About
36
Publications
9,601
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
580
Citations
Introduction
Current institution
Publications
Publications (36)
Medical imaging is essential for the assessment of osteoarthritis and the overall knee health. For that purpose, radiographs of the knees of standing patients are acquired commonly. These suffer, however, under projective transformation and thus do not allow conclusions to be drawn about the complex 3-D joint anatomy. Conversely, compared to many 3...
Metal artifacts in computed tomography (CT) arise from a mismatch between physics of image formation and idealized assumptions during tomographic reconstruction. These artifacts are particularly strong around metal implants, inhibiting widespread adoption of 3D cone-beam CT (CBCT) despite clear opportunity for intra-operative verification of implan...
Metal artifacts in computed tomography (CT) arise from a mismatch between physics of image formation and idealized assumptions during tomographic reconstruction. These artifacts are particularly strong around metal implants, inhibiting widespread adoption of 3D cone-beam CT (CBCT) despite clear opportunity for intra-operative verification of implan...
Purpose
Image-guided percutaneous interventions are safer alternatives to conventional orthopedic and trauma surgeries. To advance surgical tools in complex bony structures during these procedures with confidence, a large number of images is acquired. While image-guidance is the de facto standard to guarantee acceptable outcome, when these images a...
Purpose
Machine learning-based approaches now outperform competing methods in most disciplines relevant to diagnostic radiology. Image-guided procedures, however, have not yet benefited substantially from the advent of deep learning, in particular because images for procedural guidance are not archived and thus unavailable for learning, and even if...
Purpose
Minimally invasive alternatives are now available for many complex surgeries. These approaches are enabled by the increasing availability of intra-operative image guidance. Yet, fluoroscopic X-rays suffer from projective transformation and thus cannot provide direct views onto anatomy. Surgeons could highly benefit from additional informati...
In unilateral pelvic fracture reductions, surgeons attempt to reconstruct the bone fragments such that bilateral symmetry in the bony anatomy is restored. We propose to exploit this “structurally symmetric” nature of the pelvic bone, and provide intra-operative image augmentation to assist the surgeon in repairing dislocated fragments. The main cha...
Machine learning-based approaches outperform competing methods in most disciplines relevant to diagnostic radiology. Interventional radiology, however, has not yet benefited substantially from the advent of deep learning, in particular because of two reasons: (1) Most images acquired during the procedure are never archived and are thus not availabl...
X-ray image guidance enables percutaneous alternatives to complex procedures. Unfortunately, the indirect view onto the anatomy in addition to projective simplification substantially increase the task-load for the surgeon. Additional 3D information such as knowledge of anatomical landmarks can benefit surgical decision making in complicated scenari...
In percutaneous orthopedic interventions the surgeon attempts to reduce and fixate fractures in bony structures. The complexity of these interventions arises when the surgeon performs the challenging task of navigating surgical tools percutaneously only under the guidance of 2D interventional X-ray imaging. Moreover, the intra-operatively acquired...
Patient motion is one of the major challenges in cone-beam computed tomography (CBCT) scans acquired under weight-bearing conditions, since it leads to severe artifacts in reconstructions. In knee imaging, a state-of-the-art approach to compensate for patient motion uses fiducial markers attached to the skin. However, marker placement is a tedious...
In unilateral pelvic fracture reductions, surgeons attempt to reconstruct the bone fragments such that bilateral symmetry in the bony anatomy is restored. We propose to exploit this "structurally symmetric" nature of the pelvic bone, and provide intra-operative image augmentation to assist the surgeon in repairing dislocated fragments. The main cha...
In percutaneous orthopedic interventions the surgeon attempts to reduce and fixate fractures in bony structures. The complexity of these interventions arises when the surgeon performs the challenging task of navigating surgical tools percutaneously only under the guidance of 2D interventional X-ray imaging. Moreover, the intra-operatively acquired...
