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A B S T R A C T   

Indoor map is a fundamental element of indoor location-based services (ILBS). However, traditional indoor 
mapping techniques are labor-intensive and time-consuming. The advancement of smartphones offers great 
opportunities for crowdsourcing-based indoor mapping, which is one of the most promising applications due to 
its low cost and flexibility. Over the last decade, many crowdsourcing-based indoor mapping solutions using 
smartphones have been proposed. This article provides a systematic review of these works. Different from former 
surveys, we classify the indoor mapping process by the stage of map construction. In particular, we highlight the 
two key steps, geospatial-element acquisition, and indoor-map construction, and provide state-of-the-art tech-
niques on these topics. Then, we systematically review the crowdsourcing-based indoor mapping solutions under 
grid-based, landmark-based, and semantic maps. In addition to covering the principles, benefits, and challenges, 
these systems are compared in terms of sensors, participation, output, experimental environment, and reported 
accuracy. Besides these existing performance criteria, we extract quantitative performance criteria that are 
suitable to evaluate crowdsourcing-based indoor mapping solutions. Finally, we present open issues and future 
research directions.   

1. Introduction 

Indoor location-based service (ILBS) is a hot research topic in the 
geographic information science arena and has attracted the attention of 
both industry and academia (Kang et al., 2020; Liu et al., 2021). It has 
many prospective applications in smart cities, intelligent transportation, 
and logistics management fields (Ma et al., 2020). The ILBS market 
value is estimated to be $10 billion in 2020 (Connolly and Boone, 2013) 
. Indoor maps play an important role in ILBS applications because an 
indoor navigation system needs a map to show the navigation path and 
user location. Traditional indoor map construction relies on manual 
operation according to geometric information of blueprints in computer- 
aided design (CAD) (Gilliéron and Merminod, 2003; Han et al., 2014), 

industry foundation classes (IFCs) (Lin et al., 2013; Liu et al., 2014), and 
building information modeling (BIM) (Isikdag et al.,2013; Volk et al., 
2014) formats. However, the manual process is labor-intensive, time- 
consuming, and expensive. In particular, it requires a substantial effort 
to keep the maps up-to-date since the manual process has to be repeated 
to capture environmental changes (Pipelidis et al., 2017). Moreover, 
building blueprints are usually inaccessible due to privacy issues. 

In recent years, many automatic indoor mapping techniques based 
on special sensors (e.g., laser-based (Karam et al., 2019; Surmann et al., 
2003; Turner et al., 2015), depth camera-based (Endres et al., 2014; 
Khoshelham and Elberink, 2012; Li et al., 2019), sonar-based (Ismail 
and Balachandran, 2015; Tardós et al., 2002), and multi-sensor fusion- 
based (Luo and Lai, 2012)) have been proposed to produce high-quality 
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indoor maps. These sensors are equipped on a robot (Luo and Lai, 2012) 
or a backpack (Lauterbach et al., 2015; Wen et al., 2016)platform. The 
robot platform can save manpower but may encounter difficulties while 
running in complicated multi-floor indoor environments. In contrast, the 
backpack platform is more flexible; however, its surveying process is 
labor-intensive and time-consuming. In general, indoor mapping plat-
forms are costly because of the requirement for professional hardware 
and expert handlers. 

With the rapid development of microelectromechanical systems 
(MEMS) and mobile communications, smartphones become powerful in 
sensing, computing, and communication (Lane et al., 2010; Wang et al., 
2016a; Yürür et al., 2014). In particular, today’s smartphones are 
packed with many sensors (e.g., accelerometers, gyroscopes, magne-
tometers, cameras, WiFi, Bluetooth, and microphone) for environmental 
perception. The sensed information can reflect the geometric structure 
of the indoor map because the users’ trajectories are restricted by ob-
stacles (e.g., walls and furniture) indoors (Alzantot et al., 2012). For 
example, WiFi signals can be used to identify landmark similarities 
(Shen et al., 2013), while image and acoustic signals can be used to 
measure distances (Gao et al., 2014; Zhou et al., 2017a). The powerful 
sensing capacity of smartphones makes indoor-map construction 
possible. Furthermore, smartphone-based indoor mapping has two ad-
vantages: (i) it is low-cost since it does not require any additional 
equipment, and (ii) it is straightforward to implement because of the 
high penetration of smartphones. 

