Abstract
A Barak-Erdős graph is a directed acyclic version of an Erdős-Rényi graph. It is obtained by performing independent bond percolation with parameter p on the complete graph with vertices $\{1, \ldots, n\}$, where the edge between two vertices $i < j$ is directed from i to j. The length of the longest path in this graph grows linearly with the number of vertices, at rate $C(p)$. In this article, we use a coupling between Barak-Erdős graphs and infinite-bin models to provide explicit estimates on $C(p)$. For $p > 1/2$, we prove the analyticity of $C(p)$ and we compute its power series expansion. We also show that $C(p)$ has a first derivative but no second derivative at $p = 0$, providing a two-term asymptotic expansion using a coupling with branching random walks.

1 Introduction
Random graphs and interacting particle systems have been two active fields of research in probability in the past decades. In 2003, Foss and Konstantopoulos [11] introduced a new interacting particle system called the infinite-bin model and established a correspondence between a certain class of infinite-bin models and Barak-Erdős random graphs, which are a directed acyclic version of Erdős-Rényi graphs.

In this article, we study the speed at which the front of an infinite-bin model drifts to infinity. These results are applied to obtain a fine asymptotic of the length of the longest path in a Barak-Erdős graph. In the remainder of the introduction, we first describe Barak-Erdős graphs, then infinite-bin models. We finally state our main results.

1.1 Barak-Erdős graphs
Barak and Erdős introduced in [3] the following model of a random directed graph with vertex set $\{1, \ldots, n\}$ (which we refer to as Barak-Erdős graphs from now on) : for each pair of vertices $i < j$, add an edge directed from i to j with probability p, independently for each pair. They were interested in the maximal size of strongly independent sets in such graphs.

However, one of the most widely studied properties of Barak-Erdős graphs has been the length of its longest path. It has applications to mathematical ecology (food chains) [9, 21], performance evaluation of computer systems (speed of parallel processes) [14, 15] and queuing theory (stability of queues) [11].
Newman [20] studied the length of the longest path in Barak-Erdős graphs in several settings, when the edge probability p is constant (dense case), but also when it is of the form c_n/n with $c_n = o(n)$ (sparse case). In the dense case, he proved that when n gets large, the length of the longest path $L_n(p)$ grows linearly with n in the first-order approximation:

$$\lim_{n \to \infty} \frac{L_n(p)}{n} = C(p) \text{ a.s.,}$$

where the linear growth rate C is a function of p. We plot in Figure 1 an approximation of $C(p)$.

![Figure 1: Plot of a simulation of $C(p)$, using 600000 iterations of the infinite-bin model, for values of p that are integer multiples of 0.02.](image)

Newman proved that the function C is continuous and computed its derivative at $p = 0$. Foss and Konstantopoulos [11] studied Barak-Erdős graphs under the name of “stochastic ordered graphs” and provided upper and lower bounds for C, obtaining in particular that

$$C(1 - q) = 1 - q + q^2 - 3q^3 + 7q^4 + O(q^5) \text{ when } q \to 0,$$

where $q = 1 - p$ denotes the probability of the absence of an edge.

Denisov, Foss and Konstantopoulos [10] introduced the more general model of a directed slab graph and proved a law of large numbers and a central limit theorem for the length of its longest path. Konstantopoulos and Trinajstić [17] looked at a directed random graph with vertices in \mathbb{Z}^2 (instead of \mathbb{Z} for the infinite version of Barak-Erdős graphs) and identified fluctuations following the Tracy-Widom distribution. Foss, Martin and Schmidt [12] added to the original Barak-Erdős model random edge lengths, in which case the problem of the longest path can be reformulated as a last-passage percolation question. Gelene, Nelson, Philips and Tantawi [14] studied a similar problem, but with random weights on the vertices rather than on the edges.

The question of the longest path in Erdős-Rényi graphs, which are the undirected version of Barak-Erdős graphs, was studied in the sparse case by Ajtai, Komlós and Szemerédi [1].

2
1.2 The infinite-bin model

Foss and Konstantopoulos introduced the infinite-bin model in [11] as an interacting particle system which, for a right choice of parameters, gives information about the growth rate $C(p)$ of the longest path in Barak-Erdős graphs. Consider a set of bins indexed by the set of integers \mathbb{Z}. Each bin may contain any number of balls, finite or infinite. A configuration of balls in bins is called *admissible* if the following two conditions hold:

1. there exists $m \in \mathbb{Z}$ such that every bin indexed by $n > m$ is empty;
2. the total number of balls in the configuration is infinite.

The largest integer m indexing a nonempty bin is called the position of the *front*. From now on, all configurations will implicitly be assumed to be admissible.

Given an integer $k \geq 1$, we define the *move of type k* as a map Φ_k from the set of configurations to itself. Given an initial configuration X, $\Phi_k(X)$ is obtained by adding one ball to the bin of index $b_k + 1$, where b_k is the index of the bin containing the k-th ball of X (the balls are counted from right to left, starting from the rightmost nonempty bin).

![Diagram](image)

(a) A configuration X, the numbers inside the balls indicate how they are counted from right to left.

(b) The configuration $\Phi_5(X)$.

(c) The configuration $\Phi_3(X)$.

Figure 2: Action of two moves on a configuration.

Given a probability distribution μ on the set of positive integers and an initial configuration X_0, one defines the Markovian evolution of the infinite-bin model with distribution μ (or IBM(μ) for short) as the following stochastic recursive sequence:

$$X_{n+1} = \Phi_{\xi_{n+1}}(X_n) \text{ for } n \geq 0,$$

where $(\xi_n)_{n \geq 1}$ is an i.i.d. sequence distributed like μ. We prove in Theorem 1.1 that the front moves to the right at a speed which tends a.s. to a constant limit v_μ. We call v_μ the *speed* of the IBM(μ). Note that the model defined
in [11] was slightly more general, allowing $(\xi_n)_{n \geq 1}$ to be a stationary-ergodic sequence. We also do not adopt their convention of shifting the indexing of the bins which forces the front to always be at position 0.

Foss and Konstantopoulos [11] proved that if μ_p was the geometric distribution of parameter p then $v_{\mu_p} = C(p)$, where $C(p)$ is the growth rate of the length of the longest path in Barak-Erdős graphs with edge probability p. They also proved, for distributions μ with finite mean verifying $\mu(\{1\}) > 0$, the existence of renovations events, which yields a functional law of large numbers and central limit theorem for the IBM(μ). Based on a coupling result for the infinite-bin model obtained by Chernysh and Ramassamy [8], Foss and Zachary [13] managed to remove the condition $\mu(\{1\}) > 0$ required by [11] to obtain renovation events.

Aldous and Pitman [2] had already studied a special case of the infinite-bin model, namely what happens to the speed of the front when μ is the uniform distribution on $\{1, \ldots, n\}$, in the limit when n goes to infinity. They were motivated by an application to the running time of local improvement algorithms defined by Tovey [23].

1.3 Main results

We now state the main results proved in this paper. The first result is that in every infinite-bin model, the front moves at linear speed. Foss and Konstantopoulos [11] had derived a special case of this result, when the distribution μ has finite expectation.

Theorem 1.1. Let (X_n) be an infinite-bin model with distribution μ. For any $n \in \mathbb{N}$, we write M_n for the position of the front of X_n. There exists $v_\mu \in [0, 1]$ such that

$$\lim_{n \to +\infty} \frac{M_n}{n} = v_\mu \quad a.s.$$

The next two results concern the function C associated with Barak-Erdős graphs. Firstly we prove that for p large enough (i.e. when the Barak-Erdős graph is dense enough), the function C is analytic and we obtain an explicit expression for the power series expansion of $C(p)$ centered at 1. Secondly we provide the first two terms of the asymptotic expansion of $C(p)$ as $p \to 0$.

We denote by \mathbb{N} the set of positive integers, and by A the set of words on the alphabet \mathbb{N}, i.e. the set of all finite-length sequences of elements of \mathbb{N}. Given a non-empty word $\alpha \in A$, written $\alpha = (\alpha_1, \alpha_2, \ldots, \alpha_n)$ (where the α_i are the letters of α), we denote by:

$$L(\alpha) = n \quad \text{and} \quad H(\alpha) = \sum_{i=1}^{n} \alpha_i - L(\alpha),$$

the length and the height of α respectively. The empty word is denoted by \emptyset.

Fix an infinite-bin model configuration X. We define the subset \mathcal{P}_X of A as follows: a word α belongs to \mathcal{P}_X if it is non-empty, and if starting from configuration X and applying successively the moves $\Phi_{\alpha_1}, \ldots, \Phi_{\alpha_n}$, the last move Φ_{α_n} results in placing a ball in a previously empty bin.

Given a word $\alpha \in A$ which is not the empty word, we set $\overline{\alpha} \in A$ to be the word obtained from α by removing the first letter (with the convention that
We define the function \(\varepsilon_X : \mathcal{A} \to \{-1, 0, 1\} \) as follows:
\[
\varepsilon_X(\alpha) = 1_{\{\alpha \in P_X\}} - 1_{\{\varepsilon \alpha \in P_X\}}.
\]

Theorem 1.2. For any infinite-bin model configuration \(X \) and \(p \in \left(\frac{1}{4}, 1 \right] \), we have
\[
C(p) = \sum_{\alpha \in \mathcal{A}} \varepsilon_X(\alpha) p^{L(\alpha)} (1 - p)^{H(\alpha)}.
\]

(1.1)

Remark 1.3. Given any probability distribution \(\mu \) on \(\mathbb{N} \), we can define the weight of the word \(\alpha = (\alpha_1, \ldots, \alpha_n) \) by
\[
W_\mu(\alpha) = \prod_{i=1}^{n} \mu(\{\alpha_i\}).
\]

In particular, \(W_\mu(\alpha) = p^{L(\alpha)} (1 - p)^{H(\alpha)} \). Then Theorem 1.2 admits the following generalization, giving a series expansion of the speed \(v_\mu \) of the IBM(\(\mu \)):
\[
v_\mu = \sum_{\alpha \in \mathcal{A}} \varepsilon_X(\alpha) W_\mu(\alpha),
\]

provided the series on the right-hand side converges.

We deduce from Theorem 1.2 the following analyticity result for \(C(p) \).

Theorem 1.4. The function \(C \) is analytic on \(\left(\frac{1}{2}, 1 \right] \) and admits a power series expansion centered at 1 with integer coefficients. For any infinite-bin model configuration \(X \), we denote by
\[
a_k = \sum_{\alpha \in \mathcal{A} : H(\alpha) \leq k, L(\alpha) \leq k+1} \varepsilon_X(\alpha) (-1)^{k - H(\alpha)} \binom{L(\alpha)}{k - H(\alpha)},
\]

and have \(C(p) = \sum_{k \geq 0} a_k (1 - p)^k \) for any \(p \in \left(\frac{1}{2}, 1 \right] \).

Remark 1.5. Using (1.3), it is possible to explicitly compute as many coefficients of the power series expansion as desired, by picking a configuration \(X \) and computing quantities of the form \(\varepsilon_X(\alpha) \) for finitely many words \(\alpha \in \mathcal{A} \). For example, we observe that as \(q \to 0 \),
\[
C(1 - q) = 1 - q + q^2 - 3q^3 + 7q^4 - 15q^5 + 29q^6 - 54q^7 + 102q^8 + O(q^9).
\]

Now, turning to the asymptotic behaviour of \(C(p) \) as \(p \to 0 \), i.e. for sparse Barak-Erdős graphs, we improve the result obtained by Newman [20].

