
Barbara Plank- PhD
- Professor (Assistant) at University of Groningen
Barbara Plank
- PhD
- Professor (Assistant) at University of Groningen
About
219
Publications
26,659
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
4,968
Citations
Introduction
Current institution
Additional affiliations
April 2016 - present
August 2015 - March 2016
Publications
Publications (219)
Large vision-language models struggle to accurately predict responses provided by multiple human annotators, particularly when those responses exhibit high uncertainty. In this study, we focus on a Visual Question Answering (VQA) task and comprehensively evaluate how well the output of the state-of-the-art vision-language model correlates with the...
Language technologies have advanced substantially, particularly with the introduction of large language models. However, these advancements can exacerbate several issues that models have traditionally faced, including bias, evaluation, and risk. In this perspective piece, we argue that many of these issues share a common core: a lack of awareness o...
Systematic generalization refers to the capacity to understand and generate novel combinations from known components. Despite recent progress by large language models (LLMs) across various domains, these models often fail to extend their knowledge to novel compositional scenarios, revealing notable limitations in systematic generalization. There ha...
Recent advancements in large language models (LLMs) have demonstrated that fine-tuning and human alignment can render LLMs harmless. In practice, such "harmlessness" behavior is mainly achieved by training models to reject harmful requests, such as "Explain how to burn down my neighbor's house", where the model appropriately declines to respond. Ho...
Discourse understanding is essential for many NLP tasks, yet most existing work remains constrained by framework-dependent discourse representations. This work investigates whether large language models (LLMs) capture discourse knowledge that generalizes across languages and frameworks. We address this question along two dimensions: (1) developing...
The increased adoption of Large Language Models (LLMs) and their potential to shape public opinion have sparked interest in assessing these models' political leanings. Building on previous research that compared LLMs and human opinions and observed political bias in system responses, we take a step further to investigate the underlying causes of su...
Aspect-based sentiment analysis (ABSA) is a crucial task in information extraction and sentiment analysis, aiming to identify aspects with associated sentiment elements in text. However, existing ABSA datasets are predominantly English-centric, limiting the scope for multilingual evaluation and research. To bridge this gap, we present M-ABSA, a com...
The ability of large language models (LLMs) to validate their output and identify potential errors is crucial for ensuring robustness and reliability. However, current research indicates that LLMs struggle with self-correction, encountering significant challenges in detecting errors. While studies have explored methods to enhance self-correction in...
Understanding pragmatics-the use of language in context-is crucial for developing NLP systems capable of interpreting nuanced language use. Despite recent advances in language technologies, including large language models, evaluating their ability to handle pragmatic phenomena such as implicatures and references remains challenging. To advance prag...
Models trained on crowdsourced labels may not reflect broader population views when annotator pools are not representative. Since collecting representative labels is challenging, we propose Population-Aligned Instance Replication (PAIR), a method to address this bias through statistical adjustment. Using a simulation study of hate speech and offens...
Slot and intent detection (SID) is a classic natural language understanding task. Despite this, research has only more recently begun focusing on SID for dialectal and colloquial varieties. Many approaches for low-resource scenarios have not yet been applied to dialectal SID data, or compared to each other on the same datasets. We participate in th...
Reliable slot and intent detection (SID) is crucial in natural language understanding for applications like digital assistants. Encoder-only transformer models fine-tuned on high-resource languages generally perform well on SID. However, they struggle with dialectal data, where no standardized form exists and training data is scarce and costly to p...
Accurate career path prediction can support many stakeholders, like job seekers, recruiters, HR, and project managers. However, publicly available data and tools for career path prediction are scarce. In this work, we introduce KARRIEREWEGE, a comprehensive, publicly available dataset containing over 500k career paths, significantly surpassing the...
Ambiguity resolution is key to effective communication. While humans effortlessly address ambiguity through conversational grounding strategies, the extent to which current language models can emulate these strategies remains unclear. In this work, we examine referential ambiguity in image-based question answering by introducing RACQUET, a carefull...
Disagreement in human labeling is ubiquitous, and can be captured in human judgment distributions (HJDs). Recent research has shown that explanations provide valuable information for understanding human label variation (HLV) and large language models (LLMs) can approximate HJD from a few human-provided label-explanation pairs. However, collecting e...
