Barbara SchädlLudwig Boltzmann Institute for Traumatology.The Research Center in Cooperation with AUVA · CF Histology
Barbara Schädl
Magister
About
50
Publications
6,267
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
431
Citations
Publications
Publications (50)
Background
Human induced pluripotent stem cells represent a scalable source of youthful tissue progenitors and secretomes for regenerative therapies. The aim of our study was to investigate the potential of conditioned medium (CM) from hiPSC-mesenchymal progenitors (hiPSC-MPs) to stimulate osteogenic differentiation of human bone marrow-derived mes...
Peripheral nerve injuries induce a severe motor and sensory deficit. Since the availability of autologous nerve transplants for nerve repair is very limited, alternative treatment strategies are sought, including the use of tubular nerve guidance conduits (tNGCs). However, the use of tNGCs results in poor functional recovery and central necrosis of...
Mesenchymal stromal cells from the bone marrow (BMSCs) exhibit a functional decline during aging. We previously found that extracellular matrix (ECM) engineered from human induced pluripotent stem cell-derived mesenchymal progenitors enhances the osteogenic capacity of BMSCs. In the current study, we investigated how this ECM affects the three-line...
Bovine serum albumin (BSA) plays a crucial role in cell culture media, influencing cellular processes such as proliferation and differentiation. Although it is commonly included in chondrogenic differentiation media, its specific function remains unclear. This study explores the effect of different BSA concentrations on the chondrogenic differentia...
Cellular senescence has a profound effect on human physiology, including healing, cancer and
aging. Here, we show that wounding causes surrounding keratinocytes, fibroblasts, and other skin
cell types to rapidly become senescent, within minutes to hours. Mechanistically, the induction of
senescence is transcription independent, utilizing pre-exi...
Extracellular vesicles (EVs) are crucial mediators of cell‐to‐cell communication in physiological and pathological conditions. Specifically, EVs released from the vasculature into blood were found to be quantitatively and qualitatively different in diseases compared to healthy states. However, our understanding of EVs derived from the lymphatic sys...
Regeneration of bone defects is often limited due to compromised bone tissue physiology. Previous studies suggest that engineered extracellular matrices enhance the regenerative capacity of mesenchymal stromal cells. In this study, we used human-induced pluripotent stem cells, a scalable source of young mesenchymal progenitors (hiPSC-MPs), to gener...
The spatial boundaries of tissue response to wounding are unknown. Here, we show that in mammals, the ribosomal protein S6 (rpS6) is phosphorylated in response to skin injury, forming a zone of activation surrounding the region of the initial insult. This p-rpS6-zone forms within minutes after wounding and is present until healing is complete. The...
Photobiomodulation, showing positive effects on wound healing processes, has been performed mainly with lasers in the red/infrared spectrum. Light of shorter wavelengths can significantly influence biological systems. This study aimed to evaluate and compare the therapeutic effects of pulsed LED light of different wavelengths on wound healing in a...
Background: Fibrin sealants are used as antimicrobial-releasing carriers for preventing surgical site infections; however, it is important to determine the release kinetics and antimicrobial effects of drugs added to fibrin sealants and the effects of drugs on clot/clotting properties. Materials and Methods: The antimicrobial and antibiofilm activi...
It is unknown what the spatial boundaries of tissue response to wounding are. Here we show that in mammals the ribosomal protein S6 (rpS6) is phosphorylated in response to skin injury forming a zone of activation surrounding the region of the initial insult. This p-rpS6-zone forms within minutes after wounding and is present until healing is comple...
Acting as the largest energy reservoir in the body, adipose tissue is involved in longevity and progression of age-related metabolic dysfunction. Here, cellular senescence plays a central role in the generation of a pro-inflammatory environment and in the evolution of chronic diseases. Within the complexity of a tissue, identification and targeting...
Background
Zoledronic acid improves bone microarchitecture and biomechanical properties after chronic rotator cuff repair (RCR) in rats. Besides the positive effects of zoledronic acid on bone mineral density and bone microarchitecture, bisphosphonates have positive effects on skeletal muscle function.
