
 
 
 
 
 
 
 
Title: Embedded system for real time flight flutter detection 
 
Authors: Tadeusz Uhl, Maciej Petko, Bart Peeters, Herman Van der Auweraer 

Bart Peeters
In Proceedings of the 6th International Workshop on Structural Health Monitoring, Stanford University, CA, USA, 11-13 September 2007



 
Tadeusz Uhl, Maciej Petko, AGH University of Science and Technology, al. Mickiewicza 30, 
30-059 Krakow, Poland, e-mail: tuhl@agh.edu.pl 
Bart Peeters, Herman Van der Auweraer, LMS International, Interleuvenlaan 68, 3001 
Leuven, Belgium 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 
ABSTRACT 

 
The paper presents an idea of flutter margin detection algorithm which is based on 
identification of natural frequencies and modal damping ratio for airplane structure 
employing in-flight vibration measurements. The method is based on application of 
wavelets filtering for decomposition of measured system response into components 
related to particular vibration modes. In the second step classical Recursive Least 
Square (RLS) estimation methods is used to obtain ARMA model parameters. The 
hardware implementation of proposed algorithm is based on FPGA technology which 
allows implementing complex algorithm in a one chip. The results of modal 
parameters tracking using designed real-time embedded system are compared with 
more classical in-flight modal analysis at discrete flight points. 

. 
 

INTRODUCTION 
 

Unstable vibrations of an airplane can be a reason of a catastrophic failure of the 
aircraft [1]. In the literature [2], [3], [4] many cases of flutter phenomena are carefully 
studied. The procedure of in-flight flutter testing consists of measurements of 
structural vibration of an airplane and, based on these measurements, an estimation of 
modal model parameters [5], [6]. Each possible aircraft configuration should be tested 
separately. Many papers are focused on development of operational modal analysis 
methods which can be directly applied for modal parameters estimation during a flight 
[7], [8]. Some are realized iteratively in real time, with less than 1 second interval 
between estimations [9]. During the proposed procedure; based on recorded signals, 
the modal parameters of the structure are estimated using any identification method. 
The procedure should be applied at each test point to determine Flight Clearance 
Envelope (FCE) [4]. There are many different modal parameters identification 
methods that could be used for flight flutter testing [8]. Both time domain and 
frequency domain methods match the requirements for on-line modal parameters 
identification [9]. The time-domain method, based on classical recursive RLS 
algorithm, is applied as the proposed solution and is efficient enough and relatively 
easy to implement. The idea of the proposed method is based on application of 



wavelets filtering for decomposition of measured system response into components 
related to particular vibration modes [10, 11]. These components can be extracted in 
parallel way for all modes. The procedure can be applied to any number of measured 
signals and consists of steps listed in the diagram (Fig. 1). 
 

 
 

Figure 1. Diagram of applied flutter margin detection procedure 
 

 In the second step classical Recursive Least Square (RLS) estimation methods is used 
to obtain ARMA model parameters. The second order model is assumed in 
implementation to obtain modal parameters for separated modes. The limitations of 
implementation are amount of FPGA resources (for parallel wavelet transformation 
engines and signals and wavelets buffers) and computational speed (for sequential 
calculations of RLS and estimation of modal parameters). During estimation phase 
confidence bounds are calculated to assess quality of the procedure. There are 
different methods for confidence bounds estimation in modal analysis techniques [11, 
15], but only a few can be realized on-line. The method implemented in the 
formulated procedure is based on the linearization of the relation between the ARMA 
model parameters variance and the standard deviation of the modal parameters.  

 
 

 A  METHOD OF FLUTTER MARGIN ESTIMATION 
 

The time domain method is formulated for linear systems with time-varying 
parameters. The model parameters are estimated for each time step of the iteration 
based on values from a previous calculation. The recursive identification methods are 
widely used in adaptive control systems [16]. The flowchart of the recursive 
procedure for damping estimation is depicted in figure 3. Parameters estimators are 
computed at each sampling interval according to the minimum of objective function 
which is defined as follows: 
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where: α is the forgetting factor, which describes the influence of the j-th sample on 
the i-th estimator, 0 < α ≤1. If the model parameters are not changing, α should be set 



as 1. The proper choice of the α (which oscillate between 0.95 and 0.99) value gives 
better parameters tracking properties of the algorithm. 
 
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 2. Flowchart of recursive method for damping estimation. 
 