In recent research, large language models (LLMs) have been increasingly used to investigate public opinions. This study investigates the algorithmic fidelity of LLMs, i.e., the ability to replicate the socio-cultural context and nuanced opinions of human participants. Using open-ended survey data from the German Longitudinal Election Studies (GLES)...
A large amount of local and culture-specific knowledge (e.g., people, traditions, food) can only be found in documents written in dialects. While there has been extensive research conducted on cross-lingual information retrieval (CLIR), the field of cross-dialect retrieval (CDIR) has received limited attention. Dialect retrieval poses unique challe...
We explore the potential of pixel-based models for transfer learning from standard languages to dialects. These models convert text into images that are divided into patches, enabling a continuous vocabulary representation that proves especially useful for out-of-vocabulary words common in dialectal data. Using German as a case study, we compare th...
Orthographic variation is very common in Luxembourgish texts due to the absence of a fully-fledged standard variety. Additionally, developing NLP tools for Luxembourgish is a difficult task given the lack of annotated and parallel data, which is exacerbated by ongoing standardization. In this paper, we propose the first sequence-to-sequence normali...
In the recent past, a popular way of evaluating natural language understanding (NLU), was to consider a model's ability to perform natural language inference (NLI) tasks. In this paper, we investigate if NLI tasks, that are rarely used for LLM evaluation, can still be informative for evaluating LLMs. Focusing on five different NLI benchmarks across...
Tree of Thoughts (ToT) is a reasoning strategy for Large Language Models (LLMs) that employs a generator to suggest reasoning steps and a discriminator to decide which steps to implement. ToT demonstrates strong performance on reasoning tasks, often surpassing simple methods such as Input-Output (IO) prompting and Chain-of-Thought (CoT) reasoning....
Training a language model to be both helpful and harmless requires careful calibration of refusal behaviours: Models should refuse to follow malicious instructions or give harmful advice (e.g. "how do I kill someone?"), but they should not refuse safe requests, even if they superficially resemble unsafe ones (e.g. "how do I kill a Python process?")...
A fundamental question in interpretability research is to what extent neural networks, particularly language models, implement reusable functions via subnetworks that can be composed to perform more complex tasks. Recent developments in mechanistic interpretability have made progress in identifying subnetworks, often referred to as circuits, which...
Climate change (CC) has attracted increasing attention in NLP in recent years. However, detecting the stance on CC in multimodal data is understudied and remains challenging due to a lack of reliable datasets. To improve the understanding of public opinions and communication strategies, this paper presents MultiClimate, the first open-source manual...
Product attribute value identification (PAVI) involves automatically identifying attributes and their values from product information, enabling features like product search, recommendation, and comparison. Existing methods primarily rely on fine-tuning pre-trained language models, such as BART and T5, which require extensive task-specific training...
Large vision-language models frequently struggle to accurately predict responses provided by multiple human annotators, particularly when those responses exhibit human uncertainty. In this study, we focus on the Visual Question Answering (VQA) task, and we comprehensively evaluate how well the state-of-the-art vision-language models correlate with...
One of the major aspects contributing to the striking performance of large language models (LLMs) is the vast amount of factual knowledge accumulated during pre-training. Yet, many LLMs suffer from self-inconsistency, which raises doubts about their trustworthiness and reliability. In this paper, we focus on entity type ambiguity and analyze curren...
Product attributes are crucial for e-commerce platforms, supporting applications like search, recommendation, and question answering. The task of Product Attribute and Value Identification (PAVI) involves identifying both attributes and their values from product information. In this paper, we formulate PAVI as a generation task and provide, to the...
There is an increasing trend towards evaluating NLP models with LLM-generated judgments instead of human judgments. In the absence of a comparison against human data, this raises concerns about the validity of these evaluations; in case they are conducted with proprietary models, this also raises concerns over reproducibility. We provide JUDGE-BENC...
Human label variation (HLV) is a valuable source of information that arises when multiple human annotators provide different labels for valid reasons. In Natural Language Inference (NLI) earlier approaches to capturing HLV involve either collecting annotations from many crowd workers to represent human judgment distribution (HJD) or use expert ling...
