
fore, the univariate normality of each eye-movement metric was
tested using a Shapiro-Wilk test. If −1.96 < z score < þ1.96, or
Shapiro p > 0.05, the test shows that the dependent variable for
that group is approximately normally distributed. To meet the nor-
mality assumption of MANOVA, the fixation count and run count
for ladder-related hazards were transformed using Log10. The re-
sults of the Shapiro-Wilk tests showed no violation in univariate
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normality across different groups (Shapiro p > 0.05), so any de-
partures from multivariate normality are inconsequential.

Fourth, conducting MANOVA requires linear relationships be-
tween each pair of dependent variables—that is, the eye-movement
metrics. To satisfy this assumption, the scatterplot matrix of the
dependent variables was plotted to determine whether they are lin-
early related. Examining complex scatterplots showed that there are
linear relationships between each pair of eye-movement metrics.

Fifth, to measure the amount of multicollinearity that exists
among the variables across groups, the variance inflation factor
(VIF) was calculated using linear regression analysis. If the VIF
is lower than 3, one can assume that there is minimal multicolli-
nearity among variables across groups (Neter et al. 1996; Hair
et al. 2010). Conducting linear regression showed there is no multi-
collinearity among dependent variables across groups (VIF < 3).

The last assumption for MANOVA is to meet the “equality
of variance-covariance matrices across the groups.” To test this
assumption, the Box’s M test was used to determine the “equality
of covariance.” If the Box’s M test was significant (p < 0.05),
Levene’s test would have been used to test for variance homo-
geneity, and to determine where the problem may lie. However, the
Box’s M tests of equality of covariance was not significant for any
of the eye-movement metrics (p > 0.05), and the assumption of
homogeneity was also met (Table 1). The results of these tests illus-
trated that the assumptions of multivariate test statistics were met
and that MANOVA will provide robust test statistics for this case.

There are several different multivariate tests that can be used to
measure the significance of group differences in MANOVA. These
multivariate tests vary on the basis of their associated F ratio. The
four most common multivariate test statistics are Pillai-Bartlett
trace, Wilks’ Lambda, Hotelling’s T2, and Roy’s largest root.
The authors chose the Pillai’s trace as the test statistic for this study
because the HII groups (low, medium, and high) differed along
two (more than one) variates. In addition, the Pillai’s trace is the
most robust to violations of assumptions when sample sizes across

groups are equal, as in this study (Bray and Maxwell 1985). If the F
statistic is significant (p < 0.1), one can conclude that the levels of
workers’ hazard-identification skills had significant impact on their
eye movements—and, consequently, on their visual search strate-
gies and visual attention—when they were exposed to different
types of hazards.

To follow up on the MANOVA test and further investigate
the nature of hazard identification skills’ effect on the dependent
variables, two approaches were identified from the literature.
The first—and most traditional—approach is to conduct separate
ANOVAs on each of the dependent variables, and then conduct
a post hoc test on significant relationships. However, as mentioned
previously, using univariate ANOVA does not consider the linear
relationship between dependent variables. Considering this limita-
tion, statisticians have suggested to follow up MANOVA with the
second approach, which is called discriminant function analysis.

In this paper, discriminant function analysis takes into account
the correlation between eye-movement metrics (the dependent
variables) and, because the analysis is conducted based on the
variables’ interactions, has more power to detect HII group differ-
ences. When discriminant function analysis is implemented, the
eye-movement variables are transformed into new variables, called
canonical variables. The quantity of canonical variables equals the
number of original variables minus one. Some optimal combina-
tions of variables are automatically determined [using Statistical
Package for the Social Sciences (SPSS) software]. The first func-
tion provides the most overall discrimination between HII groups,
and the second provides second most discrimination between
groups. Moreover, these functions are independent or orthogonal,
and their contributions to the discrimination between HII groups
will not overlap. This analysis looks for an appropriate set of
weights (the discriminant function) to be applied to the dependent
variables (i.e., eye-movement metrics) and provides as much sep-
aration as possible among the grouped independent variables (work-
ers with different hazard identification skills). Accordingly, in the
current study, these two canonical variables combine three eye-
movement metrics, appropriately weighted by the software, into
a new variate (discriminant function), which maximizes the dis-
crimination between the HII groups (low, medium, high) in terms
of their hazard identification skills. The discriminant scores—which
are developed for each canonical variable (function)—can be used
to predict HII group membership on the basis of the maximum like-
lihood technique.