The basic assumption for the algorithm is that covariance matrix P is positive definite 
at each iteration step: 
 

∑
=

−− −−=
i

j

Tji
def

jji
1

1 )1()1()( ϕϕαP              (2) 

 
The ARMA model’s parameters in the presented method are estimated from the 
iterative formula: 
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In order to find the damping ratio for given vibration natural mode, poles of the 
system should be found. The second order model is assumed for each analyzed mode 
and many independent models can be investigated concurrently. It simplifies the 
process of system poles extraction. The ARMA model represents discrete model of 
the system but to assess values of modal parameters the poles of continues system are 
required  The relationship between continues and discrete poles are as follows [17]: 
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where; iλ  is the characteristic polynomial root for discrete case, ii Ω,δ are the damping 
ratio and natural frequency for continuous case, T  is the sampling period.  
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ASSESSMENT OF CONFIDENCE BOUNDS FOR FLUTTER MARGIN 
REAL TIME ESTIMATORS  

 
During recursive identification, covariance matrix elements P(i) are estimated at 

each step of the procedure. Diagonal parameters of the covariance matrix are 
variances of the particular ARMA model parameters [16]. These parameters are 
inputs of confidence bounds estimation for modal parameters for all modes under 
investigation. The relationship between the ARMA model parameters and the modal 
model parameters is strongly nonlinear because the ARMA model is defined in the 
discrete time domain (sampled signal) but the modal parameters are identified in the 
continuous time domain. To find the confidence bound based on known ARMA 
parameters the variance linearization of relation between the ARMA and the modal 
parameters has to be linearized [15]. The Taylor expansion method is proposed for 
this purpose. The covariance matrix for modal parameters can be estimated at each 
step of the procedure by applying the following formula: 
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where: nκ̂ is the vector of the modal parameters at sample n, J() is the Jacobian matrix, 

Nθ̂  is a vector of the ARMA model parameters, 0θ is the vector of exact value of the 
ARMA model parameters, P(θn) is the covariance matrix of the ARMA model 
parameters, Pk(κn) is the covariance matrix of the modal parameters. 
The Jacobian matrix can be obtained from the numerical differentiation using the 
central difference theorem. The i-th column of matrix ( )NJ θ  can be numerically 
estimated by: 
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where; dθi is a small ARMA parameter perturbation of the value one order of the 
magnitude smaller than the required accuracy of standard deviation estimation; f is a 
function expressing the relationship between the modal parameters and parameters of 
the ARMA model (equations (4) and (5)). The standard deviation of modal parameters 
can be numerically calculated, according to equations (6) and (7), from the diagonal 
elements of matrix Pκ(κn).  
 
 
IMPLEMENTATION OF THE FLUTTER MARGIN MONITORING 
ALGORITHM 
 

Performance of calculations depends on how fast and how precisely individual 
parts of the algorithms are realized. Increased precision means longer time needed 
for calculations. Imposed tight execution time restrictions can be satisfied using a 
fast, expensive processor, a multiprocessor system or by mixed hardware-software 
implementation. The latter option was selected so as to allow for the greatest 
flexibility, future improvements and modifications. All calculations are shared 



between software (dark gray blocks) and hardware (light gray blocks), as shown in 
Fig. 3, on a system created on a Stratix FPGA chip. Software means that parts of 
the algorithm are written in C and then compiled for a Nios II soft-processor. 
Hardware fragments are realized in the logic of the FPGA and the Avalon Bus is 
used for data exchange. The flutter margin monitoring algorithm consists of five 
steps (Fig. 3): data read from the analog-to-digital converters (ADC), convolution 
of a stored wavelet with signals from sensors, signals reconstruction, on-line 
recursive least square (RLS) routine for estimation of parameters of the ARMA 
models, and determination of damping coefficients for flutter detection. The 
floating-point operations of the software part are accelerated by custom instructions 
created in the Nios II ALU hardware, namely, floating-point addition, 
multiplication, reciprocal and square root. Data acquisition from the DACs is 
performed with a programmable frequency in the range of 10-200 Hz. 

 

 
 

Figure 3. Hardware-software partitioning of the flutter monitoring algorithm 
 

The RLS algorithm and damping coefficients calculations are performed for each 
wavelet-filtered signal in the floating-point arithmetic by the processor being 
supported by custom instructions. The flutter appearance can then be determined 
using the damping coefficients thresholds table indexed by the actual flight 
conditions. 

