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Abstract

To support the future cyber battlefield, many technological advances are re-
quired in the proposed architecture of autonomous intelligent cyber defense
agents (AICA). In particular, AICA’s decision making processes will need to be
dynamic and adaptive to the actions of autonomous and intelligent attackers.
AICA’s decision-making algorithms must rely on theories that formalize dy-
namic decision processes; decisions made from experience; and the capabilities
to learn, adapt, and react in the face of uncertainty. During the past decade,
researchers of behavioral cyber security have created cognitive agents that are
able to learn and make decisions in dynamic environments in ways that assimi-
late human decision processes. However, many of these efforts have been limited
to simple detection tasks and represent basic cognitive functions rather than a
whole set of cognitive capabilities required in dynamic cyber defense scenarios.
Our current work aims at advancing the development of cognitive agents that
learn and make defense dynamic decisions during the cyber attacks by intelligent
attack agents. We also aim to evaluate the capability of these cognitive mod-
els in “Turing-like” experiments, comparing the decisions and performance of
these agents against human cyber defenders. In this paper, we present an initial
demonstration of a cognitive model of the defender, that relies on a cognitive
theory of dynamic decision making, Instance-Based Learning Theory (IBLT);
we also demonstrate the execution of the same defense task by human defenders.
We rely on OpenAl Gym, CybORG, and adapt an existing CAGE scenario to
generate a simulation experiment using an IBL defender. We also offer a new
Interactive Defense Game (IDG), where human defenders can perform the same
CAGE scenario simulated with the IBL model. Our results suggest that the IBL
model makes decisions against two intelligent attack agents that are similar to
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those observed in a subsequent human experiment. We conclude with a de-
scription of the cognitive foundations required to build AICA that collaborate
in autonomous cyber defense teams.

1 Introduction

The cyber battlefield of the future will certainly see autonomous systems fighting
other autonomous systems (Kott, 2018). These autonomous systems, charac-
terized by some level of freedom in decision making and action, will need to
perform in uncertain and complex environments (David & Nielsen, 2016). In
cyber-security in particular, the rise of autonomous intelligent malware repre-
sents a new threat that cyber-security experts and researchers must address
quickly (Thanh & Zelinka, 2019). The global race towards more intelligent au-
tonomous systems that are aware of the environment and the rapidly evolving
cyber attacker capabilities presents cyber security researchers with two major
challenges: (1) developing intelligent defense systems that are able to learn
and understand the dynamic strategies of attackers to efficiently anticipate and
counter their decisions, and (2) evaluating the capability of these intelligent
defense systems to produce defense behaviors that are comparable to those of
expert cyber defenders (Vieane et al., 2016; Dhir et al., 2021; Kott et al., 2020).

Human cognition and our ability to computationally represent the dynamic
decision-making process of a cyber analyst are key for the future of cyber se-
curity (Gonzalez, Ben-Asher, Oltramari, & Lebiere, 2014; Kott et al., 2020).
Cognitive models are dynamic and adaptable computational representations of
cognitive structures (Gonzalez et al., 2014); and they can represent the human
ability to adapt to changing environments and make decisions under uncer-
tainty (Gonzalez, Lerch, & Lebiere, 2003; Gonzalez, 2022). To achieve fully
autonomous cyber defense, a valid computational representation of such human
abilities will be required in the future.

In the past decade, cognitive models have been developed in the context
of cyber security to represent human defender decisions (Dutt, Ahn, & Gon-
zalez, 2011), human attacker decisions that can inform cyber defense strate-
gies (E. Cranford et al., 2020; E. A. Cranford, Gonzalez, Aggarwal, Tambe, &
Lebiere, 2020; Gonzalez, Aggarwal, Lebiere, & Cranford, 2020), and end-user
phishing classification decisions that can help improve cyber defense (E. A. Cran-
ford, Lebiere, Rajivan, Aggarwal, & Gonzalez, 2019; Xu, Singh, & Rajivan,
n.d.). All these models are based on the well-known cognitive theory of dy-
namic decision making, Instance-Based Learning Theory (IBLT) (Gonzalez et
al., 2003). Generally, IBLT is a comprehensive account of how humans make
decisions based on experience during dynamic tasks, and has been used to rep-
resent the dynamic decision-making process in cyber security and many other
domains (Gonzalez, 2022). IBL models of the cyber analysts date back to the
work of (Dutt et al., 2011), who introduced a model of the recognition and
comprehension processes of a security analyst in a simple cyber-attack scenario.
The IBL model first recognizes cyber events (e.g., execution of a file on a server)



in the network based on the attributes of the situation and the similarity of the
attributes of the events to past experiences (instances) stored in the memory
of the analyst. Then, the model reasons about whether a sequence of observed
events is a cyber attack or not, based upon instances retrieved from memory
and the risk-tolerance of a simulated analyst. Execution of the IBL model gen-
erates predictions of the analyst’s decisions that are evaluated based on their
timeliness.