Purposes/Hypothesis
The purposes of this stud...
Due to its ability to recapitulate key pathological processes in vitro, midbrain organoid technology has significantly advanced the modeling of Parkinson's disease over the last few years. However, some limitations such as insufficient tissue differentiation and maturation, deficient nutrient supply, and low analytical accessibility persist, altoge...
In skin research, widely used in vitro 2D monolayer models do not sufficiently mimic physiological properties. To replace, reduce, and refine animal experimentation in the spirit of ‘3Rs’, new approaches such as 3D skin equivalents (SE) are needed to close the in vitro/in vivo gap. Cell culture inserts to culture SE are commercially available, howe...
Investigations reporting positive effects of extracorporeal shockwave therapy (ESWT) on nerve regeneration are limited to the rat sciatic nerve model. The effects of ESWT on muscle-in-vein conduits (MVCs) have also not been investigated yet. This study aimed to evaluate the effects of ESWT after repair of the rat median nerve with either autografts...
Extracorporeal shockwave therapy (ESWT) can stimulate processes to promote regeneration, including cell proliferation and modulation of inflammation. Specific miRNA expression panels have been established to define correlations with regulatory targets within these pathways. This study aims to investigate the influence of low-energy ESWT—applied wit...
Background: Zoledronic acid improves bone microarchitecture and biomechanical properties after rodent chronic rotator cuff repair (RCR). Besides the positive effects of zoledronic acid on bone microarchitecture, bisphosphonates have positive effects on skeletal muscle function according to the so-called “muscle-bone crosstalk”. Methods: A total of...
Investigations reporting positive effects of Extracorporeal Shock Wave Therapy (ESWT) on nerve regeneration are limited to the rat sciatic nerve model. The effects of ESWT on muscle-in-vein conduits (MVCs) have also not been investigated yet. This study aimed to evaluate the effects of ESWT after repair of the rat median nerve with either autograft...
Peripheral nerve injuries pose a major clinical concern world-wide, and functional recovery after segmental peripheral nerve injury is often unsatisfactory, even in cases of autografting. Although it is well established that angiogenesis plays a pivotal role during nerve regeneration, the influence of lymphangiogenesis is strongly under-investigate...
Peripheral nerve injuries pose a major clinical concern world-wide, and functional recovery after segmental peripheral nerve injury is often unsatisfactory, even in case of autografting. Although it is well established that angiogenesis plays a pivotal role during nerve regeneration, the influence of lymphangiogenesis is strongly underinvestigated....
Lipedema is a chronic, progressive disease of adipose tissue with unknown etiology. Based on the relevance of the stromal vascular fraction (SVF) cell population in lipedema, we performed a thorough characterization of subcutaneous adipose tissue, SVF isolated thereof and the sorted populations of endothelial cells (EC), pericytes and cultured adip...
Lipedema is a chronic, progressive disease of adipose tissue with unknown etiology. Based on the relevance of the stromal vascular fraction (SVF) cell population in lipedema, we performed a thorough characterization of subcutaneous adipose tissue, SVF isolated thereof and the sorted populations of endothelial cells (EC), pericytes and cultured adip...
Cartilage damage typically starts at its surface, either due to wear or trauma. Treatment of these superficial defects is important in preventing degradation and osteoarthritis (OA). Biomaterials currently used for deep cartilage defects lack appropriate properties for this application. Therefore, we investigated photo-crosslinked methacrylamide-mo...
Due to their capacity to differentiate into the chondrogenic lineage, adipose-derived stromal/stem cells (ASC) are a promising source of therapeutically relevant cells for cartilage tissue regeneration. Their differentiation potential, however, varies between patients. In our study, we aim to stimulate ASC towards a more reliable chondrogenic pheno...
Physiological‐relevant in vitro tissue models with their promise of better predictability have the potential to improve drug screening outcomes in preclinical studies. Despite the advances of spheroid models in pharmaceutical screening applications, variations in spheroid size and consequential altered cell responses often lead to nonreproducible a...