Theorem 1.6. We have
\[
C(p) = ep - \frac{p \pi^2 e}{2(\log p)^2} + o(p(\log p)^{-2}).
\]

This result is obtained by coupling the infinite-bin model with a branching random walks with selection. Observe that this result implies that \(C(p) \) does not have a finite second derivative at \(p = 0 \). Assuming that a conjecture of Brunet and Derrida [7] on the speed of a branching random walk with selection holds, the next term in the asymptotic expansion should be given by \(\frac{4 \pi^2 p \log(-\log p)}{(-\log p)^3} \).
Organisation of the paper. We introduce notation to study the infinite-bin model in Section 2, as well as an increasing coupling used in the rest of the article. In Section 3, we provide an explicit formula for the speed of an infinite-bin model with a measure of finite support. This result is used to prove Theorem 1.1 in the general case. We review in Section 4 the Foss-Konstantopoulos coupling between Barak-Erdős graphs and the infinite-bin model and use it to provide a sequence of upper and lower bounds converging exponentially fast to $C(p)$. Using this coupling again, we prove Theorem 1.2 and Theorem 1.4 in Section 5 and Theorem 1.6 in Section 6.

2 Basic properties of the infinite-bin model

We write \mathbb{N} for the set of positive integers, $\mathbb{N} = \mathbb{N} \cup \{+\infty\}$, \mathbb{Z}_+ for the set of non-negative integers and $\mathbb{Z}_+ = \mathbb{Z}_+ \cup \{+\infty\}$. We denote by $S = \{X \in (\mathbb{Z}_+)^\mathbb{Z} : \forall j \in \mathbb{Z}, \ X(j) = +\infty \Rightarrow X(j-1) = +\infty \ \text{and} \ X(j) = 0 \Rightarrow X(j+1) = 0\}$ the set of admissible configurations for an infinite-bin model. For any $X \in S$ and $k \in \mathbb{Z}$, we call $X(k)$ the number of balls at position k in the configuration X. Observe that in the set of admissible configurations, every bin to the left of a bin with an infinite number of balls also have an infinite number of balls, and the set of non-empty bins is connected on \mathbb{Z}. In particular, for any $X \in S$, there exists a unique integer $m \in \mathbb{Z}$ such that $X(m) \neq 0$ and $X(j) = 0$ for all $j > m$. The integer m is called the front of the configuration.

The reason for these restrictions is that the dynamic of an infinite-bin model does not affect bins to the left of a bin with an infinite number of balls, and does not create balls in a bin at distance greater than 1 from a non-empty bin. However, the results of this article can easily be generalized to infinite-bin models with a starting configuration belonging to $S^0 = \{X \in (\mathbb{Z}_+)^\mathbb{Z} : \lim_{k \to +\infty} X(k) = 0 \ \text{and} \ \sum_{k \in \mathbb{Z}} X(k) = +\infty\}$, see e.g. Remark 3.7.

Let $X \in S$, $k \in \mathbb{Z}$ and $\xi \in \mathbb{N}$. We denote by

$$N(X, k) = \sum_{j=k}^{+\infty} X(j) \quad \text{and} \quad B(X, \xi) = \inf\{ j \in \mathbb{Z} : N(X, j) < \xi\}$$

the number of balls to the right of k and the leftmost position such that there are less than ξ balls to its right respectively. Note that the position of the front in the configuration X is given by $B(X, 1) - 1$. Observe that for any $X \in S$,

$$\forall 1 \leq \xi \leq \xi', \ 0 \leq B(X, \xi) - B(X, \xi') \leq \xi' - \xi.$$

(2.1)

For $\xi \in \mathbb{N}$ and $X \in S$, we set $\Phi_\xi(X) = (X(j) + 1_{\{j = B(X, \xi)\}}, j \in \mathbb{Z})$ the transformation that adds one ball to the right of the ξ-th largest ball in X. We extend the notation to allow $\xi \in \mathbb{N}$, by setting $\Phi_\infty(X) = X$. We also introduce the shift operator $\tau(X) = (X(j-1), j \in \mathbb{Z})$. We observe that τ and Φ_ξ commute, i.e.

$$\forall X \in S, \forall \xi \in \mathbb{N}, \Phi_\xi(\tau(X)) = \tau(\Phi_\xi(X)).$$

(2.2)
An infinite-bin model consists in the sequential application of randomly chosen transformations Φ_ξ, that we call move of type ξ. More precisely, let μ be a probability measure on \mathbb{N} and $(\xi_n, n \geq 1)$ be i.i.d. random variables with distribution μ. The IBM(μ) (X_n) is the Markov process on S starting from $X_0 \in S$, such that for any $n \geq 0$, $X_{n+1} = \Phi_{\xi_{n+1}}(X_n)$.

In other words, this process starts with a given configuration of balls X_0. At each time n, a new ball is added to the right of the ξ_n-th ball in the process. As for any $j \in \mathbb{Z}$, $(X_n(j), n \geq 1)$ is increasing, we denote by $X_\infty(j)$ the almost sure limit of $X_n(j)$, as $n \to +\infty$.

We introduce a partial order on S, which is compatible with the infinite-bin model dynamics: for any $X, Y \in S$, we write

$$X \preceq Y \iff \forall j \in \mathbb{Z}, N(X,j) \leq N(Y,j) \iff \forall \xi \in \mathbb{N}, B(X, \xi) \leq B(Y, \xi).$$

The functions (Φ_ξ) are monotone, increasing in X and decreasing in ξ for this partial order. More precisely

$$\forall X \preceq Y \in S, \forall 1 \leq \xi \leq \xi' \leq \infty, \Phi_{\xi'}(X) \preceq \Phi_\xi(Y). \quad (2.3)$$

Moreover, the shift operator τ dominates every function Φ_ξ, i.e.

$$\forall X \preceq Y \in S, \forall 1 \leq \xi \leq \infty, \Phi_\xi(X) \preceq \tau(Y). \quad (2.4)$$

As a consequence, infinite-bin models can be coupled in an increasing fashion.

Proposition 2.1. Let μ and ν be two probabilities on \mathbb{N}, and $X_0 \preceq Y_0 \in S^0$. If $\mu([(1, k)]) \leq \nu([(1, k)])$ for any $k \in \mathbb{N}$, we can couple the IBM(μ) (X_n) and the IBM(ν) (Y_n) such that for any $n \geq 0$, $X_n \preceq Y_n$ a.s.

Proof. As for any $k \in \mathbb{N}$, $\mu([(1, k)]) \leq \nu([(1, k)])$, we can construct a couple (ξ, ζ) such that ξ has law μ, ζ has law ν and $\xi \geq \zeta$ a.s. Let (ξ_n, ζ_n) be i.i.d. copies of (ξ, ζ), we set $X_{n+1} = \Phi_{\xi_{n+1}}(X_n)$ and $Y_{n+1} = \Phi_{\zeta_{n+1}}(Y_n)$. By induction, using (2.3), we immediately have $X_n \preceq Y_n$ for any $n \geq 0$. \qed

We extended in this section the definition of the IBM(μ) to measures with positive mass on $\{\infty\}$. As applying Φ_∞ does not modify the ball configuration, the IBM(μ) and the IBM($\mu(. < \infty)$) are straightforwardly connected.

Lemma 2.2. Let μ be a probability measure on \mathbb{N}. We set $p := \mu(\{\infty\})$ and the measure ν verifying $\nu([k]) = \frac{\mu([k])}{1-p}$. Let (X_n) be an IBM(ν) and (S_n) be an independent random walk with step distribution Binomial with parameter $1-p$. Then the process $(X_{S_n}, n \geq 0)$ is an IBM(μ).

In particular, assuming Theorem 1.1 holds, we have $v_\mu = (1-p)v_\nu$.

3 Speed of the infinite-bin model

In this section, we prove the existence of a well-defined notion of speed of the front of an infinite-bin model. We first discuss the case when the distribution μ is finitely supported and the initial configuration is simple, then we extend it to any distribution μ and finally we generalize to any admissible initial configuration.
3.1 Infinite bin models with finite support

Let μ be a probability measure on \mathbb{N} with finite support, i.e., such that there exists $K \in \mathbb{N}$ verifying $\mu([K+1, +\infty)) = 0$. Let (X_n) be an IBM(μ), we say that (X_n) is an infinite-bin model with support bounded by K. One of the main observations of the subsection is that such an infinite-bin model can be studied using a Markov chain on a finite set. As a consequence, we obtain an expression for the speed of this infinite-bin model.

Given $K, n \in \mathbb{N}$, we introduce the set

$$S_K = \left\{ x \in \mathbb{Z}^K_+: \sum_{i=1}^{K-1} x_i < K \text{ and } \forall 1 \leq i \leq K-1, x_i = 0 \Rightarrow x_j = 0 \right\}.$$

For any $Y \in S_K$, we write $|Y| = \sum_{j=1}^{K-1} Y(j)$. We introduce

$$\Pi_K : S \to S_K \quad X \mapsto (X(B(X,K) + j - 1), 1 \leq j \leq K - 1).$$

For any $n \in \mathbb{N}$, we write $Y_n = \Pi_K(X_n)$, that encodes the set of balls that are close to the front. As the IBM has support bounded by K, the bin in which the $(n+1)$-st ball is added to X_n depend only on the position of the front and on the value of Y_n. This reduces the study of the dynamics of (X_n) to the study of $(Y_n, n \geq 1)$.

Lemma 3.1. The sequence (Y_n) is a Markov chain on S_K.

Proof. For any $1 \leq \xi \leq K$ and $Y \in S_K$, we denote by

$$\tilde{B}(Y,\xi) = \begin{cases} \min\{k \geq 1 : \sum_{i=k}^{K-1} Y(i) < \xi\} & \text{if } |Y| \geq \xi \\ 1 & \text{otherwise}, \end{cases}$$

$$\tilde{\Phi}_{\xi}(Y) = \begin{cases} Y(j) + 1_{\{j = \tilde{B}(Y,\xi)\}}, 1 \leq j < K - 1 & \text{if } |Y| < K - 1 \\ Y(j + 1) + 1_{\{j + 1 = \tilde{B}(Y,\xi)\}}, 1 \leq j < K - 2, 0 & \text{if } |Y| = K - 1. \end{cases}$$

For any $X \in S$ and $\xi \leq K$, we have $B(X,\xi) = B(X,K) + \tilde{B}(\Pi_K(X),\xi) - 1$. Moreover, we have $\Pi_K(\Phi_{\xi}(X)) = \tilde{\Phi}_{\xi}(\Pi_K(X))$.

Let (ξ_n) be i.i.d. random variables with law μ and $X_0 \in S$. For any $n \in \mathbb{N}$, we set $X_{n+1} = \Phi_{\xi_{n+1}}(X_n)$. Using the above observation, we have

$$Y_{n+1} = \Pi_K(X_{n+1}) = \Pi_K(\Phi_{\xi_{n+1}}(X_n)) = \tilde{\Phi}_{\xi_{n+1}}(\Pi_K(X_n)) = \tilde{\Phi}_{\xi_{n+1}}(Y_n),$$

thus (Y_n) is a Markov chain.

For any $n \in \mathbb{N}$, the set of bins that are part of Y_n represents the set of “active” bins in X_n, i.e., the bins in which a ball can be added at some time in the future with positive probability. The number of balls in (Y_n) increases by one at each time step, until it reaches $K - 1$. At this time, when a new ball is added, the leftmost bin “freezes”, it will no longer be possible to add balls to this bin, and the “focus” is moved one step to the right.
We introduce a sequence of stopping times defined by

\[T_0 = 0 \quad \text{and} \quad T_{p+1} = \inf\{n > T_p : |Y_{n-1}| = K - 1\}. \]

We also set \(Z_p = K - |Y_{T_p}| \) the number of balls in the bin that “freezes” at time \(T_p \). For any \(n \in \mathbb{N} \), we write \(\tau_n = p \) for any \(T_p \leq n < T_{p+1} \).

Lemma 3.2. Let \(X_0 \in S \) such that \(B(X_0, K) = 1 \), then

- for any \(p \geq 0 \), \(X_\infty(p) = Z_p \),
- for any \(n \geq 0 \) and \(\xi \leq K \), \(B(X_n, \xi) = \tau_n + B(Y_n, \xi) \).