Although this model of the cyber defender is a good starting point in the
development of AICA, it is unclear how well this model performs against au-
tonomous intelligent attackers. The model in (Dutt et al., 2011) was not evalu-
ated against human cyber-defenders, and the cyber-security scenario was quite
simple, where an attacker would attempt the access of a company’s server indi-
rectly through a web server. In the current work, we advance the development
of AICA by providing the following contributions: (1) present an IBL cognitive
model of the dynamic decision process of cyber defense in a complex OpenAl
gym, called CybORG (Baillie et al., 2020), and a challenging cyber attack sce-
nario against two different attack strategies (Standen et al., 2021); (2) develop a
new Interactive Defense Game (IDG) that integrates the attack scenario into an
interactive tool where human defenders confront the same attackers in CybORG;
(3) provide simulation results of the performance of the IBL model against the
two attack strategies; and (4) evaluate the capabilities of the IBL models against
human performance in the same scenarios using IDG. Our results suggest that
the IBL model can make reasonable predictions against the two strategies of
attack and that these predictions are similar to the behavior observed in human
defenders.

2 A framework to integrate IBL models in au-
tonomous cyber defense

In a reference architecture provided in (Kott et al., 2020), AICA allow a cyber
defense agent (e.g., human or autonomous) to acquire data from the environment
and the systems in which it operates, to reach an understanding of the current
state of the environment and make effective dynamic decisions against intelligent
cyber attackers. To achieve this vision, (Kott & Theron, 2020) distinguish
3 phases for AICA implementation. The first phase consists in developing Al
models and compare their performance in suggesting remediation plans to those
of experienced Human cyber defenders. The second phase would be to test the
resilience of the AICA in more complex scenarios, including dynamic attack
strategies. Finally, the third phase would concern multi-agent collaboration,
human interactions, and ensuring the stealth and trustworthiness of the agent.

In this paper, we contribute to the advance of the first phase of the AICA
vision by proposing an integration of a dynamic and adaptable computational
representation of the cyber defense agent and the evaluation against the actions
of intelligent attackers (Gonzalez et al., 2014). Figure 1 represents the idea of



integration of IBL models and AICA. The main component in the development
of AICA is the generation of the IBL cognitive model of the dynamic deci-
sion process for cyber defense that can perform well in complex cyber security
environments.
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Figure 1: Integration of IBL models in AICA

Such cyber security environments involve both attackers (i.e., red agents)
and defenders (i.e., blue agents) in scenarios that co-evolve dynamically. The
characteristics of adversarial, evolving, dynamic, and highly complex environ-
ments suggest a need for learning and decision-making models that are trained
and evaluated across a wide range of adversary behaviours and scenarios (Baillie
et al., 2020). To develop adaptive cyber operations, we rely on a recent develop-
ment of a gym, called CybORG (Baillie et al., 2020). CybORG is an adaptive
cyber operations gym appropriate to test learning decision-making models; it is
scalable and flexible to simulate adversarial scenarios. To evaluate our IBL de-
fense model, we used a modified CybORG scenario named in a recent modeling
competition, called the CAGE challenge (Standen et al., 2021). Furthermore,
to evaluate the IBL model, we also propose Interactive Defense Game (IDG)
that integrates the attack scenario into an interactive tool where human defend-
ers confront the same intelligent attackers in CybORG, confronted by the IBL
model of defense.

In what follows, we present the components of the framework that integrates
the IBL models of defense in the AICA framework, and provide an evaluation
of this approach.