 
VERIFICATION OF THE DESIGNED FLUTTEROMETER 

 
The performance of the flutterometer has been verified on acceleration signals 
recorded with a sampling frequency of 160 Hz during flight test of a TS-11 Iskra 
military jet aircraft that performed at variable speeds within the 250-750 km/h range. 
During the flutterometer verification experiment, two signals were used: one 
measured a fin and the second the tail of the plane. At both points, two modes of 
vibration dominate: the first with a frequency of 27 Hz and the second 47 Hz. They 
were decoupled by convolution of 512 signal samples with Morlet wavelets around 



100 points long. Convolution of such lengths of signals and wavelets buffers with 
signal reconstruction takes 2.5 ms per sample, irrespective of the number of modes 
analyzed. Recursive RLS algorithm damping ratio calculations consume 0.5 ms of 
processor time per sample per mode. All calculations for the four modes take 4.5 ms 
per sample and results in over 200 Hz of maximum sampling frequency. 

Figure 4. Estimated on-line natural frequency and modal damping with their confidence intervals. 
 
Thus, processing 20 modes would take 12.5 ms, allowing for signals sampling with 
80 Hz. Assuming the confidence level to be 99.7%, uncertainty bounds for the modal 
parameters estimated using the procedure described in section 3, are shown in figure 
4. As it can be noticed in the figure 4, the confidence bounds for the system under 
analysis are relatively small, but only at the start of the recursion process variability of 
parameters have an unacceptable level. 
 
 

COMPARISON WITH CLASSICAL IN-FLIGHT MODAL ANALYSIS AT 
DISCRETE FLIGHT POINTS 
 
The same data was also analyzed in a classical way using non-recursive algorithms. In 
this paper, the Operational Modal Analysis version of PolyMAX was used [18]. The 
main advantage of PolyMAX is that it yields extremely clear stabilization diagrams. 
This makes an automation of the parameter identification process rather 
straightforward and enables a continuous monitoring of the dynamic properties of a 
structure [19]. The idea adopted here was to use a so-called “sliding window” 
approach. The time data was split in highly-overlapping segments and each segment 
was processed independently and automatically. The chosen segment length was 1600 
samples. The segments were overlapping 95%, which mean that every 0.5 s an update 
of the modal parameters is available. These modal parameters are of course not the 
instantaneous modal parameters, but are assumed to be “representative” for the whole 
processed segment of 10 s. Fig.5 shows the automatic processing results of a single 
segment. The PolyMAX settings were; Block size of the autocorrelation function = 
256 samples (number of time lags), Exponential window parameter = 1%, Frequency 
band 20 – 60 Hz, Maximum model order = 20. These settings allowed a very quick 
calculation (less than 0.5s) of the modal parameters. The good correspondence 
between measured and synthesized spectrum confirms that the analysis was successful 
(see figure 5 – Right). In the figure 5, the automatic PolyMAX results of all data 
segments are represented. An automated mode tracking procedure was applied to 
these results. The outcome of the tracking operation is represented in Figure 6. Two 



tail sensors 7 and 8 have been processed independently with the described procedure. 
The frequency values estimated from both sensors agree very well (Figure ). Although 
the damping ratios show a larger variance, again both sensors agree well. Moreover, 
the trends in the damping ratios correspond very well to the online results presented in 
the figure 4. 
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Figure 5: (Left) PolyMAX stabilization diagram + automatic selection of poles. (Right) 

correspondence between measured and synthesized spectrum. 
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Figure 6. Tracking of the eigenfrequency at 27 Hz. Data from 2 sensors was processed 

independently (left). Tracking of the damping ratio of the mode at 27 Hz. Data from 2 sensors was 
processed independently (right). 

 
CONCLUSIONS 

 
A formulated algorithm allows computing modal parameters of complex 

structures on-line during a flight. Implementation of the flutter monitoring algorithm 
is proposed with the Hardware-Software Co-design approach, i.e. a part realized by 
hardware and the remaining part by software running on a Nios II soft-processor 
contained in the FPGA. The flutterometer is an example of the System-on-Chip, 
which allows for high level of integration and flexibility – it can be altered, e.g. to 
optimize for different algorithms, or to add some functionality, by reprogramming the 
FPGA without modifications of the PCB. For the tested structure, 12 first modes 
parameters have been identified simultaneously during 0.001 second. Confidence 
intervals for all parameters are relatively small and the method can be applied for 
flight flutter testing based on in-flight measurements. As it was shown the results are 
very similar to results obtained using different classical methods realized off- line.  