Proof. By induction, for any \(p \geq 0 \), \(B(X_{T_p}, K) = p + 1 \). Consequently, for any \(n \geq T_p \), we have \(X_n(p) = X_{T_p}(p) = K - |Y_{T_p}| = Z_p \). Moreover, as

\[B(X_n, K) = \tau_n + 1 \quad \text{and} \quad B(X_n, \xi) = B(X_n, K) + B(Y_n, \xi) - 1, \]

we have the second equality.

Using the above result, we prove that the speed of an infinite-bin model with finite support does not depend on the initial configuration. We also obtain a formula for the speed \(v_\mu \), that can be used to compute explicit bounds.

Proposition 3.3. Let \(\mu \) be a probability measure with finite support and \(X \) be an IBM(\(\mu \)) with initial configuration \(X_0 \in S \). There exists \(v_\mu \in [0, 1] \) such that for any \(\xi \in \mathbb{N} \), we have

\[\lim_{n \to +\infty} \frac{B(X_n, \xi)}{n} = v_\mu \quad \text{a.s.} \]

Moreover, setting \(\pi \) for the invariant measure of \((Y_n) \) we have

\[v_\mu = \frac{1}{E_\pi(T_2 - T_1)} = \frac{1}{E_\pi(Z_1)}. \]
Proof. Let $X_0 \in S$, we can assume that $B(X_0, K) = 1$, up to a deterministic shift. At each time n, a ball is added in a bin with a positive index, thus for any $n \in \mathbb{N}$, we have
\[
\sum_{j=1}^{+\infty} X_n(j) = n + \sum_{j=1}^{+\infty} X_0(j).
\]
Using the notation of Lemma 3.2, we rewrite it $\sum_{j=1}^{\tau_n} Z_j + |Y_n| = n + \sum_{j=1}^{+\infty} X_0(j)$. Moreover, as $0 \leq |Y_n| \leq K$ and $0 \leq \sum_{j=1}^{+\infty} X_0(j) \leq K$, we have
\[
1 - \frac{K}{n} \leq \frac{\sum_{j=1}^{\tau_n} Z_j}{n} \leq 1 + \frac{K}{n},
\]
yielding $\lim_{n \to +\infty} \frac{\sum_{j=1}^{\tau_n} Z_j}{n} = 1$ a.s. As $\lim_{p \to +\infty} T_p = +\infty$ a.s., we obtain
\[
\lim_{p \to +\infty} \frac{\sum_{j=1}^{p} Z_j}{T_p} = 1 \quad \text{a.s.}
\]
Moreover $\lim_{p \to +\infty} \frac{1}{p} \sum_{j=1}^{p} Z_j = E_{X_1}(Z_1)$ and $\lim_{p \to +\infty} \frac{T_p}{p} = E_{Y_1}(T_2 - T_1)$ by ergodicity of (Y_n). Consequently, if we set $\mu := \frac{1}{E_{X_1}(T_2 - T_1)} E_{X_1}(Z_1)$, the constant μ is well-defined.

We apply Lemma 3.2, we have
\[
\frac{B(X_n, 1)}{n} = \frac{\tau_n}{n} + \frac{B(Y_n, 1)}{n} \in \left[\frac{\tau_n}{n}, \frac{\tau_n}{n} + \frac{K}{n}\right].
\]
Moreover, we have $\lim_{n \to +\infty} \frac{\tau_n}{n} = \lim_{p \to +\infty} \frac{T_p}{p} = \mu$ a.s. This yields
\[
\lim_{n \to +\infty} \frac{B(X_n, 1)}{n} = \mu \quad \text{a.s.} \tag{3.2}
\]
Using (2.1), this convergence is extended to $\lim_{n \to +\infty} \frac{B(X_n, \xi)}{n} = \mu$ a.s. \hfill \Box

Remark 3.4. If the support of μ is included in $[1, K] \cup \{+\infty\}$, it follows from Lemma 2.2 that the IBM(μ) also has a well-defined speed μ.

3.2 Extension to arbitrary distributions

We now use Proposition 3.3 to prove Theorem 1.1.

Proposition 3.5. Let μ be probability measure on \mathbb{N} and (X_n) an IBM(μ) with initial configuration $X_0 \in S$. There exists $\mu_{\xi} \in [0, 1]$ such that for any $\xi \in \mathbb{N}$, we have $\lim_{n \to +\infty} \frac{B(X_n, \xi)}{n} = \mu_{\xi}$ a.s.

Moreover, if ν is another probability measure we have
\[
\forall k \in \mathbb{N}, \nu([1, k]) \leq \mu([1, k]) \Rightarrow \nu_{\xi} \leq \mu_{\xi}. \tag{3.3}
\]

Proof. Let $X_0 \in S$. We write $(\xi_n, n \geq 1)$ for an i.i.d. sequence of random variables of law μ. For any n, $K \geq 1$, we set $\xi^K = \xi_n 1_{\xi_n \leq K} + \infty 1_{\xi_n > K}$. We then define the processes $(\Phi^K_{\xi_n+1})$ and $(\Phi^K_{\xi_n})$ by $\Phi^K_{\xi_0} = X_0$ and
\[
\Phi^K_{\xi_{n+1}} = \Phi^K_{\xi_n+1} \left(\Phi^K_{\xi_n}\right) \quad \text{if } \xi_{n+1} \leq K
\]
and follow otherwise.
By induction, we have $X^K_n \leq X_n \leq X^K_n$ for any $n \geq 0$, using (2.3) and (2.4).

As (X^K_n) is an infinite-bin model with support included in $[1, K] \cup \{+\infty\}$, by Remark 3.4, there exists $v_K \in [0, 1]$ such that for any ξ, $n \geq 0$

$$\liminf_{n \to +\infty} \frac{B(X_n, \xi)}{n} \geq \lim_{n \to +\infty} \frac{B(X^K_n, \xi)}{n} = v_K \text{ a.s.}$$

Moreover, by definition of (X^K_n) and (2.2), for any $\xi, n \geq 1$ we have

$$B(X^K_n, \xi) = B(X^K_n, \xi) + \sum_{j=1}^{n} 1\{K < \xi, j < +\infty\},$$

therefore, by law of large numbers

$$\limsup_{n \to +\infty} \frac{B(X_n, \xi)}{n} \leq \lim_{n \to +\infty} \frac{B(X^K_n, \xi)}{n} = v_K + \mu([K + 1, +\infty)) \text{ a.s.}$$

By Proposition 2.1, we observe immediately that (v_K) is an increasing sequence, bounded by 1, thus converges. Moreover, $\lim_{K \to +\infty} \mu([K+1, +\infty)) = 0$.

We conclude that $\lim_{n \to +\infty} \frac{1}{n} B(X_n, 1) = \lim_{K \to +\infty} v_K =: v_\mu$ a.s. By Proposition 2.1, (3.3) trivially holds. \hfill \Box

Remark 3.6. Let μ be a probability measure on \mathbb{N}, we set $\mu_K = \mu(\cdot, \cdot \leq K)$. We observe from the proof of Proposition 3.5 and Lemma 2.2 that

$$\mu([1, K])v_{\mu_K} \leq v_\mu \leq \mu([1, K])v_{\mu_K} + \mu([K + 1, +\infty)).$$

As v_{μ_K} is the speed of an IBM with support bounded by K, it can be computed explicitly using (3.1). This provides tractable bounds for v_μ. For example, we have $v_\mu \geq \frac{\mu(K+1)}{K}$, where $K_0 = \inf\{k > 0 : \mu(k) > 0\}$.

Remark 3.7. Proposition 3.5 can be extended to infinite-bin models starting with a configuration $X \in S^0$. Let μ be a probability measure and (X_n) an IBM(μ) starting with a configuration $X \in S^0$. If μ has a support bounded by K, then the projection $(\Pi_K(X_n))$ is a Markov chain, that will hit the set S_K in finite time. Therefore, we can apply Proposition 3.3, we have $\lim_{n \to +\infty} \frac{1}{n} B(X_n, 1) = v_\mu$ a.s.

If μ has unbounded support, the IBM(μ) can still be bounded, in the same way than in the proof of Proposition 3.5, by infinite-bin models with bounded support. As a consequence, Theorem 1.1 holds for any starting configuration belonging to S^0.

4 Length of the longest path in Barak-Erdős graphs

Let $p \in [0, 1]$, we write μ_p for the geometric distribution on \mathbb{N} with parameter p, verifying $\mu_p(k) = p(1-p)^{k-1}$ for any $k \geq 1$. In this section, we use a coupling introduced by Foss and Konstantopoulos [11] between an IBM(μ_p) and a Barak-Erdős graph of size n, to compute the asymptotic behaviour of the length of the longest path in this graph.
Recall that a Barak-Erdős graph on the n vertices $\{1, \ldots, n\}$, with edge probability p is constructed by adding an edge from i to j with probability p, independently for each pair $1 \leq i < j \leq n$. We write $L_n(p)$ for the length of the longest path in this graph. Newman [20] proved that L_n increases at linear speed. More precisely, there exists a function C such that for any $p \in [0, 1],$

$$\lim_{n \to +\infty} \frac{L_n(p)}{n} = C(p) \quad \text{in probability.}$$

Moreover, he proved that $C(p)$ is continuous and increasing on $[0, 1]$, and that $C'(0) = e$.

Let $p \in (0, 1)$ and (X_n) be an IBM(μ_p), we set $v_p = v_{\mu_p}$ the speed of (X_n), which is well-defined by Proposition 3.5. Foss and Konstantopoulos [11] proved that

$$C(p) = v_p = \lim_{n \to +\infty} \frac{B(X_n, 1)}{n} \quad \text{a.s.} \quad (4.1)$$

We now construct the coupling used to derive 4.1. We associate an infinite-bin model configuration in S to each acyclic directed graph on vertices $\{1, \ldots, n\}$ as follows: for each vertex $1 \leq i \leq n$, we add a ball in the bin indexed by the length of the longest path ending at vertex i, and infinitely many balls in bins with negative index (see Figure 4 for an example). We denote by l_i the length of the longest path ending at position l_i.

![Figure 4: From a Barak-Erdős graph to an infinite-bin model configuration.](image)

We now construct the Barak-Erdős graph as a dynamical process, which is run in parallel with its associated infinite-bin model. At time $n = 0$, we start with the Barak-Erdős graph with no vertex, the empty graph, and the infinite-bin model with infinitely many balls in bins of negative index, and no ball in other bins (which is called configuration Y_0). At time $n = 1$, we add vertex 1 to the Barak-Erdős graph. As $l_1 = 0$, we also add a ball in the bin of index 0 to the configuration Y_0, to obtain the configuration Y_1.

At time $n > 1$, we add vertex n to the Barak-Erdős graph on $\{1, \ldots, n - 1\}$. We compute the law of l_n conditionally on $(l_i, i \leq n - 1)$. Let σ be a permutation of $\{1, \ldots, n - 1\}$ such that $l_{\sigma(1)} \geq l_{\sigma(2)} \geq \cdots \geq l_{\sigma(n-1)}$. The permutation is not necessarily uniquely defined by these inequalities, but this does not matter for our purpose. For each $1 \leq i \leq n - 1$, there is an edge between n and $\sigma(i)$ with probability p, independently of any other edge. In this case, there is a path of length $l_i + 1$ in the Barak-Erdős graph that end at site n. The smallest number
\(\xi_n\) such that there is an edge between \(\sigma(\xi_n)\) and \(n\) is distributed as a geometric random variable, where if \(\xi_n > n - 1\), then there is no edge between \(n\) and a previous vertex, thus \(l_n = 0\) and we add a ball at position 0. As a consequence, the state associated to the graph of size \(n\) is given by \(Y_n = \Phi_{\xi_n}(Y_{n-1})\).

We have coupled the IBM(\(\mu_n\)) \((Y_n)\) with a growing sequence of Barak-Erdős graphs, in such a way that for any \(n \in \mathbb{N}\), the length of the longest path in the Barak-Erdős graph of size \(n\) is given by \(B(Y_n,1)\). Therefore, (4.1) is a direct consequence of Proposition 3.5.