In terms of assessing the accuracy of these designations,
three approaches can be used to calculate classification accuracy
based on discriminant scores: resubstitution, cross-validation, and

Fig. 2. Example of using boxplots to check for the existence of univariate outliers in HII groups for all eye-movement variables in all fall-to-lower-
level (FE) hazardous areas

Table 1. Box’s M Test of Equality of Covariance Matrices

Source of hazard Box’s M F Df1 Df2 p-value

Ladder 19.282 1.208 12 1570.154 0.272
Fall to lower level 10.093 0.632 12 1570.154 0.816
Fall-protection system 9.019 0.565 12 1570.154 0.871
Struck-by 7.754 0.486 12 1570.154 0.924
Housekeeping 17.732 1.111 12 1570.154 0.347
All hazard types 26.052 1.632 12 1570.154 0.077
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Cohen’s Kappa. In the first approach, resubstitution, all data points
are treated as training data to develop the discriminant functions,
and then the accuracy of the classifications are calculated by divid-
ing the number of cases that were classified correctly by the total
number of observations. In the second approach, the “leave-one-out
classification” as a cross-validation method is used to determine
how well a discriminant score can predict HII group membership.
In this technique, training data are treated as the test data while
excluding one case from the analysis. The removed case is then
classified on the basis of the new model to verify whether the origi-
nal classification was correct. This process is repeated n (number of
subjects) times, and then the percent of subjects classified correctly
is calculated for each type of hazard.

Although these two approaches offer benefits, arguably the
resubstitution value for classification accuracy could be affected
by chance agreement (i.e., accuracy rate may appear better than
it actually is). To address this issue, in the third approach, Kappa
statistics serve as an index to correct for chance agreement. Kappa
computes the accuracy in prediction of group membership [Eq. (1)]
where PrðoÞ is the probability of observed agreement and PrðeÞ is
the probability of random agreement:

Kappa ¼ PrðoÞ − PrðeÞ
1 − PrðeÞ ð1Þ

The Kappa coefficient value ranges from −1 to þ1, wherein þ1
indicates the perfect condition, 0 indicates the chance-level predic-
tion, and any value greater than 0 indicates better than chance-level
prediction. There are no established interpretations of Kappa coef-
ficient values in eye-tracking studies, but based on the guidelines
adapted from Landis and Koch (1977) and Altman (1991), a Kappa
of 0.0 to 0.2 is interpreted as slight agreement; 0.21 to 0.4 equates
to fair agreement; 0.41 to 0.6 signifies moderate agreement; 0.61 to
0.8 represents substantial agreement; and 0.81 to 1.0 demonstrates
almost perfect agreement.

In this study, the research team adopted both follow-up
approaches (separateANOVAs and discriminant function analysis).
First, separate ANOVAs were conducted on each independent var-
iable, and then a discriminant function analysis was used to see how
the different combinations of eye-movement metrics differentiate
the workers in terms of their level of hazard identification skills.
The following section illustrates the outcomes of all these analyses.

Results and Analysis

First, MANOVAs were performed to determine whether fixation
count, run count, or dwell-time percentage differed on the basis
of workers’ hazard-identification skills across different types of
hazards, namely, ladder, fall to lower level, fall-protection system,
struck-by, housekeeping, and all hazard types combined. The re-
sults of the MANOVAs are summarized in Table 2. If the Pillai’s

trace’s significance value is less than 0.05, this means that hazard
identification skills have a significant impact on workers’ eye-
movement metrics for specific types of hazards (p-values less than
0.1 are considered moderately significant). Using Pillai’s trace, this
study found a significant effect of hazard identification skills on
the visual search strategies (eye movements) of workers as they
identified different types of hazards (see p-values less than 0.05
in Table 2). Although promising, this test cannot clarify which
groups differed from which, or whether the effect of hazard iden-
tification skills was on dwell-time percentage, fixation count, run
count, or a combination of these eye-movement metrics. Accord-
ingly, two approaches were selected to follow up the MANOVAs:
separate ANOVAs and discriminant analysis. The results for each
of these follow-up approaches are described next.

Separate ANOVAs

Separate ANOVA tests were conducted on each dependent variable,
and the results of the tests of between-subject effects are summa-
rized in Table 3. For example, for ladder-related hazards, hazard
identification skill has a significant effect on dwell-time percent-
age: Fð2; 18Þ ¼ 3.638, p ¼ 0.047 < 0.05 (Table 3).

Whenever there was a significant difference between the HII
groups in terms of the eye-movement metrics, post hoc (Tukey
HSD—honest significant difference—and Bonferroni) analyses
were conducted to further investigate the relationships and under-
stand which HII groups had a significant impact on which eye-
movement measure. The results of the post hoc analyses (Tukey
HSD and Bonferroni) for each AOI is provided here:
• Ladder-related hazards: The low HII group dwelt significantly

more on ladder-related hazards than the high HII group
(pTukeyHSD ¼ 0.037 < 0.1, pBonferroni ¼ 0.044 < 0.1).

• Fall-to-lower-level–related hazards: The high HII group tended
to fixate their gaze more on fall-to-lower-level hazards than
the low HII group (pTukeyHSD ¼ 0.059 < 0.1, pBonferroni ¼
0.072 < 0.1).

