
Baoshun Ma- Ph.D.
- University of Vermont
Baoshun Ma
- Ph.D.
- University of Vermont
About
19
Publications
1,809
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
1,328
Citations
Current institution
Publications
Publications (19)
The forces of mechanical interdependence between the airways and the parenchyma in the lung are powerful modulators of airways responsiveness. Little is known, however, about the extent to which adjacent airways affect each other's ability to narrow due to distortional forces generated within the intervening parenchyma. We developed a 2-dimensional...
To estimate the influence of parenchymal heterogeneities on airway-parenchymal interdependence, we considered a circular airway embedded within elastic parenchyma modeled as 1) a hexagonal spring network, 2) a triangular spring network, or 3) a continuum. The deformation in the parenchyma due to active airway contraction was simulated using the fin...
A striking feature of stress relaxation in biological soft tissue is that it frequently follows a power law in time with an exponent that is independent of strain even when the elastic properties of the tissue are highly nonlinear. This kind of behavior is an example of quasi-linear viscoelasticity, and is usually modeled in a purely empirical fash...
The explanted lung slice has become a popular in vitro system for studying how airways contract. Because the forces of airway-parenchymal interdependence are such important modulators of airway narrowing, it is of significant interest to understand how the parenchyma around a constricting airway in a lung slice behaves. We have previously shown tha...
The aerosol bolus technique can be used to estimate the degree of convective mixing in the lung; however, contributions of different lung compartments to measured dispersion cannot be differentiated unambiguously. To estimate dispersion in the distal lung, we studied the effect of gravity and airway asymmetry on the dispersion of 1 μm-diameter part...
The outward tethering forces exerted by the lung parenchyma on the airways embedded within it are potent modulators of the ability of the airway smooth muscle to shorten. Much of our understanding of these tethering forces is based on treating the parenchyma as an elastic continuum; yet, on a small enough scale, the lung parenchyma in two dimension...
Variable (or noisy) ventilation (VV) has been demonstrated in animal models of acute lung injury to be superior to constant (or conventional) ventilation (CV), in terms of improved gas exchange and mitigation of lung injury, for reasons that are not entirely clear. We hypothesized that the efficacy of VV is related to the fact that recruitment and...
Although the major mechanisms of aerosol deposition in the lung are known, detailed quantitative data in anatomically realistic models are still lacking, especially in the acinar airways. In this study, an algorithm was developed to build multigenerational three-dimensional models of alveolated airways with arbitrary bifurcation angles and spherica...
Recruitment maneuvers using deep inflations (DI) have long been used clinically with the objective of recruiting collapsed regions of the lung. Considerable uncertainty continues to exist, however, as to how best to employ recruitment maneuvers or even if they should be used routinely at all for patients receiving mechanical ventilation. Much of th...
Accurate modeling of air flow and aerosol transport in the alveolated airways is essential for quantitative predictions of pulmonary aerosol deposition. However, experimental validation of such modeling studies has been scarce. The objective of this study is to validate CFD predictions of flow field and particle trajectory with experiments within a...
Quantitative data on aerosol deposition in the human respiratory tract are useful for understanding the causes of certain lung diseases and for designing efficient drug delivery systems via inhalation. In this study, aerosol deposition in a 3D anatomically based human large-medium airway model was simulated using computational fluid dynamics (CFD)....
Static deformation analysis and estimation of wall stress distribution of patient-specific cerebral aneurysms can provide useful insights into the disease process and rupture.
The three-dimensional geometry of saccular cerebral aneurysms from 27 patients (18 unruptured and nine ruptured) was reconstructed based on computer tomography angiography im...
Lung input impedance measured via forced oscillation over low frequency range has been confirmed as sensitive to the degree and the heterogeneity of lung disease. In this study we advanced an image-based, multi-scale computational model for the human lung, which includes upper and central airways, small airways and alveoli tissue unit. A three-dime...
Arterial aneurysms are in a pre-deformed state in vivo under non-zero pressure. The ability to determine their zero pressure geometry may help in improving accuracy of determination of stress distribution and reverse estimation of material properties from dynamic imaging data. An approximate method to recover the zero pressure geometry of the AAA i...
The authors investigated whether quantified shape or size indices could better discriminate between ruptured and unruptured aneurysms.
Several custom algorithms were created to quantifiy the size and shape indices of intracranial aneurysms by using three-dimensional computerized tomography angiography models of the brain vasculature. Data from 27 p...
The risk of rupture of cerebral aneurysms has been correlated with the size of the aneurysm sac. It is conceivable that geometrical shape, not just size may also be related to aneurysm rupture potential. Further, aneurysm shape may also be a factor in deciding on treatment modalities, i.e., to clip or coil. However, our ability to make use of avail...
The relationship between cerebral aneurysm geometry and biomechanics was investigated. Human cerebral aneurysm geometry was reconstructed from computed tomography angiography (CTA) and refined. Various indices of global geometric (size and shape) features were computed based on differential and computational geometry techniques. Computational fluid...