We now use (3.3) to bound the function \(C\). In [11], Foss and Konstantopoulos obtained upper and lower bounds for \(C(p)\), that are tight enough for \(p\) close to 1 to give the first five terms of the Taylor expansion of \(C\) around \(p = 1\):

\[
C(1-q) = 1 - q + q^2 - 3q^3 + 7q^4 + O(q^5) \quad \text{when } q \rightarrow 0.
\]

We use measures with finite support to approach \(\mu_p\), as in the proof of Proposition 3.5. We obtain two sequences of functions that converge exponentially fast on \([c,1]\). Let \(k \geq 1\), we set

\[
\mu^{k}(j) = (1-p)^{j-1} \mathbf{1}_{(j \leq k)} \quad \text{and} \quad \mu^{k}_{p}(j) = p(1-p)^{j-1} \mathbf{1}_{(j \leq k)} + (1-p)^{k} \mathbf{1}_{(j=k)}.
\]

We write \(L_k(p) = v^{k}_{p}\) and \(U_k(p) = v^{k}_{p}\). By (3.3), for any \(k \geq 1\) we have \(L_k(p) \leq C(p) \leq U_k(p)\). Moreover, as a (very crude) upper bound, for any \(p \in [0,1]\) we have

\[
0 \leq L_k(p) - U_k \leq (1-p)^{k} \land \frac{1}{k}.
\]

Using Proposition 3.3, the functions \(L_k\) and \(U_k\) can be explicitly computed. For example, taking \(k = 3\) we obtain

\[
\frac{p(p^2-3p+3)(p^4-6p^3+14p^2-16p+8)}{3p^2-26p^2+96p^2-196p^2+235p^2-158p^2+47} \leq C(p) \leq \frac{p^3-2p^2+p-1}{p^3-4p^2+8p-9p+6p-3}.
\]

For any \(k \in \mathbb{N}\), \(L_k\) and \(U_k\) are rational functions of \(p\). Their convergence toward \(C\) is very fast, which enables to bounds values of \(C(p)\). For instance, taking \(k = 9\), we obtain \(C(0.5) = 0.5780338 \pm 2.10^{-6}\), improving \(C(0.5) = 0.58 \pm 10^{-2}\) given by the bounds in [11].

![Figure 5: Lower and upper bounds \(L_k\) and \(U_k\) for \(C\), for \(k \in \{3, 6, 9\}\).](image)

The functions \(L_k\) and \(U_k\) are very close for \(p\) close to 1, which enables to compute the Taylor expansion of \(C(1-q)\) to any order as \(q \rightarrow 0\). For example, comparing the Taylor expansion of \(L_6\) and \(U_6\), we obtain the first 14 terms of the Taylor expansion of \(C\). However, Theorem 1.4 gives another way to obtain this Taylor expansion.
5 Power series expansion of C in dense graphs

In this section, we prove that C is analytic for $p > 1/2$. The heuristic for the proof goes along the following lines. Let $p \in (0, 1)$ and $(\xi_n, n \geq 1)$ be i.i.d. random variables with law μ_p. If p is close to 1, then the sequence (ξ_n) consists in long blocks of 1, with short patterns appearing at random with integers greater than 1. Therefore, the value of $C(p)$ should be close to 1 minus the sum over every pattern of the delay caused by this pattern multiplied by its probability of occurrence.

With this heuristic behaviour in mind, we build a series \tilde{C} which adds the effect of all these patterns. We prove that the sum of this series is equal to C for $p > 1/2$. In fact, we obtain infinitely many series formulas for C: for each configuration $X \in S$, we define a series \tilde{C}_X. All these series turn out to be equal to C for $p > 1/2$.

We recall some notation from the introduction. We denote by A the set of finite words on the alphabet \mathbb{N}. For any $\alpha = (\alpha_1, \ldots, \alpha_n) \in A$, we define

$$L(\alpha) := n \quad \text{and} \quad H(\alpha) := \alpha_1 + \alpha_2 + \cdots + \alpha_n - L(\alpha)$$

the length and the height of α respectively.

For any $p \in (0, 1)$, we write

$$W_p(\alpha) = p^{L(\alpha)}(1 - p)^{H(\alpha)} = P((\xi_1, \ldots, \xi_{L(\alpha)}) = \alpha)$$

for the weight of the word α. If $\alpha = (\alpha_1, \ldots, \alpha_n)$ is a non-empty word, we denote by $\pi\alpha$ (respectively $\varpi\alpha$) the word $(\alpha_1, \ldots, \alpha_{n-1})$ (resp. $(\alpha_2, \ldots, \alpha_n)$) obtained by erasing the last (resp. first) letter of α. We use the convention $\pi\emptyset = \varpi\emptyset = \emptyset$.

Given any $X \in S$, we define the function $\varepsilon_X : A \to \{-1, 0, 1\}$ by

$$\varepsilon_X(\alpha) = 1_{\{\alpha \in \mathcal{P}_X\}} - 1_{\{\varpi\alpha \in \mathcal{P}_X\}},$$

where \mathcal{P}_X is the set of non-empty words α such that, starting from X and applying successively the moves $\Phi_{\alpha_1}, \ldots, \Phi_{\alpha_n}$, the last move Φ_{α_n} results in placing a ball in a previously empty bin.

For any $\alpha \in A$, we denote by X^α the configuration of the infinite-bin model obtained after applying successively moves of type $\alpha_1, \alpha_2, \ldots, \alpha_n$ to the initial configuration X, i.e.

$$X^\alpha = \Phi_{\alpha_{L(\alpha)}}(\Phi_{\alpha_{L(\alpha)-1}}(\cdots \Phi_{\alpha_2}(\Phi_{\alpha_1}(X)) \cdots)),$$

and we set $d_X(\alpha) = B(X^\alpha, 1) - B(X, 1)$ the displacement of the front of the infinite-bin model after performing the sequence of moves in α. We now provide an alternative expression for $\varepsilon_X(\alpha)$.

Lemma 5.1. For any $\alpha \in A$, we have

$$\varepsilon_X(\alpha) = d_X(\alpha) - d_X(\pi\alpha) - d_X(\varpi\alpha) + d_X(\pi\varpi\alpha).$$ \hspace{1cm} (5.1)

Proof. Observe that $d_X(\alpha) - d_X(\pi\alpha)$ equals 0 (resp. 1) if the last move of α adds a ball in a previously non-empty (resp. empty) bin. Therefore we have $d_X(\alpha) - d_X(\pi\alpha) = 1_{\{\alpha \in \mathcal{P}_X\}}$. Similarly, $d_X(\pi\alpha) - d_X(\pi\varpi\alpha) = 1_{\{\varpi\alpha \in \mathcal{P}_X\}}$. We conclude that

$$\varepsilon_X(\alpha) = 1_{\{\alpha \in \mathcal{P}_X\}} - 1_{\{\varpi\alpha \in \mathcal{P}_X\}} = d_X(\alpha) - d_X(\pi\alpha) - d_X(\varpi\alpha) + d_X(\pi\varpi\alpha)$$ \hspace{1cm} (5.2)
As a direct consequence of Lemma 5.1, for any $\alpha = (\alpha_1, \ldots, \alpha_l)$ we have

$$d_X(\alpha) = \sum_{k=1}^{n} \sum_{j=0}^{n-k} \varepsilon_X((\alpha_k, \alpha_{k+1}, \ldots, \alpha_{k+j})), \quad (5.3)$$

deeping the displacement induced by α is the sum of $\varepsilon(\beta)$ for any consecutive subword β of α (where the subwords β are counted with multiplicity).

We say that a word $\alpha = (\alpha_1, \ldots, \alpha_l)$ has a renovation event at position $n \geq 1$ if for all $0 \leq k \leq l - n$, $\alpha_{n+k} \leq k + 1$. This concept appears in [11], where these are used to create time intervals on which the process starts over and is independent of its past. We first show that the existence of a renovation event in α implies $\varepsilon_X(\alpha) = 0$.

Lemma 5.2. Let $X \in S$, if $\alpha \in A$ with $L(\alpha) \geq 2$ has a renovation event at position $n \geq 2$, then $\varepsilon_X(\alpha) = 0$.

Proof. Let $\alpha \in A$ be a word of length l with a renovation event at position $n \geq 2$. When we run α starting from the configuration X, the move $\alpha_n = 1$ creates a ball in a previously empty bin, of index say b.

As $\alpha_{n+k} \leq k + 1$ for all $0 \leq k \leq l - n$, we are capable of placing the balls produced by these moves in bins of index b or greater, without knowing any information about the bins to the left of bin b (except for the fact that the bin $b - 1$ contains at least one ball).

When we run $\sigma \alpha$ starting from X, the move α_n again creates a ball in a previously empty bin, of index say b'. Running the moves $\alpha_{n+1}, \ldots, \alpha_l$ will produce the same construction as when we run α, with everything just shifted by $b' - b$. In particular, the last move of α places a ball in a previously empty bin if and only if the last move of $\sigma \alpha$ places a ball in a previously empty bin. Consequently $1_{\{\alpha \in \mathcal{F}_X\}} = 1_{\{\sigma \alpha \in \mathcal{F}_X\}}$ so $\varepsilon_X(\alpha) = 0$.

Using Lemma 5.2, we are able to obtain a control on the length of words α such that $\varepsilon_X(\alpha) \neq 0$.

Lemma 5.3. Let $X \in S$, for any $\alpha \in A$ such that $L(\alpha) > H(\alpha) + 1$ we have $\varepsilon_X(\alpha) = 0$.

Proof. Let α be a word $(\alpha_1, \ldots, \alpha_l)$ such that $l = L(\alpha) > H(\alpha) + 1$. For any $1 \leq k \leq l$, define $S(k) = \sum_{i=1}^{k} (\alpha_i - 2)$. As $L(\alpha) > H(\alpha) + 1$ we have $S(l) < -1$. We set $n = \min \{k : S(t) < -1 \forall t \geq k\}$.

Observe that we have $S(k) = \alpha_1 - 2 \geq -1$, thus $n \geq 2$. By induction, for any $0 \leq k \leq \alpha_{n+k} \geq -k - 2$ and $\alpha_{n+k} \leq k + 1$. Thus α has a renovation event at position $n \geq 2$, so $\varepsilon_X(\alpha) = 0$ by Lemma 5.2.

\[1\] One could also go the other way round, start with d_X and define ε_X to be the function verifying

$$\forall \alpha \in A, d_X(\alpha) = \sum_{\beta \prec \alpha} \varepsilon_X(\beta)m(\beta, \alpha),$$

where $\beta \prec \alpha$ denotes the fact that β is a factor of α (i.e. a consecutive subword of α) and $m(\beta, \alpha)$ denotes the number of times β appears as a factor of α. In that case, one would obtain formula (5.2) for ε_X as the result of a Möbius inversion formula (see [22, Sections 3.6 and 3.7] for details on incidence algebras and Möbius inversion formulas).
By Lemma 5.3, for any $p > 0$ there are only finitely many words with a weight larger than p^k. We use this estimate to obtain the absolute convergence of a series.

Lemma 5.4. The series $\sum_{\alpha \in A} |\varepsilon_X(\alpha)| W_p(\alpha)$ converges for all $p > 1/2$.