• Fall-protection-system–related hazards: Workers with low or
medium HII had significantly lower fixation counts on hazards
related to fall-protection systems than workers with high HII
(pTukeyHSD-low&high¼0.007<0.1; pTukeyHSD-medium&high¼0.019 <
0.1; pBonferroni-low&high ¼ 0.008< 0.1; pBonferroni-medium&high ¼
0.022 < 0.1). Moreover, workers with high HII tended to have
a higher run count—that is, they returned their attention more
frequently—to fall-protection-system–related hazards than
workers with low HII (pTukeyHSD ¼ 0.058 < 0.1, pBonferroni ¼
0.070 < 0.1).

• Struck-by hazards: Workers with low or medium HII had
significantly lower fixation counts on struck-by hazards than
workers with high HII (pTukeyHSD-low&high ¼ 0.017 < 0.1;
pTukeyHSD-medium&high¼0.017<0.1; pBonferroni-low&high¼ 0.019<
0.1; pBonferroni-medium&high ¼ 0.020 < 0.1).

• Housekeeping hazards: Workers with low or medium HII
had significantly lower fixation counts on housekeeping hazards
than workers with high HII (pTurkey HSD-low&high ¼ 0.001 <
0.1; pTurkeyHSD-medium&high ¼ 0.001 < 0.1; pBonferroni-low&high ¼
0.001 < 0.1; pBonferroni-medium&high ¼ 0.001 < 0.1). Moreover,
workers with highHII tended to have a higher run count of house-
keeping hazards than workers with low and medium HII
(pTurkeyHSD-low&high¼0.002<0.1; pTurkeyHSD-medium&high¼0.003<
0.1; pBonferroni-low&high ¼ 0.002 < 0.1; pBonferroni-medium&high ¼
0.004 < 0.1).

• All hazard types: Workers with low and medium HII had
significantly lower fixation counts and run counts than
workers with high HII (pTurkeyHSD low&high ¼ 0.007 < 0.1;

Table 2. Multivariate Pillai’s Trace Tests among HII Groups across
Different Types of Hazards

Source of hazard Value F
Hypothesis

df
Error
df Significance

Ladder 0.633 2.622 6 34 0.034a

Fall to lower level 0.651 2.738 6 34 0.028a

Fall-protection system 0.714 3.149 6 34 0.015a

Struck-by 0.732 3.268 6 34 0.012a

Housekeeping 0.642 2.682 6 34 0.031a

All hazard types 0.622 2.559 6 34 0.037a

ap ≤ 0.05.
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pTurkeyHSD-medium&high¼0.017<0.1; pBonferroni-low&high¼0.007<
0.1; pBonferroni-medium&high ¼ 0.019 < 0.1). Moreover, workers
with low HII had significantly lower run counts—that is,
returned their attention less frequently—to all types of

hazards than workers with high HII (pTurkeyHSD-low&high ¼
0.069 < 0.1, pBonferroni-low&high ¼ 0.084 < 0.1).
The results of the univariate ANOVAs are informative; however,

conducting separate ANOVAs does not consider the linear

Table 3. Tests of between-Subject Effects on HII Groups across Various Types of Hazards

Source of hazard
Eye-movement

metrics
HII

groups Mean
Standard
error

Sum of
squares df

Mean
square F p-value

Ladder Dwell % Low 0.119 0.007 0.002 2 0.001 3.638 0.047a

Medium 0.107 — — — — — —
High 0.094 — — — — — —

Fix count Low 2.096 0.098 0.051 2 0.025 2.301 0.129
Medium 1.996 — — — — — —
High 2.283 — — — — — —

Run count Low 1.543 0.080 0.025 2 0.013 0.879 0.432
Medium 1.530 — — — — — —
High 1.659 — — — — — —

Fall to lower level Dwell % Low 0.247 0.017 0.007 2 0.003 1.549 0.240
Medium 0.271 — — — — — —
High 0.228 — — — — — —

Fix count Low 9.096 0.841 31.226 2 15.613 3.152 0.067b

Medium 10.076 — — — — — —
High 12.030 — — — — — —

Run count Low 3.864 0.355 2.646 2 1.323 1.499 0.250
Medium 4.402 — — — — — —
High 4.724 — — — — — —

Fall-protection system Dwell % Low 0.082 0.003 2.948 × 10−5 2 1.474 × 10−5 0.181 0.836
Medium 0.084 — — — — — —
High 0.084 — — — — — —

Fix count Low 2.942 0.313 9.893 2 4.947 7.198 0.005a

Medium 3.146 — — — — — —
High 4.489 — — — — — —

Run count Low 1.675 0.155 1.030 2 0.515 3.079 0.071b

Medium 1.912 — — — — — —
High 2.216 — — — — — —

Struck-by Dwell % Low 0.068 0.006 0.000 2 .000 0.730 0.496
Medium 0.060 — — — — — —
High 0.070 — — — — — —

