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Abstract

Directed fishing effort for Atlantic bluefin tuna in the Gulf of Mexico (GOM), their primary spawning grounds in the western
Atlantic, has been prohibited since the 1980s due to a precipitous decline of the spawning stock biomass. However, pelagic
longlines targeted at other species, primarily yellowfin tuna and swordfish, continue to catch Atlantic bluefin tuna in the
GOM as bycatch. Spatial and temporal management measures minimizing bluefin tuna bycatch in the GOM will likely
become important in rebuilding the western Atlantic bluefin stock. In order to help inform management policy and
understand the relative distribution of target and bycatch species in the GOM, we compared the spatiotemporal variability
and environmental influences on the catch per unit effort (CPUE) of yellowfin (target) and bluefin tuna (bycatch). Catch and
effort data from pelagic longline fisheries observers (1993–2005) and scientific tagging cruises (1998–2002) were coupled
with environmental and biological data. Negative binomial models were used to fit the data for both species and Akaike’s
Information Criterion (corrected for small sample size) was used to determine the best model. Our results indicate that
bluefin CPUE had higher spatiotemporal variability as compared to yellowfin CPUE. Bluefin CPUE increased substantially
during the breeding months (March-June) and peaked in April and May, while yellowfin CPUE remained relatively high
throughout the year. In addition, bluefin CPUE was significantly higher in areas with negative sea surface height anomalies
and cooler sea surface temperatures, which are characteristic of mesoscale cyclonic eddies. In contrast, yellowfin CPUE was
less sensitive to environmental variability. These differences in seasonal variability and sensitivity to environmental
influences suggest that bluefin tuna bycatch in the GOM can be reduced substantially by managing the spatial and
temporal distribution of the pelagic longline effort without substantially impacting yellowfin tuna catches.
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Introduction

Managing and mitigating the bycatch of non-target species is

arguably one of the most pressing issues facing fisheries

management agencies and the commercial fishing industry today

[1]. Bycatch is generally considered as the mortality induced on

non-target species. Recently, there has been increasing focus on

reducing bycatch from pelagic longlines targeting tuna and

swordfish [1,2,3,4]. The objective of this research is to examine

how to minimize bycatch while maximizing the catch of target

species at a specific effort level and minimizing mitigation costs.

Two of the main mitigation strategies have been changes in the

fishing gear and practices, and spatiotemporal management of the

fishing effort. For example, relatively simple changes to longline

fishing gear and methods, like adding streamers to longlines and

setting longlines deep through tubes, have been shown to reduce

bycatch of seabirds [5]. However, when gear changes alone are

not able to reduce bycatch of the non-target species substantially,

spatiotemporal management of the fishing effort may become the

strategy of choice [6].

Spatiotemporal management of fishery effort can reduce the

interactions of fisheries and bycatch species [6]. In order to be

effective, spatiotemporal management requires an understanding

of the distributions of both the target and bycatch species and how

environmental conditions affect those distributions. Once we

understand their habitat preferences, the probability of catching

non-target benthic species may be estimated from the benthic

habitat of the area [7]. In contrast, the probability of catching non-

target pelagic species is estimated from local ocean conditions,

which are substantially more dynamic than benthic conditions [6].

Therefore, in order to employ spatiotemporal management for

pelagic fish, we need to understand and compare the influence of

ocean conditions on the distribution of target and bycatch species.

In recent years, there has been increasing concern about the

bycatch of Atlantic bluefin tuna on their spawning grounds in the

Gulf of Mexico (GOM) by pelagic longlines targeting yellowfin tuna

and swordfish [8,9,10]. Bluefin tuna are among the most valuable

fishes in the world, with a single Pacific bluefin tuna being sold for

16.28 million yen in 2010 at the Tsukiji market in Tokyo, and an

average wholesale price of 3272 yen kg21 in 2007 [11]. As a
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consequence, the Atlantic bluefin tuna (as well as the other two

species of bluefin tuna - Pacific and Southern) are under severe

fishing pressure. There are two main spawning grounds and periods

for Atlantic bluefin tuna - the GOM from March to June and the

Mediterranean Sea from June to August [12,13,14,15]. The

International Commission for the Conservation of Atlantic Tunas

(ICCAT, http://www.iccat.es) currently manages the Atlantic

bluefin tuna as two distinct stocks, with western Atlantic spawners

forming a distinct stock from eastern Atlantic spawners. The

western Atlantic stock has suffered a .80% decline in spawning

stock biomass since 1970 and a 20-year rebuilding plan was enacted

in the early 1980s [13]. However, recent assessments indicate that

the western stock has continued to decline [16]. One potential factor

contributing to the decline of the western stock is the incidental

bycatch of spawning bluefin tuna by pelagic longline fisheries in the

GOM [8]. The GOM has been closed to directed fishing for bluefin

tuna since 1981 [14] but observer and logbook data from the

National Marine Fisheries Service (NMFS) and scientific longlining

data indicate that there is substantial bycatch of bluefin tuna in the

GOM during the breeding season [8]. The pelagic longlines in the

GOM generally target yellowfin tuna (the most desirable species)

and to a lesser extent, swordfish but Atlantic bluefin tuna are caught

as bycatch in the longline sets [10].