The advancement of smartphones facilitates the development of 
crowdsourcing-based applications, such as remote sensing (Toth and 
Jozkow, 2016; Zhang et al., 2020), indoor localization (Lashkari et al., 
2019; Rai et al., 2012; Wu et al., 2015; Zhou et al., 2017b), urban traffic 
management (Wang et al., 2016b; Zang et al., 2018), road navigation 
(Fan et al., 2017), and digital map updating (Peng et al., 2018; Tang 
et al., 2016; Wang et al., 2013; Zhou et al., 2021). Crowdsourcing has 
emerged as a hot topic for collecting and sharing sensing data (Ganti 
et al., 2011; Guo et al., 2015; Guo et al., 2017; Li et al., 2017a; Ma et al., 
2014). In particular, crowdsourcing-based indoor-map construction is 
promising because many smartphone-based indoor sensing data can be 
generated when people spend the majority of their time indoors (Zhou 
et al., 2015a). 

As a new sensing paradigm, crowdsourcing has gained increasing 
attraction. A large number of papers have been published. With these 
publications, there are several survey papers on the mobile crowd-
sourcing technique. The survey in (Heipke, 2010) introduces crowd-
sourcing geospatial data and reviews the developments. The survey in 
(Guo et al., 2015) characterizes the unique features, existing application 
areas, and reference framework of mobile crowdsourcing and 
computing systems, while the review (Hosseini et al., 2015) character-
izes a systematic mapping study for crowdsourcing methods. Mean-
while, there are survey papers on specific crowdsourcing applications. 
The survey in (Lashkari et al., 2019) concerns crowdsourcing and 
sensing for indoor localization, while the survey in (Guo et al., 2017) 
proposes the concepts, unique features, application areas, challenges, 
and key techniques of visual crowdsourcing. Meanwhile, the paper 
(Wang et al., 2016b) reviews crowdsourcing applications in intelligent 
transportation systems. These survey papers have provided compre-
hensive information about the crowdsourcing technique and its appli-
cations in indoor localization, visual navigation, and intelligent 
transportation. However, the existing surveys do not have a systematic 
review of crowdsourcing-based indoor mapping. A review of these 
technologies from crowdsourced smartphone sensor data is therefore 
warranted. In this survey, we summarize almost 8 years of research and 
development from 2012 to 2020 in the field of crowdsourcing-based 
indoor mapping using smartphones (see Table 1). 

The contributions in this paper are as follows:  

• This article outlines a systematic review of crowdsourcing-based 
indoor-map construction using smartphones. Different from former 

surveys, we classify the indoor mapping process by the stage of map 
construction, which is clearer to understand. From this article, 
readers can directly get the full knowledge of how to obtain indoor 
maps by using crowdsourced smartphone sensor data.  

• In the summarized process, we highlight the two key steps: 
geospatial-element acquisition and indoor-map construction. The 
state-of-the-art techniques in trajectory tracking, range estimation, 
landmark detection, and the construction of grid-based, landmark- 
based, and semantic maps are covered.  

• We systematically introduce and explain the existing crowdsourcing- 
based indoor mapping systems. Besides the principles, benefits, and 
challenges, these systems are compared in terms of sensors, partici-
pation, output, experimental environment, and reported accuracy. 
This part can guide how to design or select a crowdsourcing-based 
indoor mapping system. 

• Based on the summarization of existing works, we extract perfor-
mance criteria that are especially suitable to evaluate 
crowdsourcing-based indoor mapping solutions. Examples of these 
criteria are the amount of data, the position of feature points, the 
graph/shape discrepancy metric, the room aspect ratio, and the in-
door semantic information. The quantitative calculation of these 
criteria is provided.  

• We emphasize the open issues and future directions in 
crowdsourcing-based indoor mapping. In particular, we point out 
that the lack of uniform comparison criteria, datasets, and incentive 
mechanisms are the main factors that have limited the promotion of 
crowdsourcing-based indoor mapping. Such issues have not been 
covered by previous surveys. 

This survey is organized as follows. Section 2 provides an overview of 
the crowdsourcing-based indoor mapping process. Meanwhile, it high-
lights two main steps: geospatial-element acquisition and indoor-map 
construction. The techniques for these steps are reviewed in Sections 3 
and 4, respectively. Afterward, Section 5 compares the techniques, while 
Section 6 illustrates the open research issues and future directions. 
Finally, Section 7 concludes the paper. 

2. Overview of crowdsourcing-based indoor mapping 

Indoor mapping is the process that transforms sensor data into in-
door maps. This section describes the fundamentals of indoor maps, 
followed by an overall workflow of the crowdsourcing-based indoor 
mapping process. 

Table 1 
Comparison of different indoor map construction.   