Machine learning-based approaches outperform competing methods in most disciplines relevant to diagnostic radiology. Interventional radiology, however, has not yet benefited substantially from the advent of deep learning, in particular because of two reasons: 1) Most images acquired during the procedure are never archived and are thus not available...
X-ray image guidance enables percutaneous alternatives to complex procedures. Unfortunately, the indirect view onto the anatomy in addition to projective simplification substantially increase the task-load for the surgeon. Additional 3D information such as knowledge of anatomical landmarks can benefit surgical decision making in complicated scenari...
Cone-beam rotational angiography enables 3D imaging of the hepatic vasculature and is considered beneficial for guidance of transcatheter arterial chemoembolization procedures. Respiratory motion during the rotational acquisition challenges state-of-the-art reconstruction algorithms as intra-scan motion leads to inconsistencies causing substantial...
C-arm cone-beam computed tomography (CBCT) has been used recently to acquire images of the human knee joint under weight-bearing conditions to assess knee joint health under load. However, involuntary patient motion during image acquisition leads to severe motion artifacts in the subsequent reconstructions. The state-of-the-art uses fiducial marker...
Novel algorithms in the field of X-ray imaging are commonly evaluated on simulation software first, before they are implemented on a clinical scanner in order to test their performance in a very controlled setup. This reduces patient dose and facilitates the development of new approaches and methods. In recent years, range imaging applications were...
Osteoarthritis is a degenerative disease affecting bones and cartilage especially in the human knee. In this context, cartilage thickness is an indicator for knee cartilage health. Thickness measurements are performed on medical images acquired in-vivo. Currently, there is no standard method agreed upon that defines a distance measure in articular...
Cone-beam C-arm CT systems allow to scan patients in weight-bearing positions to assess knee cartilage health under more realistic conditions. Involuntary patient motion during the acquisition results in motion artifacts in the reconstructions. The current motion estimation method is based on fiducial markers. They can be tracked with a high spatia...
C-arm cone-beam CT systems have an increasing popularity in the clinical environment due to their highly flexible scan trajectories.Recent work used these systems to acquire images of the knee joint under weight-bearing conditions. During the scan, the patient is in a standing or in a squatting position and is likely to show involuntary motion, whi...
Recent C-arm CT systems allow for the examination of a patient’s knees under weight-bearing conditions. The standing patient tends to show involuntary motion, which introduces motion artifacts in the reconstruction. The state-of-the-art motion correction approach uses fiducial markers placed on the patients’ skin to estimate rigid leg motion. Marke...
Purpose:
Cone-beam computed tomography (CBCT) suffers from a large amount of scatter, resulting in severe scatter artifacts in the reconstructions. Recently, a new scatter correction approach, called improved primary modulator scatter estimation (iPMSE), was introduced. That approach utilizes a primary modulator that is inserted between the X-ray...
Cone-beam computed tomography (CBCT) suffers from a large amount of scatter, resulting in severe scatter arti-facts in the reconstructions. Recently, a novel scatter correction approach was introduced using a primary modulator, which is inserted between the X-ray source and the object. The method showed promising results, but was tested on a table-...
Voice hoarseness can have various reasons, one of them is a change of the vocal fold mucus. This change can be examined with micro endoscopes. Cell detection in these images is a difficult task, due to bad image quality, caused by noise and illumination variations. In previous works, it was observed that the repetitive pattern of the cell walls cau...
In C-arm computed tomography, patient dose reduction by
volume-of-interest (VOI) imaging is of increasing interest for many
clinical applications. A remaining limitation of VOI imaging is the
truncation artifact when reconstructing a 3D volume. It can either be
cupping towards the boundaries of the field-of-view (FOV) or an
incorrect offset in the...
Patient dose reduction in C-arm computed tomography by volume-of-interest (VOI) imaging is becoming an interesting topic for many clinical applications. One limitation of VOI imaging that remains is the truncation artifact in the reconstructed 3-D volume. This artifact can either be a cupping effect towards the boundaries of the field-of-view (FOV)...