In this study, our aim was to compare the influence of ocean

conditions on the catch per unit effort (CPUE) of yellowfin tuna

and bluefin tuna by pelagic longlines in the Gulf of Mexico, using

catch and effort data from the NMFS pelagic longline observer

program and scientific cruises. The numbers of bluefin and

yellowfin tuna caught on longline sets were fit to negative binomial

models, with local environmental conditions as explanatory

variables. Count data models, like Poisson and negative binomial

models, are often used to model rare event data (i.e., observations

are non-negative integers with numerous zeros) [17], which

correspond well to the characteristics of our data. Exploration of

the longline data indicated that negative binomial models were

suitable for analyzing the data because of overdispersion. We also

used a model selection process to identify the most important

variables that explained the variability in the catch of bluefin and

yellowfin tuna [18]. After fitting the models, we used the models to

estimate and compare the probability of catching bluefin and

yellowfin tuna given ocean conditions in the GOM.

The GOM has distinctive oceanographic conditions, with

important differences between the eastern and western portions

of the basin. The eastern GOM is dominated by the Loop

Current, which flows through the Yucatan Straits and makes an

anti-cyclonic turn before exiting through the Florida Straits. In the

western GOM, one of the key oceanographic features are cyclonic

and anti-cyclonic mesoscale eddies generated by or pinched off

from the Loop Current that travel from the east to west [19].

In prior studies, we identified the probable breeding areas and

oceanographic preferences of breeding bluefin tuna in the GOM,

using electronic tags deployed on mature bluefin tuna [9,20].

Atlantic bluefin tuna tended to exhibit breeding behavior in the

western GOM and the frontal zone of the Loop Current in the

central and eastern GOM [9]. Breeding areas used by the bluefin

tuna were significantly associated with bathymetry, SST, eddy

kinetic energy, surface chlorophyll concentration, and surface

wind speed, with SST being the most important parameter [20].

We also used electronic tags to examine the depth and thermal

preferences of yellowfin tuna caught on pelagic longlines in the

GOM [21]. Yellowfin tuna in the GOM showed a preference for

the mixed layer and thermocline, and exhibited a diel pattern in

depth distribution, remaining in surface and mixed layer waters at

night and diving to deeper waters during the day.

The results from the current study will improve our under-

standing of the oceanographic habitat utilized by bluefin and

yellowfin tuna in the GOM and how changing environmental

conditions affect their spatiotemporal distribution. This will in turn

help us inform possible spatiotemporal management strategies to

reduce the bycatch of bluefin tuna while maintaining yellowfin

tuna catches in the GOM. Our results can be used to estimate the

probability of bluefin bycatch relative to yellowfin catch in an area

given the environmental conditions. Thus, if local environmental

conditions in an area are expected to increase the probablity of

catching bluefin tuna, longline effort could be directed away from

these areas towards areas with lower probability of catching

bluefin tuna while maintaining a high CPUE for yellowfin tuna.

Materials and Methods

Fishery and Environmental Data
Two sources of fishery data were used for this study. The first

consisted of catch and effort data collected by fishery observers on

commercial longline vessels in the GOM from 1992 through 2005,

as part of the Pelagic Observer Program (POP) managed by

NMFS Southeast Fisheries Science Center (n = 2662 sets) (Fig. 1).

Although the POP began in 1992 and continues to this day, we

only downloaded data from 1992 to 2005 because this was the

only data made available by the NMFS. Overall, the average effort

for a commercial longline set in the GOM was 7556225 hooks

and a soak duration of 9.163.3 hours. All information that

potentially identified individual fishing vessels or observers were

removed from the database prior to analysis in order to minimize

any privacy concerns. In addition, we presented observer data in

this paper as 161u squares to further minimize any privacy

concerns (Fig. 1). Further details on the observer program and

pelagic longline fisheries in the GOM can be found in the program

documentation [10,22].

The second source consisted of catch and effort data collected

by our laboratory during six scientific longline cruises in the GOM

from 1998 through 2002, as part of the Tag-A-Giant program

Figure 1. Locations of pelagic longline sets in the Gulf of
Mexico. Each grey square indicates where one or more longline sets
were recorded by fishery observers on commercial longline vessels
(n = 2662 sets) within the 161u area (we are unable to show locations of
individual sets due to privacy concerns). Each red circle indicates a
single longline set during our laboratory’s cruises on longline vessels
targeting bluefin tuna for tagging (n = 112 sets).
doi:10.1371/journal.pone.0010756.g001

Yellowfin and Bluefin Catch
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effort to tag Atlantic bluefin tuna [8]. Further details on these

longline cruises can be found in Block et al. (2005, Supplementary

Online Material). These cruises were conducted aboard U.S.

registered pelagic longline vessels that routinely fish for yellowfin

tuna. Our fishing efforts in the GOM were conducted for the

purpose of deploying electronic tags on bluefin tuna and all sets

(n = 112) were made in the US exclusive economic zone from

86.06uW to 94.90uW in longitude and 26.67uN to 28.5uN to in

latitude (Fig. 1). Circle hooks were baited with squid or sardines

and positioned at depths of 100–200 m in 1999 and 40–120 m in

2000–2002. Overall, our longline sets had fewer number of hooks

per set (188695 hooks) and shorter soak durations (2.663.6 hours)

due to our aim of keeping the bluefin tuna in good condition for

tagging. The shorter soak times helped to reduce the stress and

mortality rate of the bluefin tuna caught on the longlines [8].