Fix count Low 2.615 0.293 7.616 2 3.808 6.338 0.008a

Medium 2.621 — — — — — —
High 3.896 — — — — — —

Run count Low 1.412 0.184 1.081 2 0.540 2.272 0.132
Medium 1.665 — — — — — —
High 1.967 — — — — — —

Housekeeping Dwell % Low 0.074 0.007 0.002 2 0.001 2.431 0.116
Medium 0.068 — — — — — —
High 0.088 — — — — — —

Fix count Low 2.838 0.400 28.207 2 14.103 12.565 0.000a

Medium 2.743 — — — — — —
High 5.248 — — — — — —

Run count Low 1.571 0.142 2.921 2 1.461 10.377 0.001a

Medium 1.610 — — — — — —
High 2.381 — — — — — —

All hazard types Dwell % Low 0.102 0.004 0.000 2 7.884 × 10−5 0.843 0.447
Medium 0.104 — — — — — —
High 0.097 — — — — — —

Fix count Low 3.835 0.288 0.918 2 0.459 2.922 0.080b

Medium 4.012 — — — — — —
High 5.266 — — — — — —

Run count Low 1.940 0.150 8.527 2 4.264 7.350 0.005a

Medium 2.127 — — — — — —
High 2.447 — — — — — —

ap ≤ 0.05.
bp ≤ 0.1.
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relationship between dependent variables. Thus, statisticians have
recommended following upMANOVAs with discriminant analysis.

Discriminant Analysis

Discriminant analysis attempts to predict the total amount of
variation among HII groups using one or more different weighted
combinations of eye-movement metrics (dwell-time percentages,
fixation count, run count), called canonical variables. The results
of the discriminant analysis revealed two canonical functions for
each type of hazard (Table 4). The number of functions is one less
than the number of groups of independent variables. These canoni-
cal linear discriminant functions project the data onto a dimension
that maximizes discrimination between the groups—that is, be-
tween levels of hazard identification skills. The functions are
orthogonal; the first function maximizes the differences between
the groups in terms of the dependent variable, and the second func-
tion does the same thing by controlling for the first function. The
eigenvalue and percentage of variance explained by each canonical
function are also shown in Table 4. Eigenvalues, the third column,
are related to the canonical correlations and represent the ratio be-
tween the explained and unexplained variation in a model. Higher
eigenvalues indicate that a function has higher discriminative abil-
ity. The fourth column, percentage of variance, demonstrates the

discriminative ability of the eye-movement variables included in
the function. The fifth column shows the cumulative proportion
of discriminative ability of functions. The last column of Table 4
includes the canonical correlations of predictor variables (i.e.,
dwell-time percentage, fixation count, and run count) and the
groupings in HII (i.e., low, medium, and high).

The results of the significance tests for the canonical functions
are shown in Table 5. The null hypothesis is that the canonical cor-
relations associated with the functions are all equal to zero, or the
means of the functions are equal across groups—that is, the func-
tions have no discriminative ability. Because there are two dis-
criminant functions for each type of hazard, the first test presented
in this table tests combination of both canonical correlations (Func-
tions 1–2), and the second test presented tests the second canonical
correlation alone. As one can see, only Functions 1–2 was signifi-
cant for all sources of hazards. Moreover, Wilks’ Lambda is a mea-
sure of how well each function separates workers into groups. The
Wilks’ Lambda values in Table 5 can be interpreted as the unex-
plained variance among HII groups while using a combination of
both possible canonical functions. Smaller Wilks’ Lambda values
indicate that the function has greater discriminative ability. To dem-
onstrate how the results provided in Table 5 can be interpreted, an
example is provided for ladder-related hazards: in combination,
Discriminant Functions 1 and 2 significantly differentiated the

Table 4. Eigenvalues for Proposed Functions

Source of hazard Function Eigenvalue
Percentage
of variance

Cumulative
variance (%)