Recent advances in Large Language Models (LLMs) have sparked wide interest in validating and comprehending the human-like cognitive-behavioral traits LLMs may have. These cognitive-behavioral traits include typically Attitudes, Opinions, Values (AOV). However, measuring AOV embedded within LLMs remains opaque, and different evaluation methods may y...
Overparametrized transformer networks are the state-of-the-art architecture for Large Language Models (LLMs). However, such models contain billions of parameters making large compute a necessity, while raising environmental concerns. To address these issues, we propose FinerCut, a new form of fine-grained layer pruning, which in contrast to prior w...
The open-ended nature of language generation makes the evaluation of autoregressive large language models (LLMs) challenging. One common evaluation approach uses multiple-choice questions (MCQ) to limit the response space. The model is then evaluated by ranking the candidate answers by the log probability of the first token prediction. However, fir...
We introduce Universal NER (UNER), an open, community-driven project to develop gold-standard NER benchmarks in many languages. The overarching goal of UNER is to provide high-quality, cross-lingually consistent annotations to facilitate and standardize multilingual NER research. UNER v1 contains 18 datasets annotated with named entities in a cross...
Instruction-tuning has become an integral part of training pipelines for Large Language Models (LLMs) and has been shown to yield strong performance gains. In an orthogonal line of research, Annotation Error Detection (AED) has emerged as a tool for detecting quality issues of gold-standard labels. But so far, the application of AED methods is limi...
This report presents the results of the shared tasks organized as part of the VarDial Evaluation Campaign 2023. The campaign is part of the tenth workshop on Natural Language Processing (NLP) for Similar Languages, Varieties and Dialects (VarDial), co-located with EACL 2023. Three separate shared tasks were included this year: Slot and intent detec...
Manually annotated datasets are crucial for training and evaluating Natural Language Processing models. However, recent work has discovered that even widely-used benchmark datasets contain a substantial number of erroneous annotations. This problem has been addressed with Annotation Error Detection (AED) models, which can flag such errors for human...
The increasing number of benchmarks for Natural Language Processing (NLP) tasks in the computational job market domain highlights the demand for methods that can handle job-related tasks such as skill extraction, skill classification, job title classification, and de-identification. While some approaches have been developed that are specific to the...
Relation Extraction (RE) remains a challenging task, especially when considering realistic out-of-domain evaluations. One of the main reasons for this is the limited training size of current RE datasets: obtaining high-quality (manually annotated) data is extremely expensive and cannot realistically be repeated for each new domain. An intermediate...
Most research in Relation Extraction (RE) involves the English language, mainly due to the lack of multi-lingual resources. We propose Multi-CrossRE, the broadest multi-lingual dataset for RE, including 26 languages in addition to English, and covering six text domains. Multi-CrossRE is a machine translated version of CrossRE (Bassignana and Plank,...
Transferring information retrieval (IR) models from a high-resource language (typically English) to other languages in a zero-shot fashion has become a widely adopted approach. In this work, we show that the effectiveness of zero-shot rankers diminishes when queries and documents are present in different languages. Motivated by this, we propose to...
NLP datasets annotated with human judgments are rife with disagreements between the judges. This is especially true for tasks depending on subjective judgments such as sentiment analysis or offensive language detection. Particularly in these latter cases, the NLP community has come to realize that the approach of 'reconciling' these different subje...
Bilingual word lexicons are crucial tools for multilingual natural language understanding and machine translation tasks, as they facilitate the mapping of words in one language to their synonyms in another language. To achieve this, numerous papers have explored bilingual lexicon induction (BLI) in high-resource scenarios, using a typical pipeline...
Human variation in labeling is often considered noise. Annotation projects for machine learning (ML) aim at minimizing human label variation, with the assumption to maximize data quality and in turn optimize and maximize machine learning metrics. However, this conventional practice assumes that there exists a ground truth, and neglects that there e...
Linguistic information is encoded at varying timescales (subwords, phrases, etc.) and communicative levels, such as syntax and semantics. Contextualized embeddings have analogously been found to capture these phenomena at distinctive layers and frequencies. Leveraging these findings, we develop a fully learnable frequency filter to identify spectra...