Importantly for this study, both data sources included

information on the number and species of fish caught (NUMBFT

and NUMYFT), year of set (YR), month of set (MTH), set

latitude (LAT), set longitude (LON), number of hooks

(NUMHKS), and approximate depth of hooks (HKDPTH) for

each set, which were used as predictor variables. Definitions and

acronyms of the fishery and environmental variables can be

found in Table 1. After obtaining the data, we first performed an

analysis of the spatial and temporal variability in the catch per

unit effort (CPUE, fish per 1000 hooks) of bluefin and yellowfin

tuna. The CPUE of both species were first determined by month

and in 161u squares. Exploratory analyses indicated that most

(87.4%) of the observed bluefin bycatch occurred during the

bluefin breeding season from March to June. We therefore

decided to concentrate our subsequent oceanographic analysis on

this important period. After extracting the data for this period,

our dataset consisted of 944 longline sets from fishery observers

and 112 longline sets from our tagging cruises in the GOM, with

a toal of 288 bluefin and 6633 yellowfin tuna. The distribution of

the number of bluefin and yellowfin tuna caught in a single set

during the breeding period can be seen in Fig. 2. The mean

number of bluefin and yellowfin tuna caught in a single set was

0.2886.0493 and 6.63654.4, respectively (including both

observer and scientific cruise data).

Seven environmental variables were used as predictor variables

in this study - sea surface temperature (SST), SST gradient

(SSTSLP), sea surface height anomaly (SSHA), eddy kinetic

energey (EKE), surface wind speed (WIND), bathymetry

(BATHY), and bathymetric gradient (BATHYSLP). Details on

the environmental data used in this study can be obtained from

Teo et al. [20]. The environmental conditions associated with each

longline set was determined as the 363 pixel mean around the

starting location of each set.

Gridded SSTs from 1993 to 2005 in the GOM were extracted

from the Pathfinder SST dataset (v5, http://www.podaac.jpl.nasa.

gov). The data grids consisted of 8-day and monthly averaged

SSTs on a 4-km equal angle grid. We preferred 8-day grids but the

monthly grid was used if the cloud cover within 1u of the longline

set location was .50%. In addition, SST gradients were

calculated by performing a two-dimensional convolution on the

GOM bathymetry grid with a 363 Sobel filter [23,24].

We downloaded SSHA and geostrophic velocity anomaly data,

which were derived from merged satellite altimetry measurements

of four satellite altimetrs (Jason-1, ENVISAT/ERS, Geosat

Follow-On and Topex/Poseidon interlaced) (AVISO, http://

www.aviso.oceanobs.com). The SSHA and geostrophic velocity

data extended from 1993 to 2005, with data assimilated every 7

days. Sea surface height anomalies are a direct way of identifying

eddies, with negative SSHA indicating the presence of cyclonic

eddies. Geostrophic velocity anomalies during the breeding season

(March-June) were used to calculate the EKE in the GOM. Eddy

kinetic energy is a commonly used measure of the mesoscale

variability of the flow in a region and helps to identify regions

where mesoscale eddies and current meanders are relatively

common [25,26,27].

Ocean surface wind speed data were downloaded from the

ERS-1/2 and QuikSCAT scatterometers (http://www.oceanwatch.

pfeg.noaa.gov). From 1993 to 1999, we used wind speed data

from the ERS-1/2 and from 2000–2005, we used data from the

Table 1. Description, mean, standard deviation (SD), and range of environmental parameters used in this study.

Parameter (Units) Description Mean SD Min Max

DATATYPE Dummy variable denoting data was from NOAA
observers or tagging cruises (0 = observer, 1 = tagging)

LON Longitude of longline set 290.38 2.85 296.92 281.27

LAT Latitude of longline set 26.56 1.38 20.05 29.52

HKDPTH Estimated depth of hooks 60.1 14.6 24 110

YEAR Year of longline set 1999 3.9 1993 2005

MONTH Month of longline set denoted by 3 dummy variables (MAR,
APR, MAY). Month is June if all dummy variables are set to 0.

SSHA Sea surface height anomaly at longline set 26.6 10.2 233.5 37.6

SST Sea surface temperature at longline set 25.4 4.1 20.5 29.9

BATHY Bathymetry at longline set (Log-transformed) 7.52 0.27 3.61 8.27

BATHYSLP Bathymetry slope at longline set (Log-transformed) 2.83 0.68 20.37 5.31

EKE Eddy kinetic energy at longline set (Log-transformed) 5.98 0.44 3.41 7.55

SSTSLP SST slope at longline set (Log-transformed) 24.09 0.67 26.04 21.55

WIND Wind speed at longline set 6.07 1.54 2.71 10.74

All categorical variables (DATATYPE and MONTH) are denoted by dummy variables with values of 0 or 1.
All other variables are continuous variables and are normalized by subtracting the mean from the actual values prior to analysis.
doi:10.1371/journal.pone.0010756.t001

Yellowfin and Bluefin Catch
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QuikSCAT satellite. All of the wind speed data consisted of 8-day

averaged grids.

Bathymetry for the GOM was extracted from the Smith and

Sandwell dataset v8.2 [28], which is a 29 by 29 global topographic

dataset derived from ship soundings and satellite altimetry data

(http://topex.ucsd.edu/marine_topo). A preliminary examination

of the bathymetry data found two small spurious islands at

approximately 25.53N, 90.42W, which were removed before

analysis. Bathymetry values for the deleted area were subsequently

filled by interpolation from surrounding pixels.

For ease of comparison and analysis, we log-transformed and

normalized the fisheries and environmental data in order to

transform the predictor variables onto relatively similar scales.

First, we log-transformed SSTSLP, EKE, BATHY, and BATH-

YSLP. Second, we normalized all the non-categorical predictor

variables in our model (LAT, LON, YEAR, HKDPTH, SST,

SSTSLP, SSHA, EKE, WIND, BATHY, and BATHYSLP) by

subtracting the mean from the values. However, we did not

normalize the set month because this categorical variable entered

the model as three dummy variables (March, April, and May)

(Table 1). In addition, we also included second-order predictor

variables to account for dome or bowl-shaped responses to

changing environmental conditions [20,29] (Table 1).