Canonical
correlation

Ladder 1 1.185 92.3 92.3 0.736
2 0.099 7.7 100.0 0.301

Fall to lower level 1 1.278 92.8 92.8 0.749
2 0.099 7.2 100.0 0.301

Fall-protection system 1 1.449 91.2 91.2 0.769
2 0.140 8.8 100.0 0.350

Struck-by 1 1.139 82.1 82.1 0.730
2 0.249 17.9 100.0 0.446

Housekeeping 1 1.571 98.0 98.0 0.782
2 0.032 2.0 100.0 0.177

All hazard types 1 1.166 92.7 92.7 0.734
2 0.091 7.3 100.0 0.290

Table 5. Wilks’ Lambda for Discriminant Functions

Source of hazard Test of function(s) Wilks’ Lambda Chi-square df p-value

Ladder 1–2 0.416 14.897 6 0.021a

2 0.910 1.610 2 0.447

Fall to lower level 1–2 0.399 15.608 6 0.016a

2 0.910 1.612 2 0.447

Fall-protection system 1–2 0.358 17.453 6 0.008a

2 0.877 2.228 2 0.328

Struck-by 1–2 0.374 16.700 6 0.010a

2 0.801 3.774 2 0.151

Housekeeping 1–2 0.377 16.594 6 0.011a

2 0.969 0.543 2 0.762

All hazard types 1–2 0.423 14.627 6 0.023a

2 0.916 1.488 2 0.475
ap ≤ 0.05.
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HII groups—ΛðWilks’LambdaÞ¼ 0.42, χ2ð6Þ¼ 14.90, p¼ 0.02<
0.1—but removing the first function showed that the second
function cannot significantly discriminate between the HII
groups—ΛðWilks’LambdaÞ¼ 0.91,χ2ð2Þ ¼ 1.61,p ¼ 0.45 > 0.1
(Table 5). The results for the other types of hazards can be
interpreted in a similar fashion.

The standard coefficients of the canonical functions are shown
in Table 6. The distribution of the scores from each function is
standardized to have a mean of 0 and a standard deviation of 1.
Comparing coefficient weights across variates illuminates the rel-
ative importance of each eye-movement metric in explaining
“group separation” (differences in levels of hazard identification
skills) while statistically controlling for correlations among all
the dependent variables. For different types of hazards (i.e., AOIs),
the standardized coefficient for fixation count (ZFixation Count) in the
first function is greater in magnitude than the coefficients for the
two other variables. Thus, fixation count will have the greatest im-
pact of the three variables on the first discriminant score for differ-
ent types of hazards. However, for the second function, fixation
count has the greatest magnitude in ladder-related hazards only.
Run count is the dominant eye-tracking metric in the second func-
tion for fall to lower level, fall-protection system, struck-by, and all
hazard types, and dwell-time percentage has the largest magnitude
in the second function for housekeeping hazards.

The discriminant score equation for each function can be formed
on the basis of the standardized coefficients from Table 6. These
discriminant functions can be used to calculate the discriminant
score—as a predictor of hazard identification skills—for a given
worker to predict HII group membership. The discriminant score
equations for the different types of hazards are presented here.
• Ladder-related hazards:

Discriminant score1 ¼ 1.133×ZL−Dwell% þ 1.142×ZL−RunCount
− 1.722×ZL−FixationCount

Discriminant score2 ¼ 0.491×ZL−Dwell% − 0.587×ZL−RunCount
þ 1.017× ZL−FixationCount

• Fall-to-lower-level–related hazards:

Discriminantscore1¼1.140×ZFL−Dwell%þ0.905×ZFL−RunCount
−1.823×ZFL−FixationCount

Discriminantscore2¼0.471×ZFL−Dwell%þ0.953×ZFL−RunCount
−0.187×ZFL−FixationCount

• Fall-protection-system–related hazards:

Discriminant score1¼−0.115×ZFP−Dwell%−1.800

×ZFP−RunCountþ2.413×ZFP−FixationCount

Discriminant score2¼0.030× ZFP−Dwell%þ1.867

× ZFP−RunCount−1.036× ZFP−FixationCount

• Struck-by hazards:

Discriminant score1 ¼ −0.285× ZST−Dwell% − 1.156

× ZST−RunCount þ 1.931×ZST−FixationCount

Discriminant score2 ¼−0.795×ZST−Dwell%þ1.416

×ZST−RunCount−0.464×ZST−FixationCount

• Housekeeping hazards:

Discriminant score1¼−0.152×ZH−Dwell%þ0.390×ZH−RunCount
þ0.771×ZH−FixationCount

Discriminant score2 ¼ 1.004×ZH−Dwell%−0.507×ZH−RunCount
þ0.040×ZH−FixationCount

• All hazard types:

Discriminant score1¼−0.475×ZA−Dwell%−0.998×ZA−RunCount
þ1.634×ZA−FixationCount

Discriminant score2 ¼ 0.583×ZA−Dwell%þ 1.542×ZA−RunCount
− 0.695×ZA−FixationCount

By inserting the actual value of workers’ eye movements into
canonical functions, one can calculate the mean score (centroid)
for each HII group (low, medium, and high). The resulting centroids
for each HII group are shown in Table 7. Centroids are the mean of
the discriminant scores for each HII group and can be used to estab-
lish the cutoff points for classifying constructionworkers on the basis
of their hazard identification skills. To better comprehend differen-
ces, a visual representation of the groups’ centroids (vector ofmeans)
on the two canonical functions formed by considering discrimina-
tion weights are shown in Fig. 3. The first canonical function can
discriminate workers with high hazard-identification skills from
workers with medium and low hazard-identification skills (probably
at-risk workers) across all types of hazards, whereas the second
function does not differentiate any HII groups from others.