Background
In spite of advances in the treatment of cartilage defects using cell and scaffold-based therapeutic strategies, the long-term outcome is still not satisfying since clinical scores decline years after treatment. Scaffold materials currently used in clinical settings have shown limitations in providing suitable biomechanical properties an...
Both cerium oxide (CeOx) nanoparticles and mefenamic acid (MFA) are known anti-inflammatory agents with hepatoprotective properties and are therefore prescribed for one of the major diseases in the world, nonalcoholic fatty liver disease (NAFLD). To study the potential cytotoxicity and anti-inflammatory effects as well as drug retention of a potent...
Background
The interest in non-manipulated cells originating from adipose tissue has raised tremendously in the field of tissue engineering and regenerative medicine. The resulting stromal vascular fraction (SVF) cells have been successfully used in numerous clinical applications. The aim of this experimental work is, first to combine a macroporous...
Rapidly evolving multidrug resistance renders conventional antimicrobial strategies increasingly inefficient. This urges the exploration of alternative strategies with a lower potential of resistance development to control microbial infections. A promising option is antimicrobial photodynamic therapy (aPDT), especially in the setting of wound infec...
Collagen membranes and bone substitute are popular biomaterials in guided tissue regeneration for treatment of traumatized or diseased periodontal tissue. Development of these biomaterials starts in monolayer cell culture, failing to reflect in vivo tissue organization. Spheroid cultures potentially mimic in vivo tissues in structure and functional...
Biomechanical cues such as shear stress, stretching, compression, and matrix elasticity are vital in the establishment of next generation physiological in vitro tissue models. Matrix elasticity, for instance, is known to guide stem cell differentiation, influence healing processes and modulate extracellular matrix (ECM) deposition needed for tissue...
Objectives
The factors that contribute to the morphological changes of dental pulp cell–derived microtissues are unknown. Here, we investigated the contraction dynamics of rod-shaped microtissues derived from dental pulp cells and examined the underlying cell signaling pathways.
Methods
Human dental pulp cells were seeded into agarose molds to ass...
Background
Development in guided tissue regeneration requires biomaterial testing. 3D cell constructs represent a new approach to bridge the gap between cell culture and animal models. Following the hypothesis that attachment behavior of cells could be observed in toroidal 3D cell constructs, the aim of this study was to evaluate 3D gingival fibrob...
Background and objective
A key factor in the modulation of angiogenesis as well as in bone resorption is angiopoietin‐like 4. However, the role of angiopoietin‐like 4 in periodontal tissue is unknown. Here, we hypothesized that hypoxia and the hypoxia mimetic agent L‐mimosine can induce the production of angiopoietin‐like 4 in periodontal fibroblas...
Tissue engineering strategies using microtissues as “building blocks” have high potential in regenerative medicine. Cognition of contraction dynamics involved in the in vitro self-assembly of these microtissues can be conceived as the bedrock of an effective periodontal tissue regenerative therapy. Our study was directed at evaluating the shrinkage...
Background
A major mediator of angiogenesis is angiogenin which is expressed in the early phase of healing in oral tissue engineering strategies. It is unclear how angiogenin is regulated in the periodontal tissue. The objective of this study was to reveal the regulation of angiogenin in response to hypoxia and the hypoxia mimetic agent L‐mimosine...
Biomaterials currently in use for articular cartilage regeneration do not mimic the composition or architecture of hyaline cartilage, leading to the formation of repair tissue with inferior characteristics. In this study we demonstrate the use of “AuriScaff”, an enzymatically perforated bovine auricular cartilage scaffold, as a novel biomaterial fo...
The present study reports for the first time the presence of giant crystals in mitochondria of equine chondrocytes. These structures show dark contrast in TEM images as well as a granular substructure of regularly aligned 1–2 nm small units. Different zone axes of the crystalline structure were analysed by means of Fourier transformation of lattice...