Barbara HammerBielefeld University · CITEC - Cognitive Interaction Technology
Barbara Hammer
Prof.Dr.
About
604
Publications
75,206
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
8,970
Citations
Introduction
Additional affiliations
April 2010 - present
April 2010 - present
October 2004 - March 2010
Publications
Publications (604)
In this paper, we introduce the first diffusion model designed to generate complete synthetic human genotypes, which, by standard protocols, one can straightforwardly expand into full-length, DNA-level genomes. The synthetic genotypes mimic real human genotypes without just reproducing known genotypes, in terms of approved metrics. When training bi...
This paper introduces Virtual Try-Off (VTOFF), a novel task focused on generating standardized garment images from single photos of clothed individuals. Unlike traditional Virtual Try-On (VTON), which digitally dresses models, VTOFF aims to extract a canonical garment image, posing unique challenges in capturing garment shape, texture, and intricat...
Concept drift refers to the change of data distributions over time. While drift poses a challenge for learning models, requiring their continual adaption, it is also relevant in system monitoring to detect malfunctions, system failures, and unexpected behavior. In the latter case, the robust and reliable detection of drifts is imperative. This work...
As relevant examples such as the future criminal detection software [1] show, fairness of AI-based and social domain affecting decision support tools constitutes an important area of research. In this contribution, we investigate the applications of AI to socioeconomically relevant infrastructures such as those of water distribution networks (WDNs)...
Fairness is an important objective throughout society. From the distribution of limited goods such as education, over hiring and payment, to taxes, legislation, and jurisprudence. Due to the increasing importance of machine learning approaches in all areas of daily life including those related to health, security, and equity, an increasing amount o...
Research on methods for planning and controlling water distribution networks gains increasing relevance as the availability of drinking water will decrease as a consequence of climate change. So far, the majority of approaches is based on hydraulics and engineering expertise. However, with the increasing availability of sensors, machine learning te...
Originally rooted in game theory, the Shapley Value (SV) has recently become an important tool in machine learning research. Perhaps most notably, it is used for feature attribution and data valuation in explainable artificial intelligence. Shapley Interactions (SIs) naturally extend the SV and address its limitations by assigning joint contributio...
Especially if artificial intelligence (AI)-supported decisions affect the society, the fairness of such AI-based methodologies constitutes an important area of research. In this contribution, we investigate the applications of AI to the socioeconomically relevant infrastructure of water distribution systems (WDSs). We propose an appropriate definit...
Artificial Intelligence (AI) is ubiquitous in our society and a key driver of economic growth. Intelligent socio-technical systems (ITS) – that means physical artifacts with a specific purpose which have intelligent components at its heart – surround us in
the form of intelligent household devices, medical support systems, robotics components in ma...
Real-valued convolutional neural networks (RV-CNNs) in the spatial domain have outperformed classical approaches in many image restoration tasks such as image denoising and super-resolution. Fourier analysis of the results produced by these spatial domain models reveals the limitations of these models in properly processing the full frequency spect...
In recent studies, line search methods have been demonstrated to significantly enhance the performance of conventional stochastic gradient descent techniques across various datasets and architectures, while making an otherwise critical choice of learning rate schedule superfluous. In this paper, we identify problems of current state-of-the-art of l...
In an increasing number of industrial and technical processes, machine learning-based systems are being entrusted with supervision tasks. While they have been successfully utilized in many application areas, they frequently are not able to generalize to changes in the observed data, which environmental changes or degrading sensors might cause. Thes...
In the realm of fashion object detection and segmentation for online shopping images, existing state-of-the-art fashion parsing models encounter limitations, particularly when exposed to non-model-worn apparel and close-up shots. To address these failures, we introduce FashionFail; a new fashion dataset with e-commerce images for object detection a...
The world surrounding us is subject to constant change. These changes, frequently described as concept drift, influence many industrial and technical processes. As they can lead to malfunctions and other anomalous behavior, which may be safety-critical in many scenarios, detecting and analyzing concept drift is crucial. In this study, we provide a...
EXplainable AI (XAI) constitutes a popular method to analyze the reasoning of AI systems by explaining their decision-making, e.g. providing a counterfactual explanation of how to achieve recourse. However, in cases such as unexpected explanations, the user might be interested in learning about the cause of this explanation -- e.g. properties of th...