The classification results, which include the percent of sub-
jects classified correctly, are summarized in Table 8. As far as
classification accuracies for low, medium, and high HII groups
are concerned, the resubstitution values show what percentages
of the construction workers were correctly classified into HII
groups (group membership) by discriminant scores for each hazard

Table 6. Standardized Canonical Discriminant Function Coefficients

Source of hazard
Eye-movement

metrics

Function

1 2

Ladder Dwell % 1.133 0.491
Fixation count −1.722 1.017
Run count 1.142 −0.587

Fall to lower level Dwell % 1.140 0.471
Fixation count −1.823 −0.187
Run count 0.905 0.953

Fall-protection system Dwell % −0.115 0.030
Fixation count 2.413 −1.036
Run count −1.800 1.867

Struck-by Dwell % −0.285 −0.795
Fixation count 1.931 −0.464
Run count −1.156 1.416

Housekeeping Dwell % −0.152 1.004
Fixation count 0.771 0.040
Run count 0.390 −0.507

All hazard types Dwell% −0.475 0.583
Fixation count 1.634 −0.695
Run count −0.998 1.542
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type. Fall-to-lower-level and all types of hazards had the smallest
classification error, and ladder had the largest classification error
(Table 8). As expected, cross-validation reduced the number of
grouped cases that were correctly classified. The largest difference
between the resubstitution and cross-validated approach related

to fall-to-lower-level, and the smallest difference related to fall-
protection systems. These classification results demonstrate that
the discriminant scores perform better than chance (33.3% of sam-
ples in data are expected to be correctly classified by chance, re-
gardless of classification functions) and are useful for classifying
workers on the basis of their hazard identification skills. As the
Kappa coefficient value shows in Table 8, most of the functions
have moderate accuracy (kappa 0.41–0.6), except ladder and fall-
protection functions, which showed fair accuracy (kappa 0.21–
0.4) in prediction. Such outcomes demonstrate the potential of
eye-tracking technology to measure hazard identification skill of
workers.

Because one of the main objectives of this study was to use
eye-movement metrics to identify at-risk workers who are placed
in the low and medium hazard-identification group classification,
accuracies for these two groups of workers were also calculated. As
Table 8 demonstrates, using the resubstitution approach, the dis-
criminant scores predicted group membership correctly for more
than 80% of the individuals in the sample that is much better than
chance. Because there are 14 at-risk subjects (out of 21) in the sam-
ple, 66.6% of samples in the data are expected to be correctly clas-
sified by chance, regardless of classification functions. Using the
leave-one-out technique, the functions correctly classified more
than 76% of the workers within a new sample. Finally, Kappa was
run to determine the proportion of membership accuracy over and
above chance agreement. There were moderate accuracies (kappa
0.41–0.6) in prediction of group membership (at-risk group and
high HII group) for ladder-, fall-to-lower-level–, and fall protec-
tion system–related hazards. However, classification functions of
housekeeping, struck-by, and all hazard types indicated substantial
accuracy (kappa 0.61–0.8) in detecting at-risk workers. Thus, the

Table 7. Hazard Identification Index Group Centroids for Each Function

Source of hazard HII groups

Function

1 2

Ladder Low 0.812 0.339
Medium 0.609 −0.373
High −1.420 0.034

Fall to lower level Low 0.579 −0.380
Medium 0.890 0.330
High −1.469 0.050

Fall-protection system Low −0.536 −0.461
Medium −1.015 0.375
High 1.551 0.086

Struck-by Low −0.462 −0.616
Medium −0.911 0.495
High 1.373 0.121

Housekeeping Low −0.832 0.203
Medium −0.808 −0.205
High 1.641 0.002

All hazard types Low −0.611 −0.357
Medium −0.799 0.327
High 1.410 0.030

Fig. 3. Combined group plots for canonical discriminant functions: (a) ladder hazards; (b) fall-to-lower-level hazards; (c) fall-protection-system
hazards; (d) struck-by hazards; (e) housekeeping hazards; (f) all hazard types
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classification functions (discriminant scores) from this study can be
used to accurately detect at-risk workers of additional samples for
which their hazard identification is unknown. Furthermore, the
results of the classification accuracy assessment demonstrate that
discriminant functions are better in classifying workers into two
groups of at-risk and high HII, than in classifying them into low,
medium, and high HII groups.

Discussion

Impact of Hazard Identification Skills on Visual
Attention

As shown previously, themultivariate analyses indicated that hazard
identification skills significantly impact workers’visual search strat-
egies when they search for hazards related to ladders, falls to lower
levels, fall-protection systems, struck-by situations, and housekeep-
ing. Workers with higher hazard-identification skills had lower
dwell-time percentages on ladder-related hazards. Higher dwell-
time percentages among workers with low hazard-identification
skills may be explained by the fact that they are less confident in
determining whether an existing ladder in a scene contains any haz-
ard, so they dwell longer to process the information in the scene. The
results showed that workers with low hazard-identification skills
spent more time looking at the ladder instead of searching for other
hazards in a scene. It can be inferred that by distributing attention
throughout the entire scene, skilled workers are able to identify haz-
ards better. Therefore, they are more likely to respond properly and
maintain situational awareness in a dynamic construction site.

