Barrie Wilkinson

Barrie Wilkinson
John Innes Centre · Department of Molecular Microbiology

PhD

About

167
Publications
28,602
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
7,081
Citations
Citations since 2017
61 Research Items
3644 Citations
20172018201920202021202220230200400600800
20172018201920202021202220230200400600800
20172018201920202021202220230200400600800
20172018201920202021202220230200400600800
Additional affiliations
June 2013 - present
John Innes Centre

Publications

Publications (167)
Article
Full-text available
CutRS was the first two-component system to be identified in Streptomyces species and is highly conserved in this genus. It was reported >25 years ago that deletion of cutRS increases the production of the antibiotic actinorhodin in Streptomyces coelicolor. However, despite this early work, the function of CutRS has remained enigmatic until now. He...
Article
Formicamycins and their biosynthetic intermediates the fasamycins are polyketide antibiotics produced by Streptomyces formicae KY5 from a pathway encoded by the for biosynthetic gene cluster. In this work the ability of Streptomyces coelicolor M1146 and the ability of Saccharopolyspora erythraea Δery to heterologously express the for biosynthetic g...
Article
Full-text available
Obafluorin is a Pseudomonas fluorescens antibacterial natural product that inhibits threonyl-tRNA synthetase (ThrRS). It acts as a broad-spectrum antibiotic against a range of clinically relevant pathogens and comprises a strained...
Article
Full-text available
Deletion of genes encoding ribosomal proteins extends lifespan in yeast. This increases translation of the functionally conserved transcription factor Gcn4, and lifespan extension in these mutants is GCN4-dependent. Gcn4 is also translationally upregulated by uncharged tRNAs, as are its C. elegans and mammalian functional orthologs. Here we show th...
Article
Full-text available
By limiting the nitrogen source to glutamic acid, we isolated cyclic peptides from Euglena gracilis containing asparagine and non-proteinogenic amino acids. Structure elucidation was accomplished through spectroscopic methods, mass spectrometry and chemical degradation. The euglenatides potently inhibit pathogenic fungi and cancer cell lines e.g.,...
Article
Full-text available
Actinobacteria is an ancient phylum of Gram-positive bacteria with a characteristic high GC content to their DNA. The ActinoBase Wiki is focused on the filamentous actinobacteria, such as Streptomyces species, and the techniques and growth conditions used to study them. These organisms are studied because of their complex developmental life cycles...
Article
Full-text available
Reprogramming biosynthetic assembly-lines is a topic of intense interest. This is unsurprising as the scaffolds of most antibiotics in current clinical use are produced by such pathways. The modular nature of assembly-lines provides a direct relationship between the sequence of enzymatic domains and the chemical structure of the product, but ration...
Article
Full-text available
By limiting the nitrogen source to glutamic acid, we isolated cyclic peptides from Euglena gracilis containing asparagine and non‐proteinogenic amino acids. Structure elucidation was accomplished through spectroscopic methods, mass spectrometry and chemical degradation. The euglenatides potently inhibit pathogenic fungi and cancer cell lines e.g.,...
Article
Full-text available
Streptomyces clavuligerus is an industrially important actinomycete whose genetic manipulation is limited by low transformation and conjugation efficiencies, low levels of recombination of introduced DNA, and difficulty in obtaining consistent sporulation. We describe the construction and application of versatile vectors for Cas9-mediated genome ed...
Article
Full-text available
Background The cuticular microbiomes of Acromyrmex leaf-cutting ants pose a conundrum in microbiome biology because they are freely colonisable, and yet the prevalence of the vertically transmitted bacteria Pseudonocardia , which contributes to the control of Escovopsis fungus garden disease, is never compromised by the secondary acquisition of oth...
Preprint
Full-text available
Reprogramming biosynthetic assembly-lines is a topic of intense interest. This is unsurprising as the scaffolds of most antibiotics in current clinical use are produced by such pathways. The modular nature of assembly-lines provides a direct relationship between the sequence of enzymatic domains and the chemical structure of the product, but ration...
Article
Full-text available
For over a decade, Streptomyces venezuelae has been used to study the molecular mechanisms that control morphological development in streptomycetes and it is now a well-established model strain. Its rapid growth and ability to sporulate in a near-synchronised manner in liquid culture, unusual among streptomycetes, greatly facilitates the applicatio...
Article
Full-text available
Streptomyces species are saprophytic soil bacteria that produce a diverse array of specialized metabolites, including half of all known antibiotics. They are also rhizobacteria and plant endophytes that can promote plant growth and protect against disease. Several studies have shown that streptomycetes are enriched in the rhizosphere and endosphere...
Article
Full-text available
Teucrium yemense, a medicinal plant commonly grown in Saudi Arabia and Yemen, is traditionally used to treat infections, kidney diseases, rheumatism, and diabetes. Extraction of the dried aerial parts of the plant with methanol, followed by further extraction with butanol and chromatography, gave twenty novel neoclerodanes. Their structures, relati...
Article