Proof. Let $p > 1/2$. Define A^h_l to be the set of words of length l and height h. Observe that A^h_l is the set of compositions of the integer $h + l$ into l parts and it is well-known that $\# A^h_l = \binom{h+l-1}{l-1}$. By Lemma 5.3, if α is a word such that $|\varepsilon_X(\alpha)| = 1$, then $L(\alpha) \leq H(\alpha) + 1$, thus

$$\sum_{\alpha \in A} |\varepsilon_X(\alpha)| W_p(\alpha) \leq \sum_{h \geq 0} \sum_{l=1}^{h+1} \sum_{\alpha \in A^h_l} W_p(\alpha).$$

Using the definition of $W_p(\alpha)$, we obtain

$$\sum_{\alpha \in A} |\varepsilon_X(\alpha)| W_p(\alpha) \leq \sum_{h \geq 0} \sum_{l=1}^{h+1} p^l (1-p)^h \# A^h_l \leq \sum_{h \geq 0} \sum_{l=1}^{h+1} p^l (1-p)^h \binom{h+l-1}{l-1} \leq (1-p) \sum_{h \geq 0} \sum_{l=0}^{h} p^l (1-p)^h \binom{h+l}{l}. \quad (5.4)$$

Let (S_n) be a random walk on \mathbb{Z} starting at 0 and doing a step $+1$ (resp. -1) with probability p (resp. $1-p$). Then

$$\sum_{h \geq 0} \sum_{l=0}^{h} p^l (1-p)^h \binom{h+l}{l} = \sum_{n \geq 0} \sum_{l=0}^{\lfloor n/2 \rfloor} \binom{n}{l} p^l (1-p)^{n-l} = \sum_{n \geq 0} \sum_{l=0}^{\lfloor n/2 \rfloor} P(S_n = 2l - n) = \sum_{n \geq 0} P(S_n \leq 0) < +\infty, \quad (5.5)$$

as for any $p > 1/2$, we have $\lim_{n \to +\infty} S_n = +\infty$.

Using the above lemma, for all $X \in S$, we introduce the function

$$\tilde{C}_X(p) = \sum_{\alpha \in A} \varepsilon_X(\alpha) W_p(\alpha), \quad (5.6)$$

which is well-defined for $p > 1/2$.

Lemma 5.5. For any $X \in S$ and $p > 1/2$, we have $C(p) = \tilde{C}_X(p)$.

Proof. Let $p > 1/2$, we denote by (X_n) an IBM(μ_p) starting from $X_0 = X$. We recall that $C(p)$ is the speed of the front of (X_n). Therefore, by Proposition 3.5 we have

$$C(p) = \lim_{n \to +\infty} \frac{1}{n} (B(X_n, 1) - B(X, 1)) \quad \text{a.s.}$$
As $\frac{1}{n}(B(X_n, 1) - B(X, 1)) < 1$, by dominated convergence, we also have

$$C(p) = \lim_{n \to +\infty} \frac{1}{n} \mathbb{E}(B(X_n, 1) - B(X, 1)).$$

Writing (ξ_n) for i.i.d. random variables with geometric distribution of parameter p, we compute for any $n \in \mathbb{N}$, using (5.3),

$$\mathbb{E}(B(X, 1) - B(X, 1)) = \mathbb{E}(dx((\xi_1, \ldots, \xi_n)))$$

$$= \sum_{k=1}^{n} \sum_{j=1}^{n-k+1} \mathbb{E}(\varepsilon_X((\xi_j, \xi_{j+1}, \ldots, \xi_{j+k-1})))$$

$$= \sum_{k=1}^{n} \sum_{\alpha \in \mathbb{N}^k} \varepsilon_X(\alpha)(n-k+1)\mathbb{P}((\xi_1, \ldots, \xi_k) = \alpha)$$

$$= \sum_{\substack{\alpha \in A \ni L(\alpha) \leq n \ni}} \varepsilon_X(\alpha) W_p(n - L(\alpha) + 1).$$

As a consequence, we have

$$C(p) = \lim_{n \to +\infty} \sum_{\substack{\alpha \in A \ni L(\alpha) \leq n \ni}} \varepsilon_X(\alpha) W_p(\alpha) \left(1 - \frac{L(\alpha) - 1}{n}\right) = \tilde{C}_X(p),$$

by dominated convergence (using Lemma 5.4), which concludes the proof. \(\square\)

We deduce from this formula for $C(p)$ that the function has a power series expansion with integer coefficients around $p = 1$ with positive radius of convergence. Making power series expansions centered at any $r > 1/2$, we prove that $C(p)$ is analytic for $p > 1/2$.

Proof of Theorem 1.4. Fix $\frac{1}{2} < p \leq r \leq 1$ and write $x = r - p \geq 0$. We want to write $C(p)$ as a power series in x centered at r and determine when the series is absolutely convergent.

$$C(p) = \sum_{\alpha \in A} \varepsilon_X(\alpha) p^{L(\alpha)} (1 - p)^{H(\alpha)}$$

$$= \sum_{\alpha \in A} \varepsilon_X(\alpha) (r - x)^{L(\alpha)} (1 - x + r)^{H(\alpha)}$$

$$= \sum_{\alpha \in A} \varepsilon_X(\alpha) \left(\sum_{i=0}^{L(\alpha)} \binom{L(\alpha)}{i} (-1)^i x^i (1 - r)^{H(\alpha) - i} \right) x^j (1 - p)^{H(\alpha) - j}.$$

(5.7)

Taking absolute values inside the last series, we obtain

$$\sum_{\alpha \in A} |\varepsilon_X(\alpha)| \left(\sum_{i=0}^{L(\alpha)} \binom{L(\alpha)}{i} x^i (1 - r)^{H(\alpha) - i} \right) x^j (1 - p)^{H(\alpha) - j}$$

$$= \sum_{\alpha \in A} |\varepsilon_X(\alpha)| (r + x)^{L(\alpha)} (1 - r + x)^{H(\alpha)}$$

$$= \sum_{\alpha \in A} |\varepsilon_X(\alpha)| (2r - p)^{L(\alpha)} (1 - p)^{H(\alpha)}.$$
We have a power series expansion $C(p)$ centered at r of radius of convergence at least $r - p$ whenever the last series converges. Using a domination argument similar to (5.4), we get

$$\sum_{\alpha \in \mathcal{A}} |\epsilon_X(\alpha)(2r - p)^{L(\alpha)}(1 - p)^{H(\alpha)}| \leq (1 - p) \sum_{h \geq 0} \sum_{l=0}^{h} (2r - p)^l (1 - p)^h \left(\frac{h + l}{l}\right).$$

Let $(S_{n}^{p,r})$ be a random walk on \mathbb{Z} starting at 0 and doing a step +1 (resp. −1) with probability $\frac{2r - p}{2r + 1 - 2p}$ (resp. $\frac{1 - p}{2r + 1 - 2p}$). Then by the same computations as in (5.5), we have

$$\sum_{h \geq 0} \sum_{l=0}^{h} (2r - p)^l (1 - p)^h \left(\frac{h + l}{l}\right) = \sum_{n \geq 0} (2r + 1 - 2p)^n \mathbb{P}(S_{n}^{p,r} \leq 0). \quad (5.8)$$

By Chernoff’s bound, if we call $Y^{p,r}$ a random variable distributed like one step of $(S_{n}^{p,r})$, we obtain

$$\mathbb{P}(S_{n}^{p,r} \leq 0) \leq \inf_{t > 0} \left(\mathbb{E}[e^{-tY^{p,r}}]\right)^n \leq \inf_{t > 0} \left(\frac{2r - p}{2r + 1 - 2p} e^{-t} + \frac{1 - p}{2r + 1 - 2p} e^t\right)^n \leq \left(\frac{2\sqrt{(2r - p)(1 - p)}}{2r + 1 - 2p}\right)^n.$$

Thus the series in (5.8) converge if and only if $2\sqrt{(2r - p)(1 - p)} < 1$, i.e.

$$r + \frac{1}{2} - \sqrt{r^2 - r + \frac{1}{4}} < p \leq r \leq 1.$$

When $r > 1/2$ we have that $r + \frac{1}{2} - \sqrt{r^2 - r + \frac{1}{4}} < r$, thus the power series expansion of $C(p)$ centered at r has a positive radius of convergence. Thus $C(p)$ is analytic on $(\frac{1}{2}, 1]$. When $r = 1$, it follows from (5.7) that the coefficients are integers.

Remark 5.6. Numerical simulations tend to suggest that the power series expansion of $C(p)$ at $p = 1$ has a radius of convergence larger than 0.5 but smaller than 1. Together with the fact that C admits no second derivative at $p = 0$, this raises the question of the existence of a phase transition in this process.

6 Longest directed path in sparse graphs

We study in this section the asymptotic behaviour of $C(p)$ as $p \to 0$. Newman proved in [20] that $C(p) \sim pe$. We link in Section 6.1 this result with the estimate obtained by Aldous and Pitman [2] for the speed of an IBM with uniform distribution. Let $k \in \mathbb{N}$, we write ν_k for the uniform distribution on $\{1, \ldots, k\}$ and w_k for the speed of the IBM(ν_k), Aldous and Pitman proved that

$$(kw_k, k \in \mathbb{N})$$

increases toward e as $k \to +\infty$. \quad (6.1)
This result is obtained by coupling the infinite-bin model with a continuous-time branching random walk with selection. Adapting the result of Bérard and Gouéré [4] on the speed of branching random walks with selection, we obtain the following estimate.

Lemma 6.1. We have \(kw_k = e - \frac{\pi^2}{2} (\log k)^{-2} (1 + o(1)) \) as \(k \to +\infty \).

Applying Lemma 6.1 to compute the asymptotic behaviour of \(C \), we prove Theorem 1.6:

\[
C(p) = ep \left(1 - \frac{\pi^2}{2} (\log p)^{-2} \right) + o((\log p)^{-2}) \quad \text{as} \quad p \to 0. \tag{6.2}
\]

The rest of the section is organized as follows. In Section 6.1, we prove Theorem 1.6 assuming Lemma 6.1. In Section 6.2, we prove Lemma 6.1 using the coupling with a branching random walk with selection. Some preliminary results on this model are derived in Section 6.3. The speed of the cloud of particles in a branching random walk with selection is obtained in Section 6.4.

6.1 Proof of Theorem 1.6 assuming Lemma 6.1

We use the increasing coupling of Proposition 3.5 to link the asymptotic behaviours of \(w_k \) and \(C(1/k) \) as \(k \to +\infty \).

Lemma 6.2. For any \(k \in \mathbb{N} \) we have

\[
\forall p \in \left[\frac{1}{k+1}, \frac{1}{k} \right], \quad C(p) \leq w_k
\]

\[
\forall p \in [0, 1], \quad C(p) \geq kp(1-p)^k w_k.
\]

Proof. Let \(k \in \mathbb{N} \) and \(p \in \left[\frac{1}{k+1}, \frac{1}{k} \right] \). We observe that for any \(j \in \mathbb{N} \),

\[
\mu_p([1,j]) = \sum_{i=1}^{j} p(1-p)^{j-i} \leq (pj) \wedge 1 \leq \nu_k([1,j]).
\]

Therefore \(C(p) \leq w_k \) by (3.3).

Let \(p \in [0, 1] \), we set \(x = kp(1-p)^k \). Observe that \(0 \leq x \leq 1 \). For any \(j \in \mathbb{N} \), we have

\[
\mu_p([1,j]) = \sum_{i=1}^{j} p(1-p)^{j-i} \geq (j \wedge k)p(1-p)^{k-1} \geq k\nu_k([1,j])p(1-p)^{k-1}.
\]

Therefore, writing \(\nu_k^x = x\nu_k + (1-x)\delta_\infty \), we have \(\mu_p([1,j]) \geq \nu_k^x([1,j]) \) for any \(j \in \mathbb{N} \). We apply (3.3) to \(\mu_p \) and \(\nu_k^x \). By Lemma 2.2, the speed of the IBM(\(\nu_k^x \)) is \(xw_k \). We conclude that for any \(k \in \mathbb{N} \) and \(p \in [0, 1] \), we have

\[
C(p) \geq kp(1-p)^{k-1}w_k.
\]

Proof of Theorem 1.6. For any \(k \in \mathbb{N} \) and \(p \in \left[\frac{1}{k+1}, \frac{1}{k} \right] \), by Lemma 6.2, we have \(C(p)/p \leq (k+1)w_k \), therefore Lemma 6.1 yields

\[
\limsup_{p \to 0} (\log p)^2 \left(\frac{C(p)}{p} - e \right) \leq \limsup_{k \to +\infty} (k+1)^2 (w_k - c) \leq \frac{\pi^2e}{2}.
\]

19
By Lemma 6.2 again, we have $C(p)/p \geq (1 - p)^k(kw_k)$ for any $k \in \mathbb{N}$ and $p \in [0, 1]$. Let $\delta > 0$, we set $k = \lceil 1/p^{1-\delta} \rceil$. We have $(1 - p)^k - 1 \sim -p^\delta$ as $p \to 0$. This yields

$$(\log p)^2 \left(\frac{C(p)}{p} - e \right) \geq \frac{(\log k)^2}{(1-\delta)^2} ((1 - p)^k(kw_k) - e).$$

Using again Lemma 6.1, we have

$$\liminf_{p \to 0} (\log p)^2 \left(\frac{C(p)}{p} - e \right) \geq -\frac{\pi^2 e}{2(1-\delta)^2}.$$

Letting $\delta \to 0$ concludes the proof. \hfill \Box

6.2 Proof of Lemma 6.1 using branching random walks

By Lemma 6.2, to obtain the asymptotic behaviour of $C(p)$ as $p \to 0$, it is enough to control the asymptotic behaviour of kw_k as $k \to +\infty$. To obtain (6.1), Aldous and Pitman compared the IBM(ν_k) with a continuous-time branching random walk with selection, that we now define.