Workers with higher hazard-identification skills had higher
fixation counts and less dwell time on fall-to-lower-level hazards
and higher fixation counts, less dwell time, and higher run counts
on fall-protection systems, struck-by situations, housekeeping haz-
ards, and all hazardous areas. Because higher fixation and run counts
are indicators of AOIs’ importance and complexity (Holmqvist
et al. 2011), these results provide empirical evidence that workers
with higher hazard-identification abilities spent less time looking
at hazards despite the fact that they fixated on hazards. This means
that they scanned scenes more quickly, processed hazards more
quickly, and are far better at identifying and perceiving the risk of
a hazardous situation. In contrast with previous methods of measur-
ing hazard identification skills using subjective or self-report tech-
niques, this project’s outcomes demonstrate that tracking workers’
eye movements can be a reliable method of measuring their hazard
identification skills.

Eye-Movement Metrics as Predictors of Hazard
Identification Skills and Human Error

As mentioned previously, the fundamental concept underlying
discriminant function analysis is determining whether a hazard

identification group differs with regard to a linear combination
of eye-movement metrics, and then the applying those metrics
to predict group membership. Therefore, another question that this
study addressed was, which eye-movement metrics are the best for
predicting workers’ hazard-identification capabilities when they
search for different kinds of hazards. As shown previously, con-
struction workers’ visual search strategy can be better explained in
a multivariate construct of fixation count, run count, and dwell-time
percentages. Among all eye-movement metrics, fixation count had
the largest standardized coefficient for all functions, which implies
that it uniquely contributes to discriminating workers with high
hazard-identification skills from others. Because discriminant func-
tion analysis is similar to regression, these functions can be used to
predict workers’ hazard-identification capabilities. In other words,
by calculating discriminant scores using workers’ eye movements,
one can classify workers into different groups on the basis of their
hazard identification skills. Additionally, because failure to identify
hazards and attentional failure are the main contributors to human
errors that can cause injury, to improve construction safety, targeted
training can be provided to workers with low and medium hazard-
identification skills (at-risk workers) to prevent them from commit-
ting safety errors.

Practical Applications

Although the methodology of this paper corresponds with a lab test
that used a sophisticated piece of technology, the theoretical ad-
vancements of this study yield short-term and long-term gains. In
the short term, safety managers can use the findings herein to iden-
tify at-risk construction workers (with low and medium hazard-
identification skills) by conducting experiments of this type, and
then provide directed training to target identified errors or measure
training effectiveness by evaluating workers’ gaze plots. Such eye-
tracking experiments—whether conducted using a remote eye-
tracker, such as EyeLink II, or a mobile eye-tracker, such as the
Tobii Pro Glass 2 (Tobii, Stockholm, Sweden)—can be designed to
require workers to search for hazards in a limited number of pic-
tures while their eye-movement data is collected. Then, the results
can be analyzed using two distinct approaches. In the first and
simpler approach, safety managers can develop confidence inter-
vals around the mean of the eye-movement metrics that were
significantly different between workers with high and low
hazard-identification skills (the result of post hoc analysis). There-
after, the confidence interval developed can be used as a baseline for
classifying workers on the basis of their hazard identification
skills. If the eye-tracking metrics are in the confidence interval of
low hazard-identification skills, one may conclude that the worker
is at higher risk of missing hazards during work. To pro-
vide an example, the research team provides confidence inter-
vals for the different eye-movement metrics that this study found
to be significantly different between workers with low and high

Table 8. Classification Accuracy for Different Type of Hazards

Type of hazard

Low, medium, and high HII groups At-risk (low and medium) and high HII groups

Resubstitution Cross-validated Kappa coefficient Resubstitution Cross-validated Kappa coefficient

Ladder 52.4 42.9 0.29 81.0 81.0 0.60
Fall to lower level 66.7 42.9 0.50 81.0 76.2 0.57
Fall-protection system 57.1 52.4 0.36 81.0 81.0 0.57
Housekeeping 61.9 42.9 0.43 85.7 81.0 0.69
Struck-by 61.9 47.6 0.43 81.0 76.2 0.60
All hazard types 66.7 52.4 0.50 85.7 81.0 0.67

Note: Resubstitution and cross-validated values are shown as percentages.
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hazard-identification skills (Table 9). Although this approach is sim-
ple and straightforward, it does not consider the multivariate nature
of eye-movement metrics in determining individuals’ visual search
strategies. To address this limitation, the second approach is to use
the discriminant functions presented previously. These functions re-
present linear combinations of the eye-movement metrics that can
best discriminate theHII groups for each type of hazard. By inserting
the value of workers’ eye movements in the discriminant function,
one can calculate the discriminant score, which represents the
degree of membership of each person in the high or low hazard-
identification group (cut-off scores for groupmembership are shown
in Table 9). Workers who are placed in the low and medium hazard-
identification group can be considered at-risk workers, and they can
be assigned to activities that do not include the types of hazards they
need further training on.

