Barbara Hammer

Barbara Hammer
Bielefeld University · CITEC - Cognitive Interaction Technology

Prof.Dr.

About

548
Publications
65,926
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
8,008
Citations
Citations since 2017
209 Research Items
3650 Citations
20172018201920202021202220230100200300400500600700
20172018201920202021202220230100200300400500600700
20172018201920202021202220230100200300400500600700
20172018201920202021202220230100200300400500600700
Additional affiliations
April 2010 - present
April 2010 - present
Bielefeld University
Position
  • Professor
October 2008 - October 2008
University of Groningen

Publications

Publications (548)
Chapter
Existing methods for explainable artificial intelligence (XAI), including popular feature importance measures such as SAGE, are mostly restricted to the batch learning scenario. However, machine learning is often applied in dynamic environments, where data arrives continuously and learning must be done in an online manner. Therefore, we propose iSA...
Article
Identifying mechanisms of real-life human decision-making is central to inform effective, human-centric public policy. Here, we report larger trends and synthesize preliminary lessons from behavioral economic and neuroeconomic investigations focusing on environmental values. We review the currently available evidence at different levels of granular...
Preprint
Full-text available
Counterfactual explanations (CFEs) are a popular approach in explainable artificial intelligence (xAI), highlighting changes to input data necessary for altering a model's output. A CFE can either describe a scenario that is better than the factual state (upward CFE), or a scenario that is worse than the factual state (downward CFE). However, poten...
Preprint
Full-text available
Post-hoc explanation techniques such as the well-established partial dependence plot (PDP), which investigates feature dependencies, are used in explainable artificial intelligence (XAI) to understand black-box machine learning models. While many real-world applications require dynamic models that constantly adapt over time and react to changes in...
Preprint
Full-text available
Many Machine Learning models are vulnerable to adversarial attacks: There exist methodologies that add a small (imperceptible) perturbation to an input such that the model comes up with a wrong prediction. Better understanding of such attacks is crucial in particular for models used in security-critical domains, such as monitoring of water distribu...
Article
Full-text available
Lifelong and incremental learning constitute key algorithms when dealing with streaming data in possibly non-stationary environments. Because of their capability of adapting to varying model complexity, non-parametric methods offer particularly promising methods in this realm. In this article, we focus on the self-adapting memory k-nearest neighbor...
Article
Full-text available
Novel neural network models that can handle complex tasks with fewer examples than before are being developed for a wide range of applications. In some fields, even the creation of a few labels is a laborious task and impractical, especially for data that require more than a few seconds to generate each label. In the biotechnological domain, cell c...
Article
In many real-world scenarios, data are provided as a potentially infinite stream of samples that are subject to changes in the underlying data distribution, a phenomenon often referred to as concept drift. A specific facet of concept drift is feature drift, where the relevance of a feature to the problem at hand changes over time. High-dimensionali...
Chapter
Concept drift, i.e., the change of the data generating distribution, can render machine learning models inaccurate. Many technologies for learning with drift rely on the interleaved test-train error (ITTE) as a quantity to evaluate model performance and trigger drift detection and model updates. Online learning theory mainly focuses on providing ge...
Chapter
We investigate the task of missing value estimation in graphs as given by water distribution systems (WDS) based on sparse signals as a representative machine learning challenge in the domain of critical infrastructure. The underlying graphs have a comparably low node degree and high diameter, while information in the graph is globally relevant, he...
Preprint
The notion of concept drift refers to the phenomenon that the distribution generating the observed data changes over time. If drift is present, machine learning models can become inaccurate and need adjustment. While there do exist methods to detect concept drift or to adjust models in the presence of observed drift, the question of explaining drif...
Preprint
Full-text available
Predominately in explainable artificial intelligence (XAI) research, the Shapley value (SV) is applied to determine feature importance scores for any black box model. Shapley interaction indices extend the Shapley value to define any-order feature interaction scores. Defining a unique Shapley interaction index is an open research question and, so f...
Preprint
Full-text available
Explainable Artificial Intelligence (XAI) focuses mainly on batch learning scenarios. In the static learning tasks, various XAI methods, like SAGE, have been proposed that distribute the importance of a model on its input features. However, models are often applied in ever-changing dynamic environments like incremental learning. As a result, we pro...
Preprint
Full-text available
Learning from non-stationary data streams is a research direction that gains increasing interest as more data in form of streams becomes available, for example from social media, smartphones, or industrial process monitoring. Most approaches assume that the ground truth of the samples becomes available (possibly with some delay) and perform supervi...
Article
Full-text available
Modularity as observed in biological systems has proven valuable for guiding classical motor theories towards good answers about action selection and execution. New challenges arise when we turn to learning: Trying to scale current computational models, such as deep reinforcement learning (DRL), to action spaces, input dimensions, and time horizons...
Article
Full-text available
Transfer learning schemes based on deep networks which have been trained on huge image corpora offer state-of-the-art technologies in computer vision. Here, supervised and semi-supervised approaches constitute efficient technologies which work well with comparably small data sets. Yet, such applications are currently restricted to application domai...
Preprint