Models
The number of each species caught on a longline are considered

as count variables (i.e., non-negative integer-valued variables) and

consequently, count data models like Poisson and negative

binomial models are often used to analyze these data [30,31,32].

In a standard Poisson model, which is the simplest count data

model, the variance is assumed to be equal to the mean but real

data often violates this assumption by having variances greater

than the mean (i.e. overdispersed). Negative binomial models,

which allow for the variance to differ from the mean, are often

used to model count data when the data is found to be

overdispersed [17]. Exploration of the longline data indicated

that bluefin and yellowfin tuna catch were overdispersed and were

better described by negative binomial models. Therefore, we

decided to use negative binomial models to compare the

environmental influences on both bluefin and yellowfin tuna catch.

For a negative binomial model, the expected number of fish,

E(Y) for a given longline set, i, is equal to the mean, mi, and is given

by,

ln mi~Xibz ln NUMHKSi ð1Þ

where Xi is a vector of explanatory variables (Table 1) for the ith

set, b is a vector of parameters to be estimated, and NUMHKSi is

the number of hooks used in set i (in thousands of hooks), which is

an offset term to correct for the fishing effort of each set. The

variance of the number of fish, var(Y), has an estimable shape

parameter h, and is given by,

var Yið Þ~mizmi
2
�

h ð2Þ

therefore as h21 approaches zero, the variance approaches m, and

the negative binomial model becomes equivalent to a Poisson

model. The probability of catching Y number of fish on set i is thus

given by,

P Yijh,mið Þ~C hzYið Þ
Yi!C hð Þ

mi
Yi hh

mizhð ÞhzYi
ð3Þ

which we can use to estimate the probability of catching more than

one fish at a given location and ocean conditions.

For both bluefin and yellowfin models, we used a stepwise

forward-backward model selection process with Akaike’s Informa-

tion Criterion with small sample correction (AICc) as the selection

criterion [18]. This allowed us to select the best explanatory model

by retaining explanatory variables that significantly improved the

fit of the model while discarding those that do not. First, the

numbers of bluefin or yellowfin tuna caught on each longline set

were fit to a null model without any explanatory variables.

Subsequently, at each step of the model selection process, each

explanatory variable was in turn added to (if it was not yet in the

model) or subtracted from (if it was already in the model) the

model and fit to data. The variable that improved the AICc of the

model most was retained in the model, and the process was

reiterated until adding or subtracting variables did not improve the

AICc, resulting in the final ‘best’ explanatory model [18]. In order

to test the robustness of the final model, we also performed the

model selection process from a full model with all the explanatory

variables as well as five random starting models. In addition, we

cross-validated the final models of both species using leave-one-out

cross-validation and calculated the normalized root mean square

deviations. Model fitting and selection was performed using the R

language (v2.9.0) in conjunction with the MASS package [33].

The final selected models were used to determine the relative

probability of catching bluefin and yellowfin tuna under

environmental conditions of different years. This allowed us to

Figure 2. Numbers of bluefin and yellowfin tuna per longline
set. Histograms show the number of (A) bluefin and (B) yellowfin tuna
caught in each longline set.
doi:10.1371/journal.pone.0010756.g002
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visualize areas in the GOM where bluefin tuna were more likely to

be caught on longlines. Environmental data grids were first

downloaded for the GOM for each period (see above). The

environmental data were then coupled with the bluefin and

yellowfin models to determine the expected number of fish caught

using equation 1 for each area in the GOM. Subsequently,

equation 3 was used to calculate the relative probability of

catching one or more bluefin or yellowfin tuna, given the

environmental conditions in the area.

We also performed a sensitivity analysis on the final selected

models to test the importance of each model parameter on the

probability of catching bluefin and yellowfin in the GOM. First,

we determined the probability of catching one or more bluefin and

yellowfin in a single set of 1000 hooks, using the final bluefin and

yellowfin models while keeping all parameters at their mean.

Second, we perturbed each parameter in turn by one SD, while

keeping the other parameters at their means, and calculated the

probability of catching one or more fish. Third, we calculated the

sensitivity of the model to each parameter as the percentage

change in probability of catching one or more fish for each one SD

of change in the parameter. Finally, we calculated the ratio of the

proability of catching one or more yellowfin to bluefin. This ratio

informs us of the parameter’s influence on reducing bluefin

bycatch without affecting yellowfin catch.

Results

Bluefin tuna bycatch in the GOM was highly seasonal. The

majority (87.4%) of observed bluefin bycatch occurred during the

known bluefin breeding season from March to June (Fig. 3A). Peak

bluefin CPUE occured in April (0.47260.075 fish per 1000 hooks)

and May (0.42760.053 fish per 1000 hooks) while no bluefin tuna

were caught in the GOM from July through November (Fig. 3A).

In contrast, yellowfin CPUE was less variable, with yellowfin tuna

being caught in the GOM throughout the year (Fig. 3A). Although

yellowfin CPUE also showed seasonal variability with highest

CPUEs occuring in July (12.860.84 fish per 1000 hooks) and

lowest CPUEs in March (5.4860.34 fish per 1000 hooks), the

seasonal variability of yellowfin CPUE was substantially less than

for bluefin tuna (Fig. 3A). The coefficient of variability (CV) of

yellowfin CPUE by month (0.26) was also substantially lower than

that for bluefin tuna (1.38). Even if we include only the bluefin

breeding season from March to June, the CV of bluefin tuna

CPUE by month (0.53) was still much higher than for yellowfin.

Since bluefin CPUE was more variable than yellowfin CPUE,

variability in the bluefin bycatch rate relative to yellowfin catch

was primarily determined by variability in bluefin CPUE (Fig. 3B).