2.1 CybORG: An Autonomous Cyber Operations Gym

To allow autonomous cyber operations to become an operational capability,
researchers are developing Al gyms and platforms that encapsulate cyber ele-
ments in integrated environments. Such platforms, aim at enabling the study
and development of autonomous adaptive defense agents, by confronting them
to dynamic and realistic attack scenarios and network simulations. Our present
work aims to exploit such platforms to investigate, develop, and test the IBL-
AICA integration proposed above.

We use the CybORG Al gym (Baillie et al., 2020) and adapt the CAGE cyber
defense scenario (Standen et al., 2021) to perform experimental simulations
using IBL agents and humans as cyber defenders.

The CybORG AI Gym was initially developed and released as an experimen-
tal simulation platform to train reinforcement learning agents for cyber defense.
It uses the OpenAI Gym interface (Brockman et al., 2016) along with a cyber
operation adversarial scenario in a realistic yet simple training environment.

2.2 Adapted CAGE challenge scenario

For the present work, we adapted the Cage Challenge scenario (Standen et
al., 2021) (i.e., CAGE) that was implemented in CybORG. In CAGE, a defense
agent (blue agent) is tasked to defend a network against an attacker (red agent).
Green agents can also be included to simulate normal activity generated by
regular users performing Scans on a system. These three types of agents interact
with the scenario alternatively by performing high-level actions in a game-like
episode with a fixed number of steps.

Red agents can choose to do reconnaissance, exploitation, privilege escala-
tion, and pivoting. Blue agents are enabled to conduct network monitoring,
host analysis, malicious code removal, and system recovery from backups.

The flexibility of CybORG opens up a wide range of scenarios, and we took
advantage of it to adapt the CAGE scenario that allows us to immerse agents (Al
or humans) in situations of different complexity. From the CAGE scenario, we
were able to manipulate different aspects of the simulation: the type of attacker,
and the presence or absence of the 'normal’ activity of the Green agent and the
size of the network, as illustrated in Figure 2.

The type of attacker can represent different deterministic strategies. Two
of them, Beeline and Meander, were provided in the initial Cage Challenge sce-
nario, to resemble the diversity of attackers and to evaluate the capability of the
defender agent more comprehensively. They differentiate by their prior knowl-
edge of the network and the way they route through the network accordingly.
Beeline can be assimilated to an agent performing a blitz, targeted attack, while
Meander is seeking to gain privileged access on all hosts, stealthy establishing
a long term presence in the network. Although these are two types of attackers
provided in the CybORG scenario, other Al models of attackers can also be
plugged in, to simulate more dynamic, nondeterministic, realistic attackers and
to study the adaptation capacities of defenders.
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Figure 2: Example of two network sizes created in the CybORG scenario

Manipulating the Green agent allows one to study its impact on the defense
strategy and to develop models that would be able to discriminate an attacker
and its strategy, from the activity of a normal user.

The same goes for the size of the network. The number of subnets and hosts
is a proxy of the complexity and realism of the simulation, and its impact on
the performance of cyber defenders is studied.

On the defense side, the simulation environment allows for testing of mul-
tiple IBL agents, built with different instances structures or based on different
cognitive models, as well as other types of Al agents, for example, RL agents,
used to to compare their performance in predicting Human behavior. However,
in order to do so, an interactive interface dedicated to Human testing, had to
be developed.

In terms of experimental settings, the number of episodes to be simulated
and their duration (i.e., the number of steps of each episode) can also be ma-
nipulated. For initial experiments, the scenario runs on 25 steps-long episodes
on a small network.

2.3 Interactive Defense Game

We created a new Interactive Defense Game (IDG) which is a Django-based web
application. IDG offers a web-based graphical user interface to allow human
participants to perform the task proposed in our adapted CAGE scenario.

The IDG interface shown in Figure 3 consists of a central interactive table
representation of the network and the related information on each host or server:
IP Address, name, subnet, last detected activity, and compromised level. In this
task, a human defender can select among a set of actions represented in buttons
on the bottom right of the screen: Monitor, Analyze, Remove, Restore.

Human defenders can select a host by clicking on its row in the table and
then choose one of the four actions to perform on that particular host. Then by
clicking on the ”Next” button, the action selected takes effect, and the defender
can see the result (i.e. points lost) from the execution of that action in the ” Last



round” value. A new and updated version of the environment is presented to the
human defender, demonstrating the status (activity and compromised levels) of
the network elements. In order to allow a defense strategy to emerge. The ” Last
round” outcome provides an immediate feedback regarding the effectiveness
of the past action, and the ”Total loss” presents the human defender with a
cumulative account of the loss during the episode.