The notion of concept drift refers to the phenomenon that the distribution generating the observed data changes over time. If drift is present, machine learning models may become inaccurate and need adjustment. Many technologies for learning with drift rely on the interleaved test-train error (ITTE) as a quantity which approximates the model genera...
Preprint
Full-text available
In modern business processes, the amount of data collected has increased substantially in recent years. Because this data can potentially yield valuable insights, automated knowledge extraction based on process mining has been proposed, among other techniques, to provide users with intuitive access to the information contained therein. At present,...
Preprint
Full-text available
Counterfactual explanations are a popular type of explanation for making the outcomes of a decision making system transparent to the user. Counterfactual explanations tell the user what to do in order to change the outcome of the system in a desirable way. However, it was recently discovered that the recommendations of what to do can differ signifi...
Preprint
Full-text available
The phenomena of concept drift refers to a change of the data distribution affecting the data stream of future samples -- such non-stationary environments are often encountered in the real world. Consequently, learning models operating on the data stream might become obsolete, and need costly and difficult adjustments such as retraining or adaptati...
Chapter
Pretraining language models on large text corpora is a common practice in natural language processing. Fine-tuning of these models is then performed to achieve the best results on a variety of tasks. In this paper, we investigate the problem of catastrophic forgetting in transformer neural networks and question the common practice of fine-tuning wi...
Chapter
In modern business processes, the amount of data collected has increased substantially in recent years. Because this data can potentially yield valuable insights, automated knowledge extraction based on process mining has been proposed, among other techniques, to provide users with intuitive access to the information contained therein. At present,...
Chapter
Soft sensors combine a hardware component with an intelligent algorithmic processing of the raw sensor signals. While individualization of software components according to a person’s specific needs is comparably cheap, individualization of the sensor hardware itself is usually impossible in mass production. At the same time, the number of raw senso...
Preprint
Full-text available
Transfer learning schemes based on deep networks which have been trained on huge image corpora offer state-of-the-art technologies in computer vision. Here, supervised and semi-supervised approaches constitute efficient technologies which work well with comparably small data sets. Yet, such applications are currently restricted to application domai...
Preprint
Full-text available
We investigate the task of missing value estimation in graphs as given by water distribution systems (WDS) based on sparse signals as a representative machine learning challenge in the domain of critical infrastructure. The underlying graphs have a comparably low node degree and high diameter, while information in the graph is globally relevant, he...
Chapter
Machine learning with a reject option is the empowerment of an algorithm to abstain from prediction when the outcome is likely to be inaccurate. Although the topic has been investigated in the literature already some time ago, it has not lost any of its relevance as machine learning models are increasingly delivered to the market. At present, most...
Chapter
Feature Selection is one of the most relevant preprocessing techniques in machine learning. Yet, it is usually only considered in the context of classification tasks. Although many methods designed for classification can be carried over to regression tasks, they usually lack some of the theoretical guarantees, that are provided for classification....
Chapter
Data stream classification is an important problem in the field of machine learning. Due to the non-stationary nature of the data where the underlying distribution changes over time (concept drift), the model needs to continuously adapt to new data statistics. Stream-based Active Learning (AL) approaches address this problem by interactively queryi...
Chapter
The water supply is part of the critical infrastructure as the accessibility of clean drinking water is essential to ensure the health of the people. To guarantee the availability of fresh water, efficient and reliable water distribution networks are crucial. Monitoring these systems is necessary to avoid deterioration in water quality, deal with l...
Preprint
Full-text available
Explainable Artificial Intelligence (XAI) has mainly focused on static learning scenarios so far. We are interested in dynamic scenarios where data is sampled progressively, and learning is done in an incremental rather than a batch mode. We seek efficient incremental algorithms for computing feature importance (FI) measures, specifically, an incre...
Technical Report
Full-text available
Ziel des Forschungsvorhabens war es, maschinelles Lernen (ML) für Intelligente Technische Systeme (ITS) entlang der gesamten Wertsch¨opfungskette nachhaltig verfügbar zu machen und ML als Service insbesondere für kleine und mittlere nternehmen (KMU) zu etablieren. Dieses erforderte Entwicklung und Transfer neuester ML-Innovationen auf die in ITS ze...
Chapter
Water distribution networks are a key component of modern infrastructure for housing and industry. They transport and distribute water via widely branched networks from sources to consumers. In order to guarantee a working network at all times, the water supply company continuously monitors the network and takes actions when necessary – e.g. reacti...
Article
Full-text available
Explainable Artificial Intelligence (XAI) has mainly focused on static learning tasks so far. In this paper, we consider XAI in the context of online learning in dynamic environments, such as learning from real-time data streams, where models are learned incrementally and continuously adapted over the course of time. More specifically, we motivate...
Preprint
Full-text available
Machine learning based decision making systems applied in safety critical areas require reliable high certainty predictions. For this purpose, the system can be extended by an reject option which allows the system to reject inputs where only a prediction with an unacceptably low certainty would be possible. While being able to reject uncertain samp...
Article