Let $\lambda > 0$ and \mathcal{L} be the law of a point process. A continuous-time branching random walk evolves as follows. Every particle in the process is associated with an independent exponential clock of parameter λ. When a clock rings, the corresponding particle dies, giving birth to children that are positioned according to a point process with law \mathcal{L}, shifted by the position of the dead parent particle. For any $t \geq 0$, we write N_t for the set of particles alive at time t. For any $u \in N_t$, we write $X_t(u)$ for the position of the particle u alive at time t.

Let L be a point process of law \mathcal{L}. We write $\Lambda(\theta) = \mathbb{E} \left(\sum_{\ell \in L} e^{\theta \ell} \right) - 1$ for any $\theta > 0$ and $v = \lambda \inf_{\theta > 0} \frac{\Lambda(\theta)}{\theta}$. We assume that

$$\text{there exists } \varphi^* > 0 \text{ such that } \varphi^*\Lambda'(\varphi^*) - \Lambda(\varphi^*) = 0. \tag{6.3}$$

Then we have $v = \lambda \Lambda'(\varphi^*)$ and we set $\tau^2 = \lambda \Lambda''(\varphi^*)$. Using a straightforward extension of the classical result of Biggins [6], we have

$$\lim_{t \to +\infty} \frac{1}{t} \max_{u \in N_t} X_t(u) = v \quad \text{a.s.}$$

Let $N \in \mathbb{N}$. A continuous-time branching random walk with selection of the rightmost N particles or N-BRW is defined as follows. Each particle in the process reproduces independently as in a continuous-time branching random walk, but every time there are more than N particles currently alive in the process, every particle but the rightmost N are immediately killed without reproducing.

For any $t \geq 0$, we denote by N_t^N the set of particles alive at time t in the N-BRW, that can be defined as follows. At time 0, N_0^N is the set of the N rightmost particles in N_0, with ties broken uniformly at random. The set N_t^N remains constant in between reproduction events. At each reproduction time T, the set N_T^N is defined as the rightmost N descendants of particles in N_{T-}, with ties again broken uniformly at random. The following estimate on the speed of the cloud of particles in the N-BRW is proved in Section 6.4.
Lemma 6.3. Let \((X_t(u), u \in \mathcal{N}_t^k)\) be a continuous-time branching random walk with selection of the rightmost \(N\) particles. Given \(L\) a point process of law \(\mathcal{L}\), we assume there exists \(\varepsilon > 0\) such that

\[
P(L = 0) = 0, \quad E(\#L) > 1 \quad \text{and} \quad E(\varepsilon^\#L) < +\infty, \tag{6.4}
\]

\[
E \left(\max_{\ell \in L} |\ell|^2 \right) + E \left(\left(\sum_{\ell \in L} e^{\varepsilon \ell} \right)^2 \right) < +\infty. \tag{6.5}
\]

For any \(N \in \mathbb{N}\), there exists \(v_N\) such that

\[
\lim_{t \to +\infty} \frac{\max_{u \in \mathcal{N}_t^k} X_t(u)}{t} = \lim_{t \to +\infty} \frac{\min_{u \in \mathcal{N}_t^k} X_t(u)}{t} = v_N \quad \text{a.s.}
\]

and

\[
\lim_{N \to +\infty} (\log N)^2(v_N - v) = -\frac{\pi^2 \varphi^*}{2}.
\]

The first statement in proved in Section 6.3 and the second one is proved in Section 6.4 by adapting the proof used to study discrete-time branching random walks with selection in [4, 19].

Using the Aldous-Pitman coupling (described below) between IBM(\(\nu_k\)) and continuous-time branching random walks with selection, we now derive the asymptotic behaviour of \(kw_k\) as \(k \to +\infty\), assuming that Lemma 6.3 holds.

Proof of Lemma 6.1. Let \(k \in \mathbb{N}\). We write \((N_t, t \geq 0)\) for a Poisson process of parameter \(k\) and \((X_n, n \geq 0)\) for an independent IBM(\(\nu_k\)). For any \(t > 0\), we denote by \(\mathcal{N}_t^k\) the set consisting of the rightmost \(k\) balls in the configuration \(X_{N_t}\), and by \(Y_t(u)\) the position of the ball \(u \in \mathcal{N}_t^k\).

We observe that \((Y_t(u), u \in \mathcal{N}_t^k)\) evolves as follows: every ball stays put until an exponential random time with parameter \(k\). At that time \(T\), a ball \(u \in \mathcal{N}_T^k\) is chosen uniformly at random, a new ball is added at position \(Y_T(u) + 1\), and the leftmost ball is erased.

By classical properties of exponential random variables, this evolution can be written in this way: to each ball is associated a clock with parameter 1. When a clock rings, the corresponding ball makes a “child” to the right of its current position, and the leftmost ball is erased. In other words, \((Y_t(u), u \in \mathcal{N}_t^k)\) is a continuous-time branching random walk with selection, with parameter \(\lambda = 1\) and point process \(L = \delta_0 + \delta_1\).

We observe that \(\Lambda(\theta) = e^\theta\). By straightforward computations, this yields

\[v = e, \quad \varphi^* = 1 \quad \text{and} \quad \tau^2 = e.\]

Consequently, using Lemma 6.3, we obtain

\[
\lim_{t \to +\infty} \frac{\max_{u \in \mathcal{N}_t^k} Y_t(u)}{t} = \lim_{t \to +\infty} \frac{\min_{u \in \mathcal{N}_t^k} Y_t(u)}{t} = v_k \quad \text{a.s.,}
\]

with \(\lim_{k \to +\infty}(\log k)^2(v_k - e) = -\frac{\pi^2}{2}\).

By the law of large numbers and Proposition 3.3, we have

\[
\lim_{t \to +\infty} \frac{B(X_{N_t}, 1)}{t} = \lim_{n \to +\infty} \frac{B(X_n, 1)}{n} \lim_{t \to +\infty} \frac{N_t}{t} = kw_k \quad \text{a.s.}
\]

We conclude the proof observing that \(B(X_{N_t}, 1) - 1 = \max_{u \in \mathcal{N}_t^k} X_t(u)\). \(\Box\)
6.3 Speed of the \(N \)-branching random walk

In this section, we present an increasing coupling introduced by Bérard and Gouéré on branching random walks with selection, and use it to prove that the speed of the \(N \)-BRW is well-defined. Loosely speaking, this coupling accounts for the following fact: the larger the population of a branching random walk with selection is, the faster it travels. To state this coupling, we extend the definition of branching random walks with selection to authorize the maximal size of the population to vary.

Let \(F \) be a càdlàg, integer-valued process, adapted to the filtration of the continuous-time branching random walk \((X_t(u), u \in \mathcal{N}_t) \). For any \(t \geq 0 \), we denote by \(\mathcal{N}_t^F \) the \(F(t) \) rightmost descendants of particles belonging to \(\mathcal{N}_t^F \).

We call \((X_t(u), u \in \mathcal{N}_t^F) \) a branching random walk with selection of the size of the population to vary. We use the definition of branching random walks with selection to authorize the maximal size of the population to vary.

One of three things can happen at time \(t \). First, if \(R = T_0 \), there is a reproduction event in \(Y \) but not in \(X \). If we rank in the decreasing order the \(\mathcal{N}_t^F \) (resp. \(\mathcal{N}_t^G \)) as \((x_j) \) (resp. \((y_j) \)), we assume that this property remains true at any time \(t > 0 \), that is, the faster it travels. The first time one of these particles reproduces, for any \(j \leq m \). We write \(T_0 \) the first time one of these particles reproduces, \(T_0 \) is a constant process \(N \in \mathbb{N} \), the notation \(N \)-BRW remains consistent.

In the rest of the article, we will assume the point process law \(\mathcal{L} \) satisfies the integrability conditions (6.3), (6.4) and (6.5).

Lemma 6.4. Let \(F \) and \(G \) be two càdlàg integer-valued adapted processes, we assume that

\[
\forall x \in \mathbb{R}, \# \{ u \in \mathcal{N}_0^F : X_0(u) \geq x \} \leq \# \{ u \in \mathcal{N}_0^G : Y_0(u) \geq x \}.
\]

There exists a coupling between an \(F \)-BRW \((X_t(u), u \in \mathcal{N}_t^F) \), and a \(G \)-BRW \((Y_t(u), u \in \mathcal{N}_t^G) \), such that a.s. for any \(t > 0 \), on the event \(\{ F_s \leq G_s, s \leq t \} \),

\[
\forall x \in \mathbb{R}, \# \{ u \in \mathcal{N}_t^F : X_t(u) \geq x \} \leq \# \{ u \in \mathcal{N}_t^G : Y_t(u) \geq x \}. \tag{6.6}
\]

This lemma is obtained as a straightforward adaptation of [4, Lemma 1].

Proof. We write \(m = \# \mathcal{N}_0^F, n = \# \mathcal{N}_0^G \) and \(x_1 \geq \cdots \geq x_m \) (respectively \(y_1 \geq \cdots \geq y_n \)) the ranked values of \((X_0(u), u \in \mathcal{N}_0^F) \) (resp. \((Y_0(u), u \in \mathcal{N}_0^G) \)).

By assumptions, we have \(m \leq F_0, m \leq n \leq G_0 \) and \(x_j \leq y_j \) for all \(j \leq m \). We assume that we are on the event \(\{ F_s \leq G_s, s \leq t \} \), and we couple \(X \) and \(Y \) such that this property remains true at any time \(s \leq t \).

We associate exponential clocks to particles in the processes in such a way that the particles in position \(x_j \) and \(y_j \) reproduce at the same time, for any \(j \leq m \). We write \(T_0 \) the first time one of these particles reproduces, \(T_0 \) is the first time a particle located at position \(y_{m+1}, \ldots, y_n \) reproduces,

\[
S = \inf \{ t > 0 : F_t \neq F_0 \text{ or } G_t \neq G_0 \} \quad \text{and} \quad R = T_0 \wedge T_0 \wedge S.
\]

We observe that \(X \) and \(Y \) are constant processes until time \(R \), that \(R > 0 \) a.s. and that \(T_0 \neq T_0 \) a.s.

