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Abstract 

Data security is one of the most important concerns of manufacturing entities. Therefore, 
enterprises hesitate to share data with third parties for building predictive and prognostic 
models. In such scenario, building comprehensive models for predicting asset failures is 
challenging given data from a single enterprise would not include required variety of operation 
regimes and failure modes. In this article, we present an encrypted and federated framework for 
training diagnosis and prognosis models that would not require sharing data. The proposed 
framework guarantees the privacy of the data while generates comprehensive models that 
leverage the variety of multiple enterprises operations.  

 

1 Introduction 

The advent of the Internet of Things (IoT) and initiatives such as Industry 4.0 and Cyber-physical 
systems have directed enterprises to gather and process more data. Moreover, the increasing 
availability of computing power and advancement of data analysis techniques lead into 
development and implementation of advanced predictive and prognostics models in 
manufacturing settings [1]. 

Data-driven Prognostics and Health Management (PHM) models require a variety of asset and 
fleet-level data to generate reliable outputs [2]. Despite the ever growing availability of sensory 
data from machines, the volume of “event” data per asset that represents failures is low due to 
the not-to-fail tendency of machines; moreover, due to operational variation, machines do not 
present all degradation and failure patterns in their lifetime (Figure 1). Therefore, training a 
comprehensive PHM model that is capable of detecting all failure patterns require high volume 
and variety datasets. Preparing such dataset from only one enterprise is difficult given the 
number of assets and operational condition per enterprise is limited.  

 



 
Figure 1 - Similar instances of a machine experience various failure patterns during their operation life. A comprehensive PHM 

model requires knowledge sharing between assets and organizations to perform properly.  

One plausible solution for building comprehensive PHM models is aggregating operational data 
from multiple enterprises. While this approach increases the probability of accessing a wider 
range of failure modes and degradation patterns, it has two major flaws: First, enterprises 
consider their operational data as trade secret. McKinsey & Company reports cyber-security and 
data ownership are two major barriers for manufacturing companies toward working with third-
party providers such as scientists [3]. This data privacy concern has created significant limitations 
in the possibility of gathering inter-organizational datasets for training PHM models.  

Second, the data is currently being stored in silos around the world. Transferring or physically 
shipping these datasets to a central processing hub (e.g. a cloud server) is not an efficient 
solution. Even recent advancements in cloud computing and the use of cloud-based solutions has 
merely addressed the concern of centralized data storage, and has led to the emergence of fog[4] 
and edge computing [5] solutions. In this article, we present a novel approach for decentralizing 
PHM by introducing Encrypted Federated PHM framework.  

 

2 Encrypted Federated PHM (EF-PHM) Framework  

The primary objective of this article is to address the data privacy and security concerns in 
Industry4.0 environments by proposing a framework that enables training PHM models without 
sharing and directly accessing the data. We propose a homomorphically encrypted[6] federated 
[7] PHM (EF-PHM) framework that enables enterprises to leverage a comprehensive PHM model 
without sharing their data. In this section we introduce the underlying technologies for EF-PHM 
and then describe the framework. 

2.1 Underlying Technologies 

The EF-PHM framework leverages the following state of the art technologies: 

2.1.1 Federated Learning 

Federated learning enables training machine learning models on distributed clients without 
requiring the nodes to share data [7]–[9]. In such an environment, instead of gathering data from 



clients, we distribute the model among clients. In this manner, the client, which in the context of 
manufacturing is an enterprise, would receive and train the model with their local data. After 
training, the updated model properties such as weights and biases, is sent to the server for 
aggregation. After several iterations of this process, a global master model can be generated 
without directly accessing their data. 

2.1.2 Homomorphic Encryption 

Homomorphic encryption (HE) is a form of data encryption that preserves the structure of the 
message space to make arithmetic operations possible over the ciphertext [10], [11]. HE enables 
aggregation of encrypted values with basic math operations without knowing actual values. 
Although reverse engineering operational data from model parameters on complex models is 
nearly impractical, the use of homomorphic encryption in EF-PHM acts as additional privacy 
preserving measure for the model updates that are shared outside the enterprise network.  

2.1.3 Block Chain 

Using blockchain is not a necessity for EF-PHM framework but it provides an extended security 
to the inter-organization communications. A blockchain is an immutable public ledger that 
consist of series of data blocks that are connected to each other via a hash value. The hash value 
is a function of the current block contents and previous block, therefore any modification of the 
current or previous blocks of data would result in break of the chain. In 2017, Marfia and Esposti, 
introduced the use of blockchain to bring transparency in manufacturing and discussed the use 
sensory data along with blockchain for reputation tracking and as proof of local production [18]. 

 

2.2 EF-PHM Components and Operational Process 

We define three main components of the EF-PHM framework as Master Agent, Federated 
Agent, and EF-PHM Network.  

The Master Agent is a software program that independently manages the federated agents. It 
initiates model update rounds where it requests encrypted updates from a randomly ordered set 
of federated agents. Then the Master Agent, aggregates the encrypted updates and pushes the 
new model to agents.  