Bluefin bycatch rate relative to yellowfin CPUE was highest in

April (6.461.0 bluefin caught per 100 yellowfin) (Fig. 3B).

The spatial range of bluefin tuna bycatch in the GOM appeared

to be more limited than the spatial range of yellowfin tuna catch.

Yellowfin tuna were caught in some areas (e.g., northeastern

GOM) where bluefin tuna were not caught (Fig. 4, S1 & S2). In

particular, the central and western GOM appeared to have

relatively higher bluefin CPUE than other areas, especially in

March and April (Fig. S1). In contrast, yellowfin tuna were caught

in most areas observed throughout the year (Fig. S2). Importantly,

bluefin CPUE was not significantly correlated yellowfin CPUE

between March and June (r = 20.03, p = 0.35).

After the model selection process, the respective negative

binomial models fit the bluefin and yellowfin tuna data well.

The AICc for the bluefin and yellowfin null negative binomial

models were 1392.3 and 5637.4 respectively. By including

environmental and biological variables during the model selection

process, the fit of the models were improved substantially (bluefin

AICc: 1179.2, yellowfin AICc: 5262.7). In addition, we compared

the negative binomial models with Poisson models and found that

negative binomial models had better fits to the data than the

respective Poisson models (bluefin AICc: 1206.6, yellowfin AICc:

6946.8). We performed a cross-validation of the final models and

the normalized root mean square deviation was estimated to be

10.8 and 11.9% for the bluefin and yellowfin models respectively.

The variables (and their estimated coefficients) in the final

selected bluefin and yellowfin models after the model selection

process can be seen in Tables 2 and 3, respectively. In the bluefin

model, the SST, SSHA, EKE, and WIND were retained as

important environmental variables (Table 2). Of particular

interest, areas in the GOM with negative SSHAs and cooler

SSTs were significantly correlated with higher bluefin CPUE

(SSHA: r = 20.11, p,0.001; SST: r = 20.12, p,0.001) (Fig. 5).

The negative coefficient associated with WIND2 (second-order

wind speed) indicates a dome-shaped response of bluefin CPUE to

wind speed (Table 2). The relationship between BATHY and

bluefin CPUE also suggested that bluefin tuna are primarily

caught off the continental shelf in relatively deep waters (Table 2).

Latitude also strongly affected bluefin CPUE but longitude did not

(Table 2). Bluefin catches were primarily restricted to an area

Figure 3. Mean and relative bluefin and yellowfin tuna CPUE.
Circles indicate monthly mean (A) catch per unit effort (CPUE) of bluefin
(closed circles) and yellowfin tuna (open circles) in the Gulf of Mexico,
and (B) mean ratio of number of bluefin to 100 yellowfin caught. Error
bars indicate 1 sd (based on 1000 bootstrap samples).
doi:10.1371/journal.pone.0010756.g003

Yellowfin and Bluefin Catch
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between 25 to 28uN. Interestingly, there was a large increase in

bluefin CPUE from 2000 to 2005 as compared to the preceding

period (Fig. 6). The NOAA began prohibiting the use of live bait in

August 2000, we therefore determined if the use of live bait

affected bluefin and yellowfin CPUE. However, we found that the

use of live bait did not significantly affect bluefin CPUE

(z = 20.352, p = 0.725) but significantly increased yellowfin CPUE

(z = 3.193, p = 0.001). In addition, due to the deliberate targeting

of bluefin tuna for tagging, the scientific tagging cruises had a

higher bluefin CPUE but lower yellowfin CPUE as compared to

commercial longline sets (Table 2 & 3).

In the yellowfin model, SST and SSHA were not retained as

important environmental variables. Instead, EKE and WIND

were retained as important environmental variables in the final

selected model (Table 3). Areas with lower wind speeds were

significantly correlated with higher yellowfin CPUE (r = 20.31,

p,0.001) (Fig. 7). The positive coefficient associated with EKE2

(second-order EKE) indicates a bowl-shaped response to EKE

(Table 3). The yellowfin CPUE was also affected by BATHY and

BATHYSLP2 (second-order BATHYSLP), with higher yellowfin

CPUE in deeper waters (Table 3). Unlike bluefin tuna, yellowfin

tuna were affected by both longitude and latitude of the longline

set (Table 3). Yellowfin CPUE have also declined slightly in the

GOM in recent years (Table 3 & Fig. 6).

Figure 4. Spatial variability of bluefin and yellowfin tuna CPUE.
Catch per unit effort (CPUE) of (A) bluefin and (B) yellowfin tuna are
indicated by size of circles. Crosses indicate locations where more than
5000 hooks were set but no fish were caught.
doi:10.1371/journal.pone.0010756.g004

Table 2. Parameters and estimated coefficients of final
bluefin tuna model.

Estimated
Coefficient

Standard
Error Z value DAICc

DATATYPE 1.27 0.225 5.65 26.8

LAT 0.474 0.206 2.30 3.7

LAT2 20.894 0.179 24.99 58.0

YEAR 0.102 2.35E-2 4.33 18.2

YEAR2 23.22E-2 6.88E-3 24.69 19.8

MONTH (APR) 0.470 0.199 2.36 3.4

MONTH (MAY) 0.614 0.204 3.02 7.4

BATHY 0.930 0.395 2.353 4.2

SST 20.177 5.52E-2 23.21 8.6

SSHA 22.42E-2 1.06E-2 22.28 3.3

SSHA2 29.20E-4 6.09E-4 21.51 0.5

EKE 20.661 0.203 23.26 8.8

WIND2 25.62E-2 3.48E-2 21.61 0.8

INTERCEPT 27.58 0.227 233.4

THETA 1.22 0.328

2 log L 21148.7

AICc 1179.2

DAICc is the difference in model AICc if parameter is excluded from model.
Z value is the ratio of estimated coefficient to standard error.
Parameters with a 2 are 2nd order environmental parameters.
doi:10.1371/journal.pone.0010756.t002

Table 3. Parameters and estimated coefficients of final
yellowfin tuna model.