Furthermore, the results of these eye-tracking experiments can
also be used to pinpoint required safety training (Hasanzadeh et al.
2017c). For example, if most of the workers are missing hazards
related to fall-protection systems, safety managers can provide
training related to these specific hazards. Delivering safety training
in this way will save significant amounts of time and costs for con-
tractors. Additionally, because tracking eye movements can provide
information regarding construction workers’ hazard awareness, it
can be used as a method for measuring training effectiveness. Work-
ers can participate in eye-tracking experiments before and after re-
ceiving training, and by comparing their eye movements and gaze
plots, one can determine whether the training was effective enough
to improve their hazard identification and visual search strategies.

As far as long-term applications are concerned, this work will
lay the foundation for the improvement of future personal protec-
tive equipment (e.g., eye trackers can be installed in safety glasses).
As the technology advances and the price of this equipment de-
creases, construction workers will be able to use these eye trackers
on-site. Such a reality will allow researchers and safety managers to
measure construction workers’ situation awareness in real time, a
novel and long-term benefit to construction safety. As one can see,

measuring eye movements as an indicator of visual attention
provides valuable information about hazard-identification skills
and, consequently, the potentially unsafe behavior of construction
workers.

Conclusion

Attention has been found to play a significant role in causing hu-
man error (Schmidt 1975; Lee et al. 2013; Manchi et al. 2013;
Preischl and Hellmich 2013) such that a better understanding of
attention as it relates to construction will elucidate the more pre-
dictable varieties of human fallibility and allow for the creation of
strategies to avoid human errors (Busse 2002; Sun et al. 2012).
Whereas previous studies have shown that eye movements and fix-
ations can be reliable indicators of attention, there are few studies
that have attempted to empirically understand the role of attention
in causing human errors in construction.

To address this gap, this research team designed an eye-tracking
experiment to evaluate the impact of workers’ hazard-identification
skills on their visual attention (illustrated via their eye movements).
The results of this study demonstrated that eye movements can be
used as precursors of workers’ safety errors—especially those that
lead to accidents in construction, such as failure to identify a haz-
ard. This study’s findings provide a proof of concept that math-
ematical models of eye-movement metrics can be developed to
maximally discriminate workers on the basis of their hazard iden-
tification skills. The accurate identification of at-risk workers not
only contributes to significant accident reduction by determining
the precursors of unsafe behavior, but will also provide a critical
validation measure to confirm the effectiveness of training pro-
grams in enhancing workers’ hazard-identification skills and im-
proving their visual search strategies.

This study’s contribution to academia and practice is significant;
however, there are some limitations that should be mentioned. First,
all participants were from the state of Nebraska, which limits the

Table 9. Confidence Interval for Identifying Workers with Low and High Hazard-Identification Skills

Hazard
Eye-movement

metric Grouping Mean
Standard
error

90% confidence interval

Lower
bound

Upper
bound

Ladder Dwell % Low 0.119 0.007 0.108 0.131
High 0.094 0.007 0.083 0.106

Fall to lower level Fix count Low 9.096 0.841 7.638 10.555
High 12.030 0.841 10.571 13.489

Fall-protection system Fix count Low 2.942 0.313 2.399 3.486
High 4.489 0.313 3.946 5.033

Run count Low 1.675 0.155 1.407 1.943
High 2.216 0.155 1.948 2.484

Housekeeping Fix count Low 2.838 0.400 2.144 3.532
High 5.248 0.400 4.553 5.942

Run count Low 1.571 0.142 1.326 1.817
High 2.381 0.142 2.135 2.627

Struck-by Fix count Low 2.615 0.293 2.107 3.123
High 3.896 0.293 3.388 4.404

All hazard types Fix count Low 3.835 0.288 3.336 4.334
High 5.266 0.288 4.767 5.766

Run count Low 1.940 0.150 1.680 2.200
High 2.447 0.150 2.187 2.706
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external validity of the study. To address this limitation, future stud-
ies should be conducted in other regions, and should recruit a larger
number of workers with diverse backgrounds. Second, using static
images of construction sites might not demonstrate the challenges
that workers face in identifying hazards in dynamic construction
sites. Future studies should be conducted using a mobile eye-
tracker in real-world construction sites. Furthermore, among all
cognitive processes, this study only focused on attention. However,
other cognitive processes, such as working memory, can also im-
pact workers’ hazard-identification capabilities. Future studies
should be conducted to measure the impact of working memory
on hazard identification and the unsafe behavior of construction
workers. Nevertheless, this study is unique in utilizing eye-tracking
technology to detect at-risk workers, and the results can benefit
both academia and practice.
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