Drinking water is a vital resource for humanity, and thus, Water Distribution Networks (WDNs) are considered critical infrastructures in modern societies. The operation of WDNs is subject to diverse challenges such as water leakages and contamination, cyber/physical attacks, high energy consumption during pump operation, etc. With model-based metho...
The Shapley value (SV) is a prevalent approach of allocating credit to machine learning (ML) entities to understand black box ML models. Enriching such interpretations with higher-order interactions is inevitable for complex systems, where the Shapley Interaction Index (SII) is a direct axiomatic extension of the SV. While it is well-known that the...
Concept drift, i.e., the change of the data generating distribution, can render machine learning models inaccurate. Several works address the phenomenon of concept drift in the streaming context usually assuming that consecutive data points are independent of each other. To generalize to dependent data, many authors link the notion of concept drift...
Project Page: https://rizavelioglu.github.io/fashionfail/
To be published in 2024 International Joint Conference on Neural Networks (IJCNN)
While shallow decision trees may be interpretable, larger ensemble models like gradient-boosted trees, which often set the state of the art in machine learning problems involving tabular data, still remain black box models. As a remedy, the Shapley value (SV) is a well-known concept in explainable artificial intelligence (XAI) research for quantify...
Water distribution systems (WDS) are an integral part of critical infrastructure which is pivotal to urban development. As 70% of the world's population will likely live in urban environments in 2050, efficient simulation and planning tools for WDS play a crucial role in reaching UN's sustainable developmental goal (SDG) 6 - "Clean water and sanita...
Post-hoc explanation techniques such as the well-established partial dependence plot (PDP), which investigates feature dependencies, are used in explainable artificial intelligence (XAI) to understand black-box machine learning models. While many real-world applications require dynamic models that constantly adapt over time and react to changes in...
Counterfactual explanations (CFEs) are a popular approach in explainable artificial intelligence (xAI), highlighting changes to input data necessary for altering a model’s output. A CFE can either describe a scenario that is better than the factual state ( upward CFE), or a scenario that is worse than the factual state ( downward CFE). However, pot...
Many Machine Learning models are vulnerable to adversarial attacks: One can specifically design inputs that cause the model to make a mistake. Our study focuses on adversarials in the security-critical domain of leakage detection in water distribution networks (WDNs). As model input in this application consists of sensor readings, standard adversar...
Evaluating fairness in language models has become an important topic, including different types of measurements for specific models, but also fundamental questions such as the impact of pre-training biases in fine-tuned models. Ultimately, many rely on a data based evaluation using one of the few larger datasets for this purpose. We investigate one...
Data changing, or drifting, over time is a major problem when using classical machine learning on data streams. One approach to deal with this is to detect changes and react accordingly, for example by retraining the model. Most existing drift detection methods only report that a drift has happened between two time windows, but not when exactly. In...
As relevant examples such as the future criminal detection software [1] show, fairness of AI-based and social domain affecting decision support tools constitutes an important area of research. In this contribution, we investigate the applications of AI to socioeconomically relevant infrastructures such as those of water distribution networks (WDNs)...
With the growing digitalization all over the globe, the relevance of network security becomes increasingly important. Machine learning-based intrusion detection constitutes a promising approach for improving security, but it bears several challenges. These include the requirement to detect novel and unseen network events, as well as specific data p...
Explainable artificial intelligence has mainly focused on static learning scenarios so far. We are interested in dynamic scenarios where data is sampled progressively, and learning is done in an incremental rather than a batch mode. We seek efficient incremental algorithms for computing feature importance (FI). Permutation feature importance (PFI)...
Existing methods for explainable artificial intelligence (XAI), including popular feature importance measures such as SAGE, are mostly restricted to the batch learning scenario. However, machine learning is often applied in dynamic environments, where data arrives continuously and learning must be done in an online manner. Therefore, we propose iSA...
The more AI-assisted decisions affect people's lives, the more important the fairness of such decisions becomes. In this chapter, we provide an introduction to research on fairness in machine learning. We explain the main fairness definitions and strategies for achieving fairness using concrete examples and place fairness research in the European c...
Identifying mechanisms of real-life human decision-making is central to inform effective, human-centric public policy. Here, we report larger trends and synthesize preliminary lessons from behavioral economic and neuroeconomic investigations focusing on environmental values. We review the currently available evidence at different levels of granular...