One of three things can happen at time \(R \). First, if \(R = T_0 \), there is a reproduction event in \(Y \) but not in \(X \). If we rank in the decreasing order the children of particles in \(\mathcal{N}_R^F \) (resp. \(\mathcal{N}_R^G \)) as \((\bar{x}_j) \) (resp. \((\bar{y}_j) \)), we again have \(\bar{x}_j \leq \bar{y}_j \) for any \(j \leq m \). As \(F_R \leq G_R \), applying the selection procedure to both models yields

\[
\forall x \in \mathbb{R}, \# \{ u \in \mathcal{N}_R^F : X_R(u) \geq x \} \leq \# \{ u \in \mathcal{N}_R^G : Y_R(u) \geq x \}.
\]

If \(R = T_0 \), then there is a reproduction event in \(X \) and \(Y \). We use the same point process to construct the children of the particle that reproduces in
each process. Once again, ranking in the decreasing order these children, then applying the selection, we have
\[\forall x \in \mathbb{R}, \#\{u \in N^F_R : X_R(u) \geq x\} \leq \#\{u \in N^G_R : Y_R(u) \geq x\}. \]

Finally, if \(R = S \not\in \{T_u, T_b\} \), the maximal size of at least one of the populations is modified. Even if this implies the death of some particles in \(X \) or \(Y \), the property (6.6) is preserved at time \(R \).

There is a finite sequence of times \((R_k)\) smaller than \(t\) such that \(X \) or \(Y \) is modified at each time \(R_k\). Using this coupling on each time interval of the form \([R_k, R_{k+1})\) yields (6.6).

Using this lemma, we prove that the cloud of particles in a \(N \)-BRW drifts at linear speed \(v_N \).

Lemma 6.5. For any \(N \in \mathbb{N} \), there exists \(v_N \) such that
\[
\lim_{t \to +\infty} \frac{1}{t} \max_{u \in N^N_t} X_t(u) = \lim_{t \to +\infty} \frac{1}{t} \min_{u \in N^N_t} X_t(u) = v_N \quad \text{a.s.}
\]
Moreover, if \((X_0(u), u \in N_0) = (0, \ldots, 0) \in \mathbb{R}^N\), we have
\[
v_N = \inf_{t > 0} \frac{E\left[\max_{u \in N^N_t} X_t(u) \right]}{t} = \sup_{t > 0} \frac{E\left[\min_{u \in N^N_t} X_t(u) \right]}{t}. \tag{6.7}
\]

The proof of this lemma is adapted from [4, Proposition 2].

Proof. Let \(N \in \mathbb{N} \), we denote by \((X_t(u), u \in N_t)_t\) an \(N \)-BRW starting with \(N \) particles located at 0 at time 0. We set
\[
M_t = \max_{u \in N^N_t} X_t(u) \quad \text{and} \quad m_t = \min_{u \in N^N_t} X_t(u).
\]
We prove that \((M_t)\) (respectively \((m_t)\)) is a sub-additive (resp. super-additive) sequence.

In effect, by Lemma 6.4, for any \(s \geq 0 \), we can couple \((X_{t+s}(u), u \in N_{t+s})\) with an \(N \)-BRW \(\tilde{X} \) starting with \(N \) particles at position \(M_s \) in such a way that (6.6) is verified. We write \(M_s + M_{s,t} \) the maximal displacement at time \(t \) of \(\tilde{X} \).

For any \(s \leq t \), we have \(M_{0,t} \leq M_{0,s} + M_{s,t} \).

We also observe that for any \(s \geq 0 \), \((M_{s,t})\) has the same law as \((M_t)\), and \(M_{s,t} \) is independent of \((M_{u,v}, u \leq v \leq s)\). Moreover, by Lemma 6.4, the maximal displacement of the \(N \)-BRW \(X \) at time \(t \) is larger than the maximal displacement of a 1-BRW \(Y \) starting with a particle located at 0 at time 0. But the process \(Y \) is a continuous-time random walk, with step distribution max \(L \). Therefore,
\[
E(M_{0,1}) \geq -E\left(\max_{u \in N_1} Y_t(u) \right) > -\infty, \quad \text{by (6.4)}.
\]

Applying Kingman’s subadditive ergodic theorem, there exists \(\overline{\tau}_N \in \mathbb{R} \) such that
\[
\lim_{t \to +\infty} \frac{M_{0,t}}{t} = \overline{\tau}_N \quad \text{a.s. (see Kallenberg [16, Theorem 9.14])}
\]
With a similar reasoning, we obtain
\[
\overline{\tau}_N = \lim_{t \to +\infty} \frac{1}{t} E(M_t) \quad \text{and} \quad \underline{\tau}_N = \lim_{t \to +\infty} \frac{1}{t} E(m_t).
\]

23
We have immediately $\tau_N \geq v_N$, we now prove these two quantities are equal.

Let $A > 0$, we define a sequence of waiting times by setting $T_0 = 0$ and T_{k+1} is the first time after time $T_k + 1$ such that only the descendants of the rightmost particle at time $T_{k+1} - 1$ reproduced between times $T_{k+1} - 1$ and T_{k+1}, every particle alive in $N_{T_{k+1}}$ descend from the rightmost particle at time $T_{k+1} - 1$ and the distance between the rightmost and the leftmost of this offspring is smaller than A_N. As long as $A_N > 0$ is large enough, this defines a sequence of a.s. finite hitting times (as $E(T_k) < +\infty$). By definition, we have

$$\limsup_{k \to +\infty} M_{T_k} - m_{T_k} \leq A_N \quad \text{a.s.}$$

therefore $\liminf_{t \to +\infty} \frac{M_t - m_t}{t} = 0$ a.s. which yields $\tau_N = v_N =: v_N$.

Finally, using Lemma 6.4 again, we can couple a N-BRW X starting from any initial condition X_0 with an N-BRW \overline{X} starting from N particles in position $\max X_0$ and another one X starting with N particles in position $\min X_0$ in such a way that for any $t > 0$,

$$\min_{u \in N^N} X_t(u) \leq \min_{u \in N^N} X_t(u) \leq \max_{u \in N^N} X_t(u) \leq \max_{u \in N^N} \overline{X}_t(u) \quad \text{a.s.}$$

As a consequence, for any N-BRW, we have

$$v_N \leq \liminf_{t \to +\infty} \frac{1}{t} \min_{u \in N^N} X_t \leq \limsup_{t \to +\infty} \frac{1}{t} \max_{u \in N^N} X_t \leq v_N \quad \text{a.s.}$$

which concludes the proof. \square

6.4 End of the proof of Lemma 6.3

In this section, we use Lemma 6.4 to compare the asymptotic behaviour of a continuous-time and a discrete-time branching random walk with selection. In the latter model, every particle in the process reproduces independently at integer-valued times. The discrete-time branching random walk with selection was introduced by Brunet and Derrida [7] to study noisy FKPP equations. In this article, they conjectured that the cloud of particles drifts at speed w_N, that satisfies, as $N \to +\infty$

$$w_N - w = -\frac{\chi}{(\log N + 3 \log \log N + o(\log \log N))^2}, \quad (6.8)$$

for some explicit constants $w \in \mathbb{R}$ and $\chi > 0$.

We describe more precisely the discrete-time branching random walk with selection model. Every particle reproduces independently at each integer time. The children are positioned around their parent according to i.i.d. point processes of law \mathcal{M}. Only the rightmost N children survive to form the new generation. For every $n \in \mathbb{N}$, we set $X_n(1) \geq X_n(2) \geq \ldots \geq X_n(N)$ the ranked positions of particles alive at generation n.

Let M be a point process of law \mathcal{M}. We write $\kappa(\theta) = \log E(\sum_{m \in M} e^{\theta m})$ for any $\theta > 0$, and $w = \inf_{\theta > 0} \frac{\kappa'(\theta)}{\theta}$. We assume

$$\text{there exists } \theta^* > 0 \text{ such that } \theta^* \kappa'(\theta^*) - \kappa(\theta^*) = 0. \quad (6.9)$$
We then have \(w = \kappa(\theta^*) \), and we write \(\sigma^2 = \kappa''(\theta^*) \). Bécard and Gouéré proved that for a binary branching random walk with exponential moments, there exists \((w_N)\) such that

\[
\lim_{n \to +\infty} \frac{X_n(1)}{n} = \lim_{n \to +\infty} \frac{X_n(N)}{n} = w_N \quad \text{a.s.}
\]

and

\[
\lim_{N \to +\infty} (\log N)^2 (w_N - w) = -\frac{\pi^2 \theta^* \sigma^2}{2}.
\]

(6.10)

The integrability assumptions were extended by Mallein [19] to more general reproduction laws. In particular, (6.10) holds under the following conditions:

\[
P(M = \emptyset) = 0, \quad \mathbb{E}(\# M) > 0 \quad \text{and} \quad \mathbb{E}\left(\max_{m \in M} m \right)^2 < +\infty \quad (6.11)
\]

\[
\mathbb{E}\left(\sum_{m \in M} e^{\theta^* m \xi_m^2} \right) + \mathbb{E}\left(\sum_{m \in M} e^{\theta^* m \log \left(\sum_{m \in M} e^{\theta^* m} \right)} \right)^2 < +\infty. \quad (6.12)
\]

Using Lemma 6.4, we extend (6.10) to obtain an upper bound for the asymptotic behaviour of the speed of a continuous-time branching random walk with selection.

Lemma 6.6. We have \(\limsup_{N \to +\infty} (\log N)^2 (v_N - v) \leq -\frac{\pi^2 \varphi^* \tau^2}{2} \).

Proof. Let \((W_t(u), u \in \mathcal{N})\) be a continuous-time branching random walk with reproduction law \(\mathcal{L}\) and parameter \(\lambda\), starting with a single particle at position 0 at \(t = 0\). We introduce the point process \(M = \sum_{u \in \mathcal{N}_t} \delta_{W_t(u)}\). This proof is based on a comparison between the \(N\)-BRW \((X_t(u), u \in \mathcal{N}_t)\), and a discrete-time branching random walk with selection \((Y_n(j), j \leq N_n)\) with reproduction law \(M\).

Let \(\theta > 0\), for any \(t \geq 0\) we write \(f_\theta(t) = \mathbb{E}\left(\sum_{u \in \mathcal{N}_t} e^{\theta W_t(u)} \right)\). Note that

\[
\forall t \geq 0, f_\theta(t) = \lambda \Lambda(\theta) f_\theta(t) \quad \text{with} \quad f_\theta(0) = 1,
\]

therefore \(\kappa(\theta) = \log f_\theta(1) = \lambda \Lambda(\theta)\). Thus, (6.9) is verified by (6.3), and we have \(w = v, \theta^* = \varphi^*\) and \(\sigma^2 = \tau^2\). Moreover, by (6.4) and (6.5), the point process \(M\) satisfies (6.11) and (6.12). As a consequence of [19, Theorem 1.1], there exists a sequence \((w_N)\) such that

\[
\lim_{n \to +\infty} \frac{Y_n(1)}{n} = w_N \quad \text{a.s.}, \quad \text{with} \quad \lim_{N \to +\infty} (\log N)^2 (w_N - v) = -\frac{\pi^2 \varphi^* \tau^2}{2}. \quad (6.13)
\]

We now provide an alternative definition of \((Y_n(j), j \leq N_n)\) as a continuous-time branching random walk. We define a càdlàg adapted process \(F\) as follows. At any integer time \(n \in \mathbb{Z}_+\), we set \(F_n = N\), and if \(t \in (n, n+1)\), \(F_t\) is the number of particles at time \(t\) that descend from a particle in \(\mathcal{N}_n^{(F)}\). By the branching property, we easily observe that the \(F\)-BRW \((Y_t(u), u \in \mathcal{N}_t^{(F)})\) satisfies

\[
\left(\left(Y_n(u), u \in \mathcal{N}_n^{(F)}, n \geq 0 \right), n \geq 0 \right) \overset{(d)}{=} \left(\left(Y_n(j), j \leq N_n, n \geq 0 \right), n \geq 0 \right).
\]
As a result, we can identify the two processes, and (6.13) yields

\[
\lim_{n \to +\infty} \frac{1}{n} \max_{u \in N_n} Y_n(u) = w_N \quad \text{a.s.}
\]

We now extend this convergence on \(\mathbb{Z}_+ \) to the convergence of \(\max_{u \in N'_n} Y_t(u) \).