Estimated
Coefficient

Standard
Error Z value DAICc

DATATYPE 20.622 0.140 24.45 18.4

LON 20.174 2.02E-2 28.64 75.7

LON2 9.46E-3 4.12E-3 2.30 3.0

LAT 0.335 4.85E-2 6.92 46.4

LAT2 3.39E-2 1.53E-2 2.21 3.1

HKDEPTH 3.60E-3 2.25E-3 1.60 0.6

YEAR 24.35E-2 7.99E-3 25.44 27.2

YEAR2 25.50E-3 2.25E-3 22.55 3.9

MONTH (APR) 0.147 8.24E-2 1.79 1.2

MONTH (MAY) 0.348 6.52E-2 5.33 25.6

BATHY 0.688 9.88E-2 6.96 49.3

BATHYSLP2 6.71E-2 3.13E-2 2.15 2.8

EKE 0.255 7.87E-2 3.24 8.5

EKE2 0.141 5.21E-2 2.71 5.1

WIND 20.179 2.10E-2 28.55 67.6

INTERCEPT 25.14 8.33E-2 261.8

THETA 1.879 0.124

2 log L 25227.968

AICc 5262.591

DAICc is the difference in model AICc if parameter is excluded from model.
Z value is the ratio of estimated coefficient to standard error.
Parameters with a 2 are 2nd order environmental parameters.
doi:10.1371/journal.pone.0010756.t003
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We can use these two models to estimate the probability of

catching bluefin and yellowfin tuna in the GOM. As an example,

we have shown the estimated probability of catching bluefin and

yellowfin tuna for May in 2002 and 2005 in Figures 8 and 9, and

compared that with the SSHA (Fig. 10) and actual CPUE during

those periods. Areas with a higher probability of catching bluefin

tuna appeared to be associated with cyclonic eddies (Fig. 8). In

contrast, it appears that the entire GOM basin have a relatively

high probability of catching yellowfin tuna, other than the

continental shelf, especially in the eastern GOM (Fig. 9).

Our sensitivity analysis indicated that the probability of catching

bluefin tuna was most sensitive to the latitude of the longline set

(Table 4). A one SD perturbation of the latitude southwards results

in a 86.7% reduction of the proability of catching bluefin tuna.

Importantly, SST and SSHA were the strongest dynamic

environmental influences on bluefin bycatch rates, while WIND

had only a relatively small influence. Bathymetry and EKE were

also important environmental variables but these are temporally

static variables that do not change through time. In contrast to

bluefin tuna, the probability of catching yellowfin tuna in an area

appeared to be relatively insensitive to changes in the model

parameters. (Table 4). A one SD perturbation in any model

parameter affected the probability of catching yellowfin tuna by

less than 10%. In order to reduce the bycatch of bluefin tuna while

minimizing impacts on yellowfin tuna catches, we looked at the

ratio of the probability of catching yellowfin tuna relative to

bluefin tuna. Under average conditions, the probability of catching

yellowfin is 2.67 times higher than bluefin tuna. However, with a

pertubation of one SD in SSHA or SST, we can increase that ratio

to 3.41 and 3.45 respectively, resulting in fewer bluefin tuna being

caught as bycatch (Table 4).

Discussion

Our results show that there are seasonal patterns and

oceanographic features that influence the probability of bluefin

bycatch in the GOM. Bluefin tuna appear seasonally in the GOM

for breeding, which may be a balance between the environmental

conditions required for spawning and the physiology of mature

bluefin tuna (e.g., thermal tolerance, cardiac performance), and

the growth and survival of larval bluefin tuna [9]. Bluefin CPUE

had very high seasonal variability, with highest CPUEs in the

months of April and May, coinciding with the peak of the

spawning season [14]. In contrast, yellowfin CPUE had relatively

small seasonal variability, with a substantially lower CV. Bluefin

tuna also appeared to have a smaller spatial distribution in the

GOM relative to yellowfin tuna, with bluefin tuna tending to be in

the western and central GOM and between 25–28uN. However,

the larger spatial distribution of the yellowfin tuna in the GOM

Figure 6. Annual bluefin and yellowfin tuna CPUE. Histograms
show annual mean catch per unit effort (CPUE) of (A) bluefin and (B)
yellowfin tuna in the Gulf of Mexico, from 1993 to 2005. Error bars
indicate 1 sd (based on 1000 bootstrap samples).
doi:10.1371/journal.pone.0010756.g006

Figure 5. Bluefin tuna CPUE in relation to sea surface height
anomaly and sea surface temperature. Histograms show mean
catch per unit effort (CPUE) of bluefin tuna in the Gulf of Mexico, with
respect to (A) sea surface height anomaly, and (B) sea surface
temperature of the longline set. Error bars indicate 1 sd (based on
1000 bootstrap samples).
doi:10.1371/journal.pone.0010756.g005
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may be due to its much larger population size and density, which

can be seen in the much higher CPUE of yellowfin tuna.