Round 16@/25 Last round: Total loss: m
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Figure 3: Interactive Defense Game user interface.

2.4 1IBLT and IBL model of Blue Agents

IBLT is a well-known cognitive theory of decision making (Gonzalez et al.,
2003). The key idea is that decisions are made by acknowledging similar past
experiences and integrating them into the generation of the expected utility of
the decision alternatives and the selection of the alternative with the maximal
expected utility. An IBL model can accurately represent the contents of human
memory, recognition, learning, and recall of experiences in decision making.
The development of cognitive models for adaptive cyber defense, builds on our
extensive work of models of cyberdefenders, cyberattackers, and end-users in a
cybersecurity context (i.e., Phishing) (e.g., Gonzalez et al., 2020).

Although IBLT’s process and mechanisms have been widely published, and
they are common regardless of the particular task the models are developed for,
we repeat the mathematical formulations of the theory here for completeness.
In IBLT, an “instance” is a memory unit that results from the potential al-
ternatives evaluated. These memory representations consist of three elements
that are constructed over time: a situation state s that is composed of a set of



characteristics f; a decision or action a taken corresponding to an alternative in
state s; and an expected utility or experienced result = of the action taken in a
state. Concretely, for an IBL agent, an option k = (s, a) is defined by the action
a in the state s. At time ¢, assume that ny; different instances (k;, x;,¢) are
considered for i = 1, ..., ny, associated with k. Each instance ¢ in memory has a
value Activation, which represents the ease with which that information is avail-
able in memory (7, 7). Here, we consider a simplified version of the activation
equation which only captures recency, frequency, and noise in memory.

=i, 0] etz o

€Tk,

where d and o are the decay and noise parameters, respectively, and Tx,+ C
{0, ...,£—1} is the set of the previous timestamps in which the instance ¢ was ob-
served. The rightmost term represents a noise for capturing individual variation
in activation, and &, is a random number drawn from a uniform distribution
U(0,1) at each step and for each instance and option.

The activation of an instance i is used to determine the probability of re-
trieving an instance from memory. The probability of an instance ¢ is defined
by a soft-max function:
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Ppi=———— 2
2 1t Z;‘itl eAjkjf’/T7 ( )
where 7 is the Boltzmann constant (i.e., the “temperature”) in the Boltz-
mann distribution. For simplicity, 7 is often defined as a function of the same

o used in the activation equation 7 = /2.
The expected utility of option k is calculated based on Blending as specified

in the choice tasks.

Nkt
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The choice rule is to select the option that corresponds to the maximum
blended value. When the agent receives delayed results, the agent updates
expected utilities using a credit assignment mechanism (Nguyen, McDonald, &
Gonzalez, 2021).

IBL Model of Blue Agents

We developed an IBL cognitive model of cyber defense and demonstrate the
model’s predictions in a simple but realistic scenario against two types of attack
strategies (Beeline and Meander) and under various conditions of noise and feed-
back frequency regarding the attacker’s actions (Du, Prebot, Xi, & Gonzalez,
2022).

The contextual features are constructed to resemble the information that
would be presented to a human defender in the scenario. Specifically, there



are two slots for each host or server, representing the observed activity and the
known compromised status of that host at a certain step in an episode. The
order of (Activity, Compromised Status) pairs for each host is fixed to encode
the identity of each host, that is, the Host name, IP address and Subnet. The
Step Indez slot is included to resemble the step counter within each episode.
The decision is for the IBL agent to choose a host to protect and the tool to
protect it with. Each action consists of a host and a command in the format of
cmd host.

The model makes decisions by storing the instances in memory and following
the general mechanisms of IBLT described above. The complete description of
this model and the simulation results are presented in (Du et al., 2022). The
results of the simulations with this model illustrate the expected impact on
defense losses when attackers are more knowledgeable and directed in their
attacks compared to when an attacker meanders around. Results show how
losses increase in the presence of normal activity and how a defender can benefit
from not knowing information too frequently to reduce losses.