When measuring data with hyperspectral cameras drift in the data distribution occurs over time and when the sensing device is changed. Frequently, this drift is characterized by intensity shift or wavelength shifts. In this contribution, we propose novel methods that reverse these shifts and demonstrate their capability to avoid the negative impact...
Preprint
Full-text available
Dimensionality reduction is a popular preprocessing and a widely used tool in data mining. Transparency, which is usually achieved by means of explanations, is nowadays a widely accepted and crucial requirement of machine learning based systems like classifiers and recommender systems. However, transparency of dimensionality reduction and other dat...
Preprint
Full-text available
Transparency is a major requirement of modern AI based decision making systems deployed in real world. A popular approach for achieving transparency is by means of explanations. A wide variety of different explanations have been proposed for single decision making systems. In practice it is often the case to have a set (i.e. ensemble) of decisions...
Preprint
Full-text available
The application of machine learning based decision making systems in safety critical areas requires reliable high certainty predictions. Reject options are a common way of ensuring a sufficiently high certainty of predictions made by the system. While being able to reject uncertain samples is important, it is also of importance to be able to explai...
Preprint
The notion of concept drift refers to the phenomenon that the data generating distribution changes over time; as a consequence machine learning models may become inaccurate and need adjustment. In this paper we consider the problem of detecting those change points in unsupervised learning. Many unsupervised approaches rely on the discrepancy betwee...
Preprint
Full-text available
Counterfactual explanations (CFEs) highlight what changes to a model's input would have changed its prediction in a particular way. CFEs have gained considerable traction as a psychologically grounded solution for explainable artificial intelligence (XAI). Recent innovations introduce the notion of computational plausibility for automatically gener...
Preprint
Full-text available
To foster usefulness and accountability of machine learning (ML), it is essential to explain a model's decisions in addition to evaluating its performance. Accordingly, the field of explainable artificial intelligence (XAI) has resurfaced as a topic of active research, offering approaches to address the "how" and "why" of automated decision-making....
Article
Full-text available
Many of today’s decision making systems deployed in the real world are not static—they are changing and adapting over time, a phenomenon known as model adaptation takes place. Because of their wide reaching influence and potentially serious consequences, the need for transparency and interpretability of AI-based decision making systems is widely ac...
Preprint
Full-text available
Data stream classification is an important problem in the field of machine learning. Due to the non-stationary nature of the data where the underlying distribution changes over time (concept drift), the model needs to continuously adapt to new data statistics. Stream-based Active Learning (AL) approaches address this problem by interactively queryi...
Preprint
Full-text available
Water distribution networks are a key component of modern infrastructure for housing and industry. They transport and distribute water via widely branched networks from sources to consumers. In order to guarantee a working network at all times, the water supply company continuously monitors the network and takes actions when necessary -- e.g. react...
Preprint
Full-text available
Over the last years, word and sentence embeddings have established as text preprocessing for all kinds of NLP tasks and improved performances in these tasks significantly. Unfortunately, it has also been shown that these embeddings inherit various kinds of biases from the training data and thereby pass on biases present in society to NLP solutions....
Preprint
Full-text available
Recent developments in transfer learning have boosted the advancements in natural language processing tasks. The performance is, however, dependent on high-quality, manually annotated training data. Especially in the biomedical domain, it has been shown that one training corpus is not enough to learn generic models that are able to efficiently pred...
Preprint
The notion of concept drift refers to the phenomenon that the distribution, which is underlying the observed data, changes over time; as a consequence machine learning models may become inaccurate and need adjustment. Many unsupervised approaches for drift detection rely on measuring the discrepancy between the sample distributions of two time wind...
Preprint
Full-text available
While machine learning models are usually assumed to always output a prediction, there also exist extensions in the form of reject options which allow the model to reject inputs where only a prediction with an unacceptably low certainty would be possible. With the ongoing rise of eXplainable AI, a lot of methods for explaining model predictions hav...
Preprint
Full-text available
Accurate traffic prediction is a key ingredient to enable traffic management like rerouting cars to reduce road congestion or regulating traffic via dynamic speed limits to maintain a steady flow. A way to represent traffic data is in the form of temporally changing heatmaps visualizing attributes of traffic, such as speed and volume. In recent wor...
Article
Full-text available
We present a modelling framework for the investigation of supervised learning in non-stationary environments. Specifically, we model two example types of learning systems: prototype-based learning vector quantization (LVQ) for classification and shallow, layered neural networks for regression tasks. We investigate so-called student–teacher scenario...
Chapter
The notion of concept drift refers to the phenomenon that the distribution, which is underlying the observed data, changes over time; as a consequence machine learning models may become inaccurate and need adjustment. Many unsupervised approaches for drift detection rely on measuring the discrepancy between the sample distributions of two time wind...
Conference Paper
Full-text available
High-resolution hyperspectral sensors provide precise but expensive information on an object’s chemical composition in various industries. We present a method for transferring this capability to customized low-cost multispectral solutions. Taking a relevance analysis of spectra for a given problem as our starting point, we simulated and designed a...