In addition to lesser seasonal variability, yellowfin CPUE also

appeared to be less sensitive to environmental conditions than

bluefin CPUE. This may be due to the smaller size and physiology

of yellowfin tuna, which has better cardiac performance at warmer

temperatures than bluefin tuna [34]. This was consistent with our

previous study on yellowfin tuna in the GOM using electronic tags

[21]. Weng et al [21] showed that yellowfin tuna in the GOM

were limited by cooler waters below the mixed layer but were not

affected by warmer SSTs. For every environmental parameter that

affected both yellowfin and bluefin CPUE (BATHY, EKE, and

WIND), bluefin CPUE was several fold more sensitive to

variability in those parameters than yellowfin CPUE. Based on

our yellowfin model, the probability of catching yellowfin appear

to be heavily influenced by whether longline sets are on or off

shelf, with off-shelf sets being more likely to catch yellowfin tuna.

In contrast, we show that bluefin CPUE was significantly higher

in areas with negative SSHAs and cooler SSTs, which are

characteristic of mesoscale cyclonic eddies. Cyclonic eddies have

positive vorticity and are associated with cooler SSTs, shallower

thermoclines, and enhanced primary and secondary production

[35,36,37,38,39]. These cooler regions may be important for adult

bluefin tuna because warm SSTs, coupled with large body sizes

and increased activity during courtship and spawning, may result

in increased metabolic demand and cardiac stress. In addition, the

increased production in these areas may improve the growth and

survival of larval bluefin. One of the key oceanographic

characteristics of the central and western GOM are the cyclonic

and anti-cyclonic eddies generated by the Loop Current, which

travel to the western GOM [19]. The Loop Current sheds large

anti-cyclonic eddies in the eastern GOM, and these anti-cyclonic

eddies in turn generate cyclonic eddies as they move from east to

west [19].

Similar to this study, we previously showed that breeding

bluefin tuna preferred areas with mesoscale eddies. However, we

could not previously distinguish if breeding bluefin tuna preferred

cyclonic or anti-cyclonic eddies due to the relatively coarse spatial

resolution of light-based geolocation with respect to mesoscale

features [20]. With the improved spatial resolution of the fisheries

data, this study showed that bluefin CPUE in the GOM tended to

increase in areas with cyclonic eddies (negative SSHAs and cooler

SSTs).

It is important to note the large increases in bluefin CPUE from

2000 to 2005. One potential cause of this increase could be that

our scientific tagging cruises, which were conducted from 1998 to

2002 and targeted bluefin tuna, biased the CPUE higher during

those years. However, even excluding data from the tagging

cruises, the CPUE pattern remained similar (Fig. S3). Changes in

fishing gear and/or regulations may have also affected the CPUE

of this fishery [40]. In August 2000, NOAA prohibited the use of

live bait on pelagic longlines in the GOM [41]. However, the use

of live bait did not significantly affect bluefin CPUE but

significantly increased yellowfin CPUE. Another possibility could

be an increase in spawning stock biomass for the Atlantic bluefin

tuna in the western Atlantic. However, recent stock assessments

suggest that the spawning stock biomass have remained at

approximately similar levels during this period of high CPUE

[16]. Although we cannot be certain of the causes of the increased

bluefin CPUE from 2000 to 2005, it is possible that targeting of

bluefin tuna in the GOM may have increased during this period.

Our results from scientific tagging cruises targeting bluefin tuna

suggest that longline sets and gear can be adjusted to target bluefin

tuna. Early tagging cruises had relatively low bluefin CPUE but

after we understood the preferred ocean conditions for bluefin

tuna, our bluefin CPUE increased considerably[8].

Figure 7. Yellowfin tuna CPUE in relation to wind speed.
Histograms show mean catch per unit effort (CPUE) of yellowfin tuna in
the Gulf of Mexico, with respect to wind speed of the longline set. Error
bars indicate 1 sd (based on 1000 bootstrap samples).
doi:10.1371/journal.pone.0010756.g007

Figure 8. Expected probability of catching bluefin tuna. Colors
indicate the expected probability of catching one or more bluefin tuna
in the Gulf of Mexico on 15 May (A) 2002 and (B) 2005. Circles indicate
actual relative bluefin tuna CPUE for May 2002 and 2005. Crosses
indicate locations where at least one longline set was deployed but no
fish were caught.
doi:10.1371/journal.pone.0010756.g008
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These species specific differences in seasonal variability and

sensitivity to environmental influences in the GOM suggest that

bluefin tuna bycatch can be reduced substantially by managing the

spatial and temporal distribution of the pelagic longline effort.

Importantly, yellowfin CPUE was uncorrelated with bluefin

CPUE, which suggests that reductions in bluefin bycatch can

probably be achieved without substantially impacting yellowfin

catches. One possible spatiotemporal management strategy would

be to design a limited time-area closure during the bluefin tuna

breeding season, especially April and May [6]. The areas closed

could be dynamic in nature, with closures limited to areas with

cyclonic eddies. Although time-area closures based on dynamic

environmental conditions have been successfully employed in

some fisheries, it is also relatively difficult to execute implement

and enforce [6]. Potentially, pelagic longline vessels can be

monitored with the Vessel Monitoring System (VMS) and vessels

in high-risk areas can be redirected to areas with lower bycatch

risk and higher probability of yellowfin catch. However, if a

dynamic time-area closure is not feasible, we would suggest a

limited fixed time-area closure of the central and western GOM

within the US EEZ that has the highest probability of bluefin tuna

bycatch during the peak spawning season.