3 Simulation and Human Experiments

We have built and used an IBL model that represents a human defender per-
forming the adapted CAGE scenario in CybORG. The details of this IBL. model
and the setting for the simulation experiment are further described in (Du et
al., 2022). In the simulation experiment, we designed four conditions involving
different strategies of the red agent and the presence or absence of green agents.
The Beeline Red agent without Green agents; the Beeline Red agent in the pres-
ence of Green agents; the Meander Red agent without Green agents; and the
Meander Red agent in the presence of Green agents. We ran 40 IBL simulated
defenders, each in 2000 episodes of 25 steps in each condition.

As an illustration, Figure 4 shows the performance and learning over the
2000 episodes for the Blue IBL agents, when confronted with the two Red agents,
Beeline and Meander. These results are obtained in the absence of Green agents.
The complete set of results of these simulations is shown in (Du et al., 2022).
The results are shown in terms of the loss suffered by the IBL agents during
the execution of the scenario in each episode. As observed, the IBL agents
confronted with the Beeline Red agents show a larger loss initially but are able
to learn over episodes. The IBL agents confronted against the Meander Red
agents, suffer a less severe loss initially, and again are able to learn by reducing
such loss over episodes.

A first experiment has been conducted involving human defenders perform-
ing the same scenario as in the simulation experiment. The human experiment
involved participants who defend the small network shown in Figure 2, against
one of the two types of attackers, Beeline or Meander, using IDG.

120 subjects carried out the task of defending the network against one of
the two attackers, with the goal of minimizing the loss of defense points. In the
scenario, there were no Green agents, each participant performed 7 episodes of
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Figure 4: IBL agents average Loss against two different attackers strategies,
without Green agent on a small network.

25 steps in each episode.

-30

-90

Avg. Loss of Human Agent

-120
1 2 3 4 5 6 7 1 2 3 4 5 6 7

Episode

Figure 5: Human defender average Loss against two different attacker strategies,
without Green agent on a small network.

Such human data provide some initial evaluations of the IBL model of de-
fense. As observed in the figures above, human participants in the IDG perform
worse against the Beeline than the Meander attacker. But also, just like IBL
models, humans are able to learn and improve their performance against Beeline
more than against Meander attackers.
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4 Conclusions and Future Work

In the battlefield of the future, cognitive models will play a critical role. Cog-
nitive models will help emulate the behavior of defenders, attackers, and users,
and they would allow to achieve a level of dynamic, adaptive, and personal-
ized decision making that no other technology can achieve. Cognitive models in
their goal of emulating human behavior are capable of informing game-theoretic,
Machine Learning, optimization algorithms, and other advanced technologies
with predictions about human dynamic decision making. This process has been
demonstrated in recent work and provides great potential for the future of AICA
(Aggarwal et al., 2022)

To develop and test AICA collaboration capabilities, simulation environ-
ments such as CybORG will need to be advanced and used in experimentation.
We developed a research environment where IBL defense agents can perform a
cyber defense task. Using the IBL model we conducted a simulation experiment
to test the performance of the IBL model against the two attacker agents of the
adapted CAGE scenario. We also developed an Interactive Defense Game to
demonstrate the behavior of human defenders.

The cyber defense of the future will involve AICA that collaborate with
other computational agents and cyber experts in a team (Theron & Kott, 2019).
This aspect of future cyber operations requires the development of intelligent
autonomous systems that are able to actively coordinate with other defenders
(Human and AI) to act appropriately and optimize the global performance of
the team (National Academies of Sciences & Medicine, 2021; Metge, Maille,
& Le Blanc, 2021). Our next step is to develop more complex human-machine
scenarios. In particular, a dynamic IBL Attacker is being developed to study the
impact of a dynamic autonomous agent fighting another adaptive autonomous
agent. We also plan to update the IGD to perform a collaborative real-time
experiment between human and IBL-enhanced agents.

Using this advanced research framework, we will address questions concern-
ing Human-AICA collaboration. In particular, when considering the structure
of collaborative work between humans and autonomous agents, one would nec-
essarily need to consider the level of representation of teammates (Sulistyawati,
Wickens, & Chui, 2009; Cuevas, Fiore, Caldwell, & Strater, 2007). In a con-
text of Human-AT collaboration, it is therefore important to provide teammates
with the tools to build a mutual understanding (McNeese, Demir, Cooke, &
Myers, 2018; Jiao, Zhou, Gebraeel, & Dufly, 2020; Prebot, 2020), and cognitive
architectures will play a key role in achieving this goal (Gonzalez et al., 2020).
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