Counterfactual explanations (CFEs) are a popular approach in explainable artificial intelligence (xAI), highlighting changes to input data necessary for altering a model's output. A CFE can either describe a scenario that is better than the factual state (upward CFE), or a scenario that is worse than the factual state (downward CFE). However, poten...
Post-hoc explanation techniques such as the well-established partial dependence plot (PDP), which investigates feature dependencies, are used in explainable artificial intelligence (XAI) to understand black-box machine learning models. While many real-world applications require dynamic models that constantly adapt over time and react to changes in...
Many Machine Learning models are vulnerable to adversarial attacks: There exist methodologies that add a small (imperceptible) perturbation to an input such that the model comes up with a wrong prediction. Better understanding of such attacks is crucial in particular for models used in security-critical domains, such as monitoring of water distribu...
Lifelong and incremental learning constitute key algorithms when dealing with streaming data in possibly non-stationary environments. Because of their capability of adapting to varying model complexity, non-parametric methods offer particularly promising methods in this realm. In this article, we focus on the self-adapting memory k-nearest neighbor...
Novel neural network models that can handle complex tasks with fewer examples than before are being developed for a wide range of applications. In some fields, even the creation of a few labels is a laborious task and impractical, especially for data that require more than a few seconds to generate each label. In the biotechnological domain, cell c...
In many real-world scenarios, data are provided as a potentially infinite stream of samples that are subject to changes in the underlying data distribution, a phenomenon often referred to as concept drift. A specific facet of concept drift is feature drift, where the relevance of a feature to the problem at hand changes over time. High-dimensionali...
Concept drift, i.e., the change of the data generating distribution, can render machine learning models inaccurate. Many technologies for learning with drift rely on the interleaved test-train error (ITTE) as a quantity to evaluate model performance and trigger drift detection and model updates. Online learning theory mainly focuses on providing ge...
We investigate the task of missing value estimation in graphs as given by water distribution systems (WDS) based on sparse signals as a representative machine learning challenge in the domain of critical infrastructure. The underlying graphs have a comparably low node degree and high diameter, while information in the graph is globally relevant, he...
The notion of concept drift refers to the phenomenon that the distribution generating the observed data changes over time. If drift is present, machine learning models can become inaccurate and need adjustment. While there do exist methods to detect concept drift or to adjust models in the presence of observed drift, the question of explaining drif...
Predominately in explainable artificial intelligence (XAI) research, the Shapley value (SV) is applied to determine feature importance scores for any black box model. Shapley interaction indices extend the Shapley value to define any-order feature interaction scores. Defining a unique Shapley interaction index is an open research question and, so f...
Explainable Artificial Intelligence (XAI) focuses mainly on batch learning scenarios. In the static learning tasks, various XAI methods, like SAGE, have been proposed that distribute the importance of a model on its input features. However, models are often applied in ever-changing dynamic environments like incremental learning. As a result, we pro...
Learning from non-stationary data streams is a research direction that gains increasing interest as more data in form of streams becomes available, for example from social media, smartphones, or industrial process monitoring. Most approaches assume that the ground truth of the samples becomes available (possibly with some delay) and perform supervi...
Modularity as observed in biological systems has proven valuable for guiding classical motor theories towards good answers about action selection and execution. New challenges arise when we turn to learning: Trying to scale current computational models, such as deep reinforcement learning (DRL), to action spaces, input dimensions, and time horizons...
Transfer learning schemes based on deep networks which have been trained on huge image corpora offer state-of-the-art technologies in computer vision. Here, supervised and semi-supervised approaches constitute efficient technologies which work well with comparably small data sets. Yet, such applications are currently restricted to application domai...
The notion of concept drift refers to the phenomenon that the distribution generating the observed data changes over time. If drift is present, machine learning models may become inaccurate and need adjustment. Many technologies for learning with drift rely on the interleaved test-train error (ITTE) as a quantity which approximates the model genera...
In modern business processes, the amount of data collected has increased substantially in recent years. Because this data can potentially yield valuable insights, automated knowledge extraction based on process mining has been proposed, among other techniques, to provide users with intuitive access to the information contained therein. At present,...
Counterfactual explanations are a popular type of explanation for making the outcomes of a decision making system transparent to the user. Counterfactual explanations tell the user what to do in order to change the outcome of the system in a desirable way. However, it was recently discovered that the rec