We denote by \(\xi = \max_{s \in [0,1]} \max_{u \in N'} W_s(u) \) the maximal position attained before time 1 by a continuous-time branching random walk. By (6.4), we have \(\mathbb{E}(\xi) < +\infty \). Moreover, given \((\xi_j^n, j \leq N, n \geq 0) \) i.i.d. copies of \(\xi \), this sequence can easily be coupled with the process \(Y \) such that for all \(n \geq 0 \) and \(t \in [n, n+1) \),

\[
\max_{u \in N'_n} Y_n(u) + \max_{j \leq N} \xi_j \geq \max_{u \in N'_n} Y_t(u) \quad \text{a.s.}
\]

Using the Borel-Cantelli lemma, we conclude that

\[
\limsup_{t \to +\infty} \frac{1}{t} \max_{u \in N'_n} Y_t(u) \leq w_N \quad \text{a.s.}
\]

As \(F_t \geq N \) for any \(t \geq 0 \), by Lemma 6.4, we can couple the processes \(X \) and \(Y \) such that \(\max_{u \in N'_n} X_t(u) \leq \max_{u \in N'_n} Y_t(u) \) a.s. for any \(t \geq 0 \). As a consequence, we have

\[
\limsup_{t \to +\infty} \frac{1}{t} \max_{u \in N'_n} X_t(u) \leq w_N \quad \text{a.s.}
\]

hence \(v_N \leq w_N \), which concludes the proof.

The lower bound is obtained in a similar yet more involved fashion. The proof of this lemma is adapted from [19, Section 4.4].

Lemma 6.7. We have \(\liminf_{N \to +\infty} (\log N)^2(v_N - v) \geq -\frac{\pi^2 \varphi^* \tau^2}{2} \).

Proof. In this proof, we construct a particle process \(Y \) that evolves similarly to a continuous-time branching random walk with selection, with frequent renovation events, and that can be coupled with the \(N \)-BRW \(X \) such that its maximal displacement is smaller than the maximal displacement of \(X \). Given \(\alpha \in (0,1) \), the process evolves typically like a discrete-time \([\alpha N] \)-branching random walk, and on a time scale of order \((\log N)^3 \), every particle in the process is killed and replaced by \(P \) particles starting from the smallest position in \(Y \) at that time.

Let \(\alpha \in (0,1) \), we denote by \(P = [\alpha N] \). We set \((W_t(u), u \in N_t) \) a continuous-time branching random walk starting from a single particle located at position 0. As \(\mathbb{E}(\#L) < +\infty \), there exists \(\beta > 0 \) such that \(\mathbb{E}(\#N_\beta) < \frac{1}{\alpha} - \beta \). We introduce the point process \(M^\beta = \sum_{u \in N_\beta} \delta_{W_\beta(u)} \).

Let \((Y_t(j), j \leq P)_t \) be a discrete-time branching random walk with selection of the rightmost \(P \) particles, with reproduction law \(M^\beta \), starting with \(P \) particles located at position 0. With the same computations as in the proof of Lemma 6.6, we have \(s(\theta) = \beta \lambda(\theta) \) and therefore

\[
w = \beta \varphi, \quad \theta^* = \varphi^* \quad \text{and} \quad \sigma^2 = \beta \tau^2.
\]

Let \(\eta > 0 \) and \(\chi_N = \frac{\pi^2 \varphi^* \tau^2}{2(\log P)^2} \). By [19, Lemma 4.7], there exists \(\gamma > 0 \) such that for all \(N \geq 1 \) large enough, we have

\[
P \left(\exists n \leq (\log P)^3, Y_n(P) - nw \leq -n(1 + \eta)\chi_N \right) \leq \exp(-P^\gamma).
\]

(6.14)
We observe that, as in the proof of Lemma 6.6, \((Y_n(j), j \leq P)\) can be constructed as the values taken at discrete times by a continuous-time \(F\)-BRW. More precisely, we introduce the càdlàg process \((F_i)\) defined by \(F_{n,\beta} = P\) for any \(n \geq 0\) and for any \(t \in (n\beta, (n + 1)\beta)\), \(F_i\) is the number of descendants at time \(t\) of particles belonging to \(N^F_{n,\beta}\). We have

\[
\{(Y_{n,\beta}(u), u \in N^F_{n,\beta}, n \geq 0)\} = (Y_n, j \leq N), n \geq 0\),
\]

therefore we can identify these two processes. For any \(n \in \mathbb{N}\), we introduce the event \(A_n^N = \{\max_{t \leq \beta n} F_t \leq N\}\). We recall that by Lemma 6.4, we can couple \(X\) and \(Y\) in such a way that

\[
\forall x \in \mathbb{R}, \#\{u \in N^F_{n,\beta} : Y_{n,\beta}(u) \geq x\} \leq \#\{u \in N^N_{n,\beta} : X_{n,\beta}(u) \geq x\} \text{ a.s. on } A_n^N.
\]

We bound from below the probability for \(A_n^N\) to occur. As \(P(\#L = 0) = 0\), the process \(F\) is increasing on each interval \((n\beta, (n + 1)\beta)\). Moreover, observe that \(F_{\beta-}\) is the sum of \(P\) i.i.d. random variables, with the same distribution as \(\#N_{\beta}\). This random variable has mean smaller than \(1/\alpha\) and exponential moments (by (6.4)). By Cramér’s large deviations theorem, there exists \(\rho < 1\) such that \(P(F_{\beta-} > N) < \rho^N\). Therefore

\[
P(A_n^{N_C}) \leq \sum_{j=0}^{n-1} P(F_{j,\beta-} > N) \leq n\rho^N. \tag{6.15}
\]

We now construct a particle process \(\tilde{Y}\), based on the \(F\)-BRW \(Y\) that bounds from below the \(N\)-BRW \(X\). Let \(n_N = (\log P)^3\), we set \(T_0 = 0\). For any \(t \geq 0\), we write \(\tilde{N}_t\) the set of particles in \(\tilde{Y}\) alive at time \(t\) and \(\tilde{m}_t = \min_{u \in \tilde{N}_t} \tilde{Y}_t(u)\). The particle process \(\tilde{Y}\) behaves as \(Y\) until the waiting time

\[
T_1 = \min(\beta n_N, T_1^{(1)}, T_1^{(2)}), \quad \text{where } T_1^{(1)} = \inf \{t \geq 0 : F_t \geq N\}
\]

and \(T_1^{(2)} = \beta \inf \{n \in \mathbb{N} : \tilde{m}_{n,\beta} > n(w - \chi_N(1 + \eta))\}\).

At time \(T_1\), every particle in \(\tilde{Y}\) is killed and replaced by \(P\) particles positioned at \(\tilde{m}_{T_1,\beta}\) if \(F_{T_1} > N\) (i.e. \(T_1 = T_1^{(1)}\)) and at position \(\tilde{m}_{T_1}\), otherwise. Observe that by Lemma 6.4, in both cases there are at time \(T_1\) at least \(P\) particles in \(X\) that are to the right of the \(P\) newborn particles in \(\tilde{Y}\).

Let \(k \in \mathbb{N}\), we assume the process \(\tilde{Y}\) has been constructed until time \(T_k\). After this time, it evolves as an \(F\)-BRW until time \(T_{k+1}\). We have

\[
T_{k+1} = \min(T_k + \beta n_N, T_{k+1}^{(1)}, T_{k+1}^{(2)}), \quad \text{where } T_{k+1}^{(1)} = \inf \{t \geq T_k : F_t \geq N\}
\]

and \(T_{k+1}^{(2)} = T_k + \beta \inf \{n \in \mathbb{N} : \tilde{m}_{T_k + \beta n} > n(w - \chi_N(1 + \eta))\}\).

At time \(T_{k+1}\), every particle in \(\tilde{Y}\) is killed and replaced by \(P\) particles positioned at \(\tilde{m}_{T_{k+1},\beta}\) if \(F_{T_{k+1}} > N\) (i.e. \(T_{k+1} = T_{k+1}^{(1)}\)) and at position \(\tilde{m}_{T_{k+1}}\), otherwise.

By recurrence and the construction of the process, we observe that \(\tilde{Y}\) can be coupled with \(X\) in such a way that for any \(t \geq 0\), we have

\[
\forall x \in \mathbb{R}, \#\{u \in N^F_t : \tilde{Y}_t(u) \geq x\} \leq \#\{u \in N^N_t : X_t(u) \geq x\}.
\]
As \(\tilde{m}_t \leq \max_{u \in X_t} X_t(u) \) for any \(t > 0 \) we obtain \(\limsup_{t \to +\infty} \frac{\tilde{m}_t - tv}{t} \leq v_N - v. \)

Moreover, observe that \((T_{k+1} - T_k)_k \) and \((\tilde{m}_{T_{k+1}} - \tilde{m}_{T_k})_k \) are i.i.d. sequences. Consequently, by the law of large numbers we conclude that

\[
\frac{\mathbb{E}(\tilde{m}_{T_1} - T_1 v)}{\mathbb{E}(T_1)} \leq v_N - v.
\]

As a consequence, it is enough to bound from below \(\mathbb{E}(\tilde{m}_{T_1} - T_1 v) \) to conclude the proof.

We introduce the event \(G = \{ T_1 = T^{(2)}_1 < T^{(1)}_1 \} \). By definition of \(T_1 \),

\[
\mathbb{E}(\tilde{m}_{T_1} - T_1 v) \geq \mathbb{E}\left(-\frac{T_1}{v} \chi_N(1 + \eta) 1_G \right) + \mathbb{E}\left((\tilde{m}_{T_1} - T_1 v) 1_{G^c} \right).
\] (6.16)

Observe that until time \(T_1 \), \(\tilde{Y} \) behaves as an \(F \)-BRW. As a consequence, using a slight modification of Lemma 6.4, similar to [19, Corollary 4.2], we can couple \(\tilde{Y} \) on \([0, T_1]\) with \(P \) independent random walks \(((Z^j_t)_{t \leq P}) \), that jump at rate \(\lambda \) according to the law \(\max L \) in such a way that

\[
\forall t < T_1, \tilde{m}_t \geq \min_{j \leq P} Z^j_t \text{ a.s.}
\]

In particular

\[
\mathbb{E}\left((\tilde{m}_{T_1} - T_1 v) 1_{G^c} \right) \geq \mathbb{E}\left((Z^j_{T_1} - T_1 v) 1_{G^c} \right).
\]

Using the Cauchy-Schwarz inequality and (6.5), (6.14) and (6.15), we have

\[
\mathbb{E}\left((Z^j_{T_1} - T_1 v) 1_{G^c} \right)^2 \leq \mathbb{E}\left((Z^j_{T_1} - T_1 v)^2 \right) \mathbb{P}(G^c) \\
\leq P \mathbb{E}\left((Z^j_{T_1} - T_1 v)^2 \right) \mathbb{P}(G^c) \\
\leq Pu_N^2 \left(e^{-Pv} + n_P N^P \right) = o \left((\log N)^{-4} \right).
\]

As a consequence, (6.16) yields

\[
\liminf_{N \to +\infty} (\log N)^2(v_N - v) \geq \liminf_{N \to +\infty} -(\log N)^2 \frac{\chi_N}{\beta} (1 + \eta) \geq -\frac{\pi^2 \theta^* \sigma^2}{2\beta} (1 + \eta).
\]

As \(\varphi^* = \theta^* \) and \(\tau^2 = \frac{\sigma^2}{\beta} \), we conclude the proof by letting \(\eta \to 0. \)

The last statement of Lemma 6.3 is a combination of Lemmas 6.6 and 6.7.

Acknowledgements We would like to thank Ksenia Chernysh, Sergey Foss, Patricía Hersh, Richard Kenyon, Takis Konstantopoulos and Jean-François Rupprecht for fruitful discussions. We also thank Persi Diaconis for pointing out the reference [2].

References

Bastien Mallein, Institut für Mathematik, Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
E-mail address: bastien.mallein@math.uzh.ch

Sanjay Ramassamy, Mathematics Department, Brown University, Box 1917, 151 Thayer street, Providence, RI 02912, USA
E-mail address: sanjay_ramassamy@brown.edu