Federated Agents are software programs that are deployed to the enterprises. They act as the 
only bridge between the enterprise secure network and the public EF-PHM network on solely 
transfer encrypted model updates. Federated agents have the liberty of deciding if they want to 
participate in an update round initiated by the Master Agent. During each update round, 
federated agent receives an encrypted update and applies it to the local PHM model. Then it 
performs several training iterations using the local data and calculates changes to the local model 
as a result of the training. Finally, it homomorphically encrypts this update and securely sends it 
to the Master Agent for aggregation 

The EF-PHM network is the communication infrastructure for the framework which could be 
over the Internet or a public Blockchain. These components and their roles are visualized in Figure 
2. 



 
Figure 2 Overall design of the federated learning PHM 

 

3 EF-PHM in 5C CPS Architecture 

In 2015, we introduced a five level (5C) architecture for Cyber-Physical Systems [12]. EF-PHM 
complements 5C and provides infrastructure for implementing it in practice. In this section we 
briefly discuss how EF-PHM impacts each level of the 5C architecture:  

• Connection:  The proposed framework promotes Edge Computing enhances the network 
communication by significantly reducing the payload size. 

• Conversion: with the decentralized nature of the proposed framework, data to information 
conversion would occur at the edge. It requires on premise computation which enables 
enterprises to keep their data within their secure network.  

• Cyber: EF-PHM carries out the secure knowledge sharing, and aggregation required for cyber-
agents at the cyber level of the 5C architecture in a decentralized manner. With the proposed 
encrypted differential updates, these inter-organization communications are secure against 
cyber-attacks.  

• Cognition: EF-PHM enable digital twins [12] to improve their self-awareness given the extended 
shared knowledge between enterprises. 



• Configuration: the proposed framework has potential to be used for configuration sharing 
amongst the participants. In the same fashion of learning the failure modes through 
differential model updates, optimal configuration realization is also possible using this 
framework.  

 

Figure 3 EF-PHM Framework in 5C CPS Architecture 

4 Discussion and Integration Challenges  

Although the EF-PHM framework enables implementation of cross-enterprise PHM solutions, 
its real-world application imposes challenges. First, for the framework to be viable, multiple 
enterprises should participate, which requires convincing of leadership of enterprises as 
discussed in section 5. Second, participation of multiple enterprises does not necessarily result 
in high performing framework; in the cases that one or more faults are dominant across all 
participating enterprises and/or the dataset lacks one or more failure modes, the resulted PHM 
model would not perform as expected. Third is addressing variation in working regimes; in 
traditional PHM separate models can handle various working regimes. In the proposed setting, 
identifying working regimes is more challenging given it requires sharing the data among 



enterprises. In this case, usage of more complex models (such as deep neural networks) is a 
potential solution.   

 

5 Business Strategy - Game Theory Analysis 

We acknowledge that the EF-PHM is a new framework and its practicality requires enterprise 
managers to make an unprecedented decision to implement. To give informed support to this 
decision, we model the situation using game theory and introduce a 2-player game in which 
players have two options: participating in EF-PHM (P) or not participating (NP). In the NP case, 
we assume that the enterprise is engaged in the conventional data analysis practice and 
therefore we omitted the fixed implementation costs of data acquisition, handling, and 
processing from both P and NP cases. For simplicity, we assume the new knowledge each 
enterprise provides (𝑥) is equal and mutually exclusive from what others offer, therefore, the 
total extent of shared knowledge has linear relationship with number of participating enterprises 
(𝑛). By this definition, the participating players earn the value of 𝑦	 = 	𝑛 × 𝑥. For the non-
participating player, we define C as the cost of sharing data with third parties for building PHM 
models, therefore, their final earned value is 𝑦!"# = 	𝑥	 − 	𝐶. We also introduce Switching Cost 
(S) accounting for resistance to change. Therefore, the final earned value for participating parties 
is 𝑦"# 	= (𝑛 × 𝑥)	– 	𝑆. 

This game theory analysis suggests that the dominant strategy is dependent on number of 
participants (n) and their switching costs (S). With very low participation (very small n) and high 
switching cost due to uncertainty, the dominant strategy falls on NP-NP. As the number of 
participants grows, the total payoff increases, and the switching cost reduces, therefore 
participating in EF-PHM will become the dominant strategy for all players and the (P-P) is the 
equilibrium. This model can yield valuable competitive insights, improves internal 
alignment around the decision and maximizes strategic utility of the EF-PHM framework.   

Table 1 EF-PHM Payoff matrix 

 P NP 

P (𝑛 × 𝑥) − 𝑆	, (𝑛 × 𝑥) − 𝑆 .(𝑛 − 1) × 𝑥0 − 𝑆, 𝑥 − 𝐶 

NP 𝑥 − 𝐶, .(𝑛 − 1) × 𝑥0 − 𝑆 𝑥 − 𝐶, 𝑥 − 𝐶 

 

6 Conclusions 

In this article we introduced EF-PHM framework that facilitates cross-enterprise PHM model 
training, enables development of comprehensive PHM models, and improves the practicality of 
the 5C CPS architecture that we previously published in 2015. We discussed its integration 
challenges and used game theory analysis to further review business implications. The future 
work will include designing a solution for automatically determining the working regime and 
sharing it among the network agents without violating privacy;  
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