Full-text available
The formicamycins are promising antibiotics first identified in Streptomyces formicae KY5, which produces the compounds at low levels. Here, we show that by understanding the regulation of the for biosynthetic gene cluster (BGC), we can rewire the BGC to increase production levels. The for BGC consists of 24 genes expressed on nine transcripts. The...
Preprint
Full-text available
Teucrium yemense , a medicinal plant commonly grown in Saudi Arabia and Yemen, is traditionally used to treat infections, kidney diseases, rheumatism, and diabetes. Extraction of the dried aerial parts of the plant with methanol, followed by further extraction with butanol and chromatography, gave twenty novel neoclerodanes. Their structures, relat...
Preprint
Full-text available
Cuticular microbiomes of Acromyrmex leaf-cutting ants are exceptional because they are freely colonizable, and yet the prevalence of Pseudonocardia , a native vertically transmitted symbiont that controls Escovopsis fungus-garden disease, is never compromised. Game theory suggests that competition-based screening can allow the selective recruitment...
Article
Full-text available
Fungus-growing attine ants are under constant threat from fungal pathogens such as the specialized mycoparasite Escovopsis, which uses combined physical and chemical attack strategies to prey on the fungal gardens of the ants. In defence, some species assemble protective microbiomes on their exoskeletons that contain antimicrobial-producing Acti-no...
Preprint
Full-text available
The formicamycins are promising antibiotics with potent activity against Gram-positive pathogens including VRE and MRSA and display a high barrier to selection of resistant isolates. They were first identified in Streptomyces formicae KY5, which produces the formicamycins at low levels on solid agar but not in liquid culture, thus hindering further...
Preprint
Full-text available
Streptomyces species are saprophytic soil bacteria that produce a diverse array of specialised metabolites, including half of all known antibiotics. They are also rhizobacteria and plant endophytes that can promote plant growth and protect against disease. Several studies have shown that streptomycetes are enriched in the rhizosphere and endosphere...
Article
Full-text available
Aberrant splicing of pre-mRNA is implicated in many human genetic disorders. Small molecules that target the spliceosome are important leads as therapeutics and research tools, and one compound of significant interest is the polyketide natural product pladienolide B. Here, we describe the reactivation of quiescent pladienolide B production in the d...
Article
Full-text available
Streptomyces bacteria are ubiquitous in soils and are well known for producing secondary metabolites, including antimicrobials. Increasingly, they are being isolated from plant roots, and several studies have shown they are specifically recruited to the rhizosphere and the endosphere of the model plant Arabidopsis thaliana. Here, we test the hypoth...
Article
Full-text available
Fasamycin natural products are biosynthetic precursors of the formicamycins. Both groups of compounds are polyketide natural products that exhibit potent antibacterial activity despite displaying different three-dimensional topologies. We show here that transformation of fasamycin into formicamycin metabolites requires two gene products and occurs...
Article
The effects of epigenetic modulation on secondary metabolite biosynthesis were investigated with five Aspergillus species cultured in the presence of either the DNA methyltransferase inhibitor 5-azacitidine or the histone deacetylase inhibitor vorinostat. With Aspergillus calidoustus and Aspergillus westerdijkiae, fermentation in the presence of vo...
Article
Full-text available
The discovery of novel antibiotics to tackle the growing threat of antimicrobial resistance is impeded by difficulties in accessing the full biosynthetic potential of microorganisms. The development of new tools to unlock the biosynthesis of cryptic bacterial natural products will greatly increase the repertoire of natural product scaffolds. Here,...
Article
To meet the ever-growing demands of antibiotic discovery, new chemical matter and antibiotic targets are urgently needed. Many potent natural product antibiotics which were previously discarded can also provide lead molecules and drug targets. One such example is the structurally unique β-lactone obafluorin, produced by Pseudomonas fluorescens ATCC...
Article
Full-text available
The first antibiotic, salvarsan, was deployed in 1910. In just over 100 years antibiotics have drastically changed modern medicine and extended the average human lifespan by 23 years. The discovery of penicillin in 1928 started the golden age of natural product antibiotic discovery that peaked in the mid-1950s. Since then, a gradual decline in anti...
Article
Full-text available
Numerous important therapeutic agents, including widely-used antibiotics, anti-cancer drugs, immunosuppressants, agrochemicals and other valuable compounds, are produced by microorganisms. Many of these are biosynthesised by modular enzymatic assembly line polyketide synthases, non-ribosomal peptide synthetases, and hybrids thereof. To alter the ba...
Preprint
Full-text available
Most clinical antibiotics are derived from actinomycete natural products (NPs) discovered at least 60 years ago. Repeated rediscovery of known compounds led the pharmaceutical industry to largely discard microbial NPs as a source of new chemical diversity but advances in genome sequencing revealed that these organisms have the potential to make man...
Article
Full-text available