 
 

ACKNOWLEDGEMENTS 
 
This work was carried out in the frame of the EUREKA project E! 3341 FLITE2. The 
financial support of the Institute for the Promotion of Innovation by Science and 
Technology in Flanders (IWT) is gratefully acknowledged. Polish partners have been 
financed by the Ministry of Science and Higher Education within a frame of Eureka 
Flite2 project. 

 
REFERENCES 
 
[1] M.W. Kehoe: A historical Preview of flight flutter testing, AGARD Conference Proceedings 

566, Advanced Aeroservoelastic Testing and Data Analysis, (1995). 
[2] I.E. Garrick and W.H. Reed: Historical development of aircraft flutter, Journal of Aircraft, 

v.18, (1981), pp. 897-912. 
[3] M.J. Brenner, R.C. Lind and D.F. Voracek: Overview of recent flight flutter testing research 

at NASA Dryden, NASA TM/4792, (1997). 
[4] A.A. Abbasi and J.E. Cooper: Current Status and Challenges for Flight Flutter Testing, 

Proceedings of ISMA 2006 Conference, Leuven, (2006), pp. 1523- 1546. 
[5] E. Nissim and G.B. Gilyard: Methods for Experimental determination of flutter speed by 

parameter Identification, NASA TP-2923, (1989). 
[6] G. Dimitriadis and J.E. Cooper: Flutter prediction flight flutter test data, AIAA Journal of 

Aircraft, vol. 38, (2001), pp. 355-367,. 
[7] L. Hermans and H. Van der Auweraer: Modal testing and analysis of structures under 

operational conditions: Industrial applications, Mechanical Systems and Signal Processing 
(1999) 13(2), pp. 193-216. 

[8] T. Uhl, W. Lisowski and P. Kurowski: In-operation modal analysis and its application, AGH, 
Krakow, (2001). 

[9] M. Bogacz and T. Uhl: Real time modal model identification and its application for damage 
detection, Proceedings of ISMA 2004 Conference, Leuven, (2004), pp. 1065- 1075. 

[10] A. Klepka and T. Uhl: Application of wavelet transform to identification of modal parameters 
of nonstationary systems, J. of Theoretical and Applied Mech., Vol. 43, (2005) ,pp. 277-296.  

[11] A. Klepka: Identification of modal parameters of mechanical structures in nonstationary 
conditions, PhD thesis, AGH Univ. of Science and Technology, Krakow, (2005) (in Polish). 

[12] T. Kambe, A. Yamada and M. Yamaguchi: Trend of system level design and approach to C-
based design, Microelectronics Journal, Vol. 33, (2002), pp. 875-880. 

[13] M. Petko and G. Karpiel: Semi-Automatic Implementation of Control Algorithms in 
ASIC/FPGA, in 2003 IEEE Conference on Emerging Technologies and Factory Automation: 
Proceedings, vol. 1, pp. 427-433. 

[14] M.D. Edwards, J. Forrest and A.E. Whelan: Acceleration of software algorithms using 
hardware/software co-design techniques, J. of Systems and Architecture, Vol. 42, (1996/97), 
pp. 697-707. 

[15] P. Andersen, Identification of Civil Engineering structures using Vector ARMA Models, Ph D. 
Thesis, Aalborg University, 1997 

[16] Söderström, T., P., Stoica (1988), System identification, Prentice-Hall Int., Hempstead, U.K. 
[17] T. Uhl., Computer assisted identification of mechanical structures,(in Polish), WNT, 

Warszawa, 1998 
[18] J. Lau, J. Lanslots, B. Peeters, H. Van der Auweraer. Automatic modal analysis: reality or 

myth? In Pro. of IMAC 25, the International Modal Analysis Conference, Orlando (FL), USA, 
19-22 February 2007. 

[19] B. Peeters, H. Van der Auweraer, F. Vanhollebeke, P. Guillaume. Operational modal analysis 
for estimating the dynamic properties of a stadium structure during a football game. Shock 
and Vibration – Special Issue: Assembly Structures under Crowd-Dynamic Excitation, 
Accepted for publication, 2007 