With the increase in availability of large pre-trained language models (LMs) in Natural Language Processing (NLP), it becomes critical to assess their fit for a specific target task a priori - as fine-tuning the entire space of available LMs is computationally prohibitive and unsustainable. However, encoder transferability estimation has received l...
Relation Extraction (RE) has attracted increasing attention, but current RE evaluation is limited to in-domain evaluation setups. Little is known on how well a RE system fares in challenging, but realistic out-of-distribution evaluation setups. To address this gap, we propose CrossRE, a new, freely-available cross-domain benchmark for RE, which com...
Appropriate evaluation and experimental design are fundamental for empirical sciences, particularly in data-driven fields. Due to the successes in computational modeling of languages, for instance, research outcomes are having an increasingly immediate impact on end users. As the gap in adoption by end users decreases, the need increases to ensure...
Making an informed choice of pre-trained language model (LM) is critical for performance, yet environmentally costly, and as such widely underexplored. The field of Computer Vision has begun to tackle encoder ranking, with promising forays into Natural Language Processing, however they lack coverage of linguistic tasks such as structured prediction...
Skill Classification (SC) is the task of classifying job competences from job postings. This work is the first in SC applied to Danish job vacancy data. We release the first Danish job posting dataset: Kompetencer (en: competences), annotated for nested spans of competences. To improve upon coarse-grained annotations, we make use of The European Sk...
Over the last five years, research on Relation Extraction (RE) witnessed extensive progress with many new dataset releases. At the same time, setup clarity has decreased, contributing to increased difficulty of reliable empirical evaluation (Taill\'e et al., 2020). In this paper, we provide a comprehensive survey of RE datasets, and revisit the tas...
Skill Extraction (SE) is an important and widely-studied task useful to gain insights into labor market dynamics. However, there is a lacuna of datasets and annotation guidelines; available datasets are few and contain crowd-sourced labels on the span-level or labels from a predefined skill inventory. To address this gap, we introduce SKILLSPAN, a...
The field of Deep Learning (DL) has undergone explosive growth during the last decade, with a substantial impact on Natural Language Processing (NLP) as well. Yet, as with other fields employing DL techniques, there has been a lack of common experimental standards compared to more established disciplines. Starting from fundamental scientific princi...
Developing artificial learning systems that can understand and generate natural language has been one of the long-standing goals of artificial intelligence. Recent decades have witnessed an impressive progress on both of these problems, giving rise to a new family of approaches. Especially, the advances in deep learning over the past couple of year...
Probing has become an important tool for analyzing representations in Natural Language Processing (NLP). For graphical NLP tasks such as dependency parsing, linear probes are currently limited to extracting undirected or unlabeled parse trees which do not capture the full task. This work introduces DepProbe, a linear probe which can extract labeled...
Many tasks in Natural Language Processing (NLP) and Computer Vision (CV) offer evidence that humans disagree, from objective tasks such as part-of-speech tagging to more subjective tasks such as classifying an image or deciding whether a proposition follows from certain premises. While most learning in artificial intelligence (AI) still relies on t...
This work provides the first in-depth analysis of genre in Universal Dependencies (UD). In contrast to prior work on genre identification which uses small sets of well-defined labels in mono-/bilingual setups, UD contains 18 genres with varying degrees of specificity spread across 114 languages. As most treebanks are labeled with multiple genres wh...
Recent work has shown that monolingual masked language models learn to represent data-driven notions of language variation which can be used for domain-targeted training data selection. Dataset genre labels are already frequently available, yet remain largely unexplored in cross-lingual setups. We harness this genre metadata as a weak supervision s...
We propose Cartography Active Learning (CAL), a novel Active Learning (AL) algorithm that exploits the behavior of the model on individual instances during training as a proxy to find the most informative instances for labeling. CAL is inspired by data maps, which were recently proposed to derive insights into dataset quality (Swayamdipta et al., 2...
Welcome to WeaSuL 2021, the First Workshop on Weakly Supervised Learning, co-located with ICLR 2021. In this workshop, we want to advance theory, methods and tools for allowing experts to express prior coded knowledge for automatic data annotations that can be used to train arbitrary deep neural networks for prediction. The ICLR 2021 Workshop on We...