It is also important to develop a comprehensive management

strategy to reducing bluefin tuna bycatch in order to improve the

rebuilding effort for the stock. In addition to spatiotemporal

management of the fishery, gear changes would also likely help

with reducing bluefin bycatch. Most importantly, incentives should

be provided to the fishermen so as to align their objectives towards

a reduction of bluefin bycatch. For example, a set number of

bluefin tuna could be allowed to be caught and landed from the

GOM. If the fishery exceeds the allowed number of bluefin tuna,

the fishery could be closed until the end of the bluefin spawning

season. In order to help the fishermen reduce the number of

encounters with bluefin tuna, maps can be derived from remotely

sensed data to show where bluefin bycatch is less likely to happen

and yellowfin CPUE is likely to remain high. The management of

bluefin tuna in the GOM should also be considered in

coordination with other fisheries targeting western Atlantic

bluefin. Recent work on bluefin tuna otoliths [42], intra-muscle

pollutants [43] and genetics [44,45] have shown that most, if not

all, of the bluefin tuna on the GOM spawning ground are of

western origin. In contrast, bluefin tuna in the northwest Atlantic

are often of mixed stock origin with fish from both western and

eastern Atlantic spawning grounds [42]. In addition, Armsworth

et al. [46] showed that an economically optimal strategy for

managing bluefin tuna in the western Atlantic would be to reduce

the catches in both the northwestern Atlantic and the GOM.

The strong effect of latitude on our bluefin model is likely due to

the US pelagic longline fleet predominantly staying within the US

EEZ in the GOM and the preference of bluefin tuna for deeper

waters away from the continental shelf. Our analysis in this study is

limited to the US pelagic longline fishery. However, we believe

that Non-US longline fleets operating in Mexican and interna-

tional waters in the GOM are known to catch bluefin tuna but we

Figure 9. Expected probability of catching yellowfin tuna.
Colors indicate the expected probability of catching one or more
yellowfin tuna in the Gulf of Mexico on 15 May (A) 2002 and (B) 2005.
Circles indicate actual relative yellowfin tuna CPUE for May 2002 and
2005. Crosses indicate locations where at least one longline set was
deployed but no fish were caught.
doi:10.1371/journal.pone.0010756.g009

Figure 10. Map of sea surface height anomalies. Colors indicate
sea surface height anomalies on 15 May (A) 2002 and (B) 2005.
doi:10.1371/journal.pone.0010756.g010
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were not able to obtain data from those fisheries. In order to get a

more complete understanding of bluefin bycatch in the GOM,

future studies should attempt to obtain fisheries data from these

non-US longline fleets. Another limitation of this study’s results is

that if environmental conditions in the GOM change so drastically

such that future conditions range beyond the limits of the

conditions in our dataset, our models would not be able to

estimate the probability of catching bluefin or yellowfin tuna in

those areas and periods.

One of the possible ways to improve our models is to include

zero-inflation into our parametric models [30]. During our

exploration of the dataset, we explored the use of zero-inflated

models in modelling bluefin and yellowfin CPUE. We found that

yellowfin model fits improved with zero-inflated negative binomial

models. However, we found that bluefin model fit was not

improved with a zero-inflated Poisson nor a zero-inflated negative

binomial model. Therefore, in the interest of making the bluefin

and yellowfin models comparable, we decided to use negative

binomial models without zero-inflation for both yellowfin and

bluefin tuna. Another possible modelling framework is to use

generalized additive models (GAMs) rather than the parametric

generalized linear models used in this study [47]. However, we

found that while GAMs tended to have improved prediction skill,

the model results were more difficult to understand and interpret

for comparative purposes. Since comparing the bluefin and

yellowfin models was the key to this study, we decided to use

parametric models, which provided good fits to the data. Although

we optimized the fit of our models, there remains substantial

unexplained variability in both bluefin and yellowfin models. This

is not surprising because we modeled the data on a set by set basis,

which tends to increase the variability. In future studies, one way

to reduce the variability of the data is to model the data on a trip

by trip basis but our current dataset did not have enough data to

allow us to do so.

In 2007 and 2008, the NMFS deployed observers onto the

pelagic longline fleet in the GOM at a higher rate (70–80%) than

usual (,8%), in order to provide improved estimates of bluefin

bycatch [10]. That dataset would have been ideal for improving

and validating our models in this study. Unfortunately, we were

unable to obtain those data for this study. Hopefully, when these

new data becomes available in the future, we would be able to

improve and validate our models in a future study.

In this study, we determined and compared the environmental

influences on bluefin and yellowfin CPUE in the GOM. The

results of this study can be used to determine the probability of

bluefin bycatch in the US EEZ in the northern GOM in relation

to yellowfin CPUE. By incorporating the results of this study into

their managment plans, the managers of bluefin and yellowfin

tuna can help reduce bluefin bycatch and improve the CPUE of

yellowfin tuna. This would help improve the rebuilding effort for

the western Atlantic stock of bluefin tuna and ensure the long term

viability of fishing for pelagic fish in the GOM.

Supporting Information

Figure S1 Spatiotemporal variability of bluefin tuna CPUE.

Crosses indicate locations where more than 1000 hooks were set

but no bluefin tuna were caught.

Found at: doi:10.1371/journal.pone.0010756.s001 (2.20 MB

PDF)

Figure S2 Spatiotemporal variability of yellowfin tuna CPUE.

Crosses indicate locations where more than 1000 hooks were set

but no yellowfin tuna were caught.

Found at: doi:10.1371/journal.pone.0010756.s002 (2.24 MB

PDF)

Figure S3 Annual bluefin CPUE. Histograms show annual

mean catch per unit effort (CPUE) of bluefin tuna in the Gulf of

Mexico, from 1993 to 2005 (fishery observer data only). Error bars

indicate 1 sd (based on 1000 bootstrap samples).

Found at: doi:10.1371/journal.pone.0010756.s003 (0.23 MB

PDF)
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