The formicamycin biosynthetic gene cluster encodes two groups of type 2 polyketide antibiotics: the formicamycins and their biosynthetic precursors the fasamycins, both of which have activity against methicillin-resistant Staphylococcus aureus. Here, we report the formicapyridines which are encoded by the same gene cluster and are structurally and...
Preprint
Full-text available
To meet the ever-growing demand of antibiotic discovery, new chemical matter and antibiotic targets are urgently needed. Many potent natural product antibiotics which were previously discarded can also provide lead molecules and drug targets. One such example is the structurally unique beta-lactone obafluorin, produced by Pseudomonas fluorescens AT...
Article
Full-text available
Discovering new antibiotics is vital to combat the growing threat of antimicrobial resistance. Most currently used antibiotics originate from the natural products of actinomycete bacteria, particularly Streptomyces species, that were discovered over 60 years ago. However, genome sequencing has revealed that most antibiotic-producing microorganisms...
Preprint
Full-text available
We report the formicapyridines which are structurally and biosynthetically related to the pentacyclic fasamycin and formicamycin aromatic polyketides but comprise a rare pyridine moiety. These new compounds are trace level metabolites formed by derailment of the major biosynthetic pathway. Inspired by evolutionary logic we show that rational mutati...
Preprint
Full-text available
Streptomyces bacteria are ubiquitous in soils and are well-known for producing secondary metabolites, including antimicrobials. Increasingly, they are being isolated from plant roots and several studies have shown they are specifically recruited to the rhizosphere and the endosphere of the model plant Arabidopsis thaliana . Here we test the hypothe...
Preprint
Full-text available
Many animals and plants recruit beneficial microbes from the environment, enhancing their defence against pathogens. However, we have only a limited understanding of the assembly mechanisms involved. A game-theoretical concept from economics, screening , potentially explains how a host can selectively recruit antibiotic-producing microbes from the...
Article
Full-text available
Acromyrmex leafcutter ants form a mutually beneficial symbiosis with the fungus Leucoagaricus gongylophorus and with Pseudonocardia bacteria. Both are vertically transmitted and actively maintained by the ants. The fungus garden is manured with freshly cut leaves and provides the sole food for the ant larvae, while Pseudonocardia cultures are reare...
Article
Full-text available
Here we report the complete genome of the new species Streptomyces formicae KY5 isolated from Tetraponera fungus growing ants. S. formicae was sequenced using the PacBio and 454 platforms to generate a single linear chromosome with terminal inverted repeats. Illumina MiSeq sequencing was used to correct base changes resulting from the high error ra...
Article
Full-text available
MtrAB is a highly conserved two component system 31 implicated in the regulation of cell division in the Actinobacteria. It coordinates DNA replication with cell division in the unicellular Mycobacterium tuberculosis and links antibiotic production to sporulation in the filamentous treptomyces venezuelae. Chloramphenicol biosynthesis is directly re...
Article
Full-text available
β-Lactone natural products occur infrequently in nature but possess a variety of potent and valuable biological activities. They are commonly derived from β-hydroxy-α-amino acids, which are themselves valuable chiral building blocks for chemical synthesis and precursors to numerous important medicines. However, despite a number of excellent synthet...
Article
Full-text available
Streptomyces bacteria make numerous secondary metabolites, including half of all known antibiotics. Production of antibiotics is usually coordinated with the onset of sporulation but the cross regulation of these processes is not fully understood. This is important because most Streptomyces antibiotics are produced at low levels or not at all under...
Article
Full-text available
We report a new Streptomyces species named S. formicae that was isolated from the African fungus -growing plant-ant Tetraponera penzigi and show that it produces novel pentacyclic polyketides that are active against MRSA and VRE. The chemical scaffold of these compounds, which we have called the formicamycins, is similar to the fasamycins identifie...
Article
Full-text available
The attine ants of South and Central America are ancient farmers, having evolved a symbiosis with a fungal food crop >50 million years ago. The most evolutionarily derived attines are the Atta and Acromyrmex leafcutter ants, which harvest fresh leaves to feed their fungus. Acromyrmex and many other attines vertically transmit a mutualistic strain o...
Preprint
Streptomyces bacteria make numerous secondary metabolites, including half of all known antibiotics. Understanding the global regulation of secondary metabolism is important because most Streptomyces natural products are not made under laboratory conditions and unlocking ‘cryptic’ biosynthetic gene clusters (BGCs) is a major focus for natural produc...
Data
Document S1. Supplemental Experimental Procedures, Figures S1–S4, and Tables S1–S4
Article
Full-text available
SimC7 is a polyketide ketoreductase involved in biosynthesis of the angucyclinone moiety of the gyrase inhibitor simocyclinone D8 (SD8). SimC7, which belongs to the short-chain dehydrogenase/reductase (SDR) superfamily, catalyzes reduction of the C-7 carbonyl of the angucyclinone, and the resulting hydroxyl is essential for antibiotic activity. Sim...