Occupancy 
grid map 

Landmark-based 
map 

Semantic map 

Techniques position 
clustering 

landmark recognition semantic recognition 

Algorithm convex hull 
and alpha- 
shape 

spring-relaxation and 
multidimensional 
scaling 

Faster R-CNN, SSD, 
and R-FCN 

Cost low high high 
Advantage low-cost, no 

need for 
multiple 
sensors 

map constructed 
completely 

semantic information 

Disadvantage difficult to 
shape room 
and hallway 

algorithm 
complicated, multi- 
sensor required 

algorithm 
complicated, multi- 
sensor required, 
depends heavily on 
the visual conditions 
of the scene  
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2.1. The data structure of indoor maps 

Generally, there are two data structures of the geometric map: vector 
maps and raster maps (Mao et al., 2015). For indoor maps, there are also 
two predominant paradigms: landmark-based maps and occupancy grid 

maps (Cadena et al., 2016; Yu and Amigoni, 2014). The former is a 
vector map, which models the environment as a sparse set of landmarks, 
and the latter is a raster map, which discretizes the environment in cells 
and assigns a probability of occupation to each cell. 

Landmark-based maps model the environment as a sparse set of 
landmarks, as shown in Fig. 1. The solid lines represent walls in the map, 
and the dotted line is the user’s trajectory. The locations of landmarks 
are estimated in the indoor mapping process as follows. First, the user’s 
trajectories are inferred, and the ranging distances that between the path 
and the landmarks or between landmarks are estimated. Then, based on 
the user’s trajectory and ranging distance, the locations of landmarks 
can be calculated. 

To construct a landmark-based map, we obtain the location of the 
user path and the ranging distances between the path and the land-
marks. In addition to constructing indoor maps, landmarks can also be 
used to assist path inference. 

The occupancy grid map discretizes the environment in cells and 
assigns a probability of occupation to each cell. The probability of 
occupation is determined by occupancy detection. User path-based oc-
cupancy detection is a common method. The detection mechanism 
works as follows: if a user path passes the cell, it is detected as an 
occupied grid, as shown in Fig. 2. Besides, occupancy detection can be 
employed based on wireless signals (Qiu and Mutka, 2017). However, 
the detection effect of a wireless signal tends to decrease sharply when 
an obstacle exists between the wireless links. 

Besides geometric construction, semantic information is the other 
important element for electronic maps. It offers the attributes (e.g., 
names and functionalities) of objects in an indoor environment. The 
semantic information acquisition is usually by extracting texts from 
images. 

User’s trajectory

Landmark

Ranging

Fig. 1. Landmark-based map.  

User path

Occupied grid

Vacant grid

Fig. 2. Occupancy grid map.  

Fig. 3. Crowdsourcing-based indoor mapping process.  
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2.2. Indoor mapping framework 

Based on the description of the indoor map, we summarized a 
technical framework of crowdsourcing-based indoor mapping. As shown 
in Fig. 3, the indoor mapping process consists of two main steps, 
geospatial-element acquisition, and indoor-map construction. These 
steps are demonstrated by the orange modules in the flow chat. Their 
functions are as follows. 

• Geospatial-element acquisition. Basic geospatial elements (e.g., tra-
jectories, ranges, and landmarks) are extracted from crowdsourced 
data from sensors (e.g., accelerometers, gyroscopes, magnetometers, 
WiFi, cameras, and microphones). The three key modules, trajectory 

tracking, range estimation, and landmark detection, are described in 
Sections 3.1–3.3, respectively.  

• Indoor-map construction. The geospatial elements are processed to 
generate indoor maps. The approaches for generating grid-based, 
landmark-based, and semantic maps are reviewed in Sections 
4.1–4.3, respectively. 

3. Crowdsourcing-based geospatial-element acquisition 

The crowdsourced data from the smartphone are disordered and lack 
spatial reference. These data need to be analyzed and processed to 
become useful geometric structures and basic elements of indoor maps. 
The fundamental techniques for this purpose mainly consist of trajectory 
tracking, ranging estimation, and landmark detection. The basic prin-
ciples and recent advances of these techniques are introduced in this 
section. 

3.1. Trajectory tracking 

The crowdsourcing user trajectories are important data sources for 
extracting the basic route and structure of indoor maps. According to the 
method of data collection, smartphone-based trajectory tracking 
methods can mainly be divided into pedestrian dead reckoning (PDR)- 
based and simultaneous localization and mapping (SLAM)-based ones.  

(1) Pedestrian Dead Reckoning (PDR) 

PDR is a specific dead reckoning technique dedicated to pedestrians. 
Dead reckoning calculates the current position from a previously 
determined position by integrating angular and linear motion mea-
surements. Almost all smartphones are now equipped with inertial 
sensors, making them able to track user trajectories by dead reckoning. 
Constrained by size, cost, and power consumption, smartphone inertial 
sensors usually have low accuracy. Therefore, the traditional dead 
reckoning method is not suitable for smartphones due to the rapid 
accumulation of errors (Davidson and Piche, 2017; Harle, 2013). To 
alleviate this issue, the cyclic pedestrian motions (e.g., the periodic steps 
in Fig. 4) can be applied to correct the DR solutions. This fact inspires the 
use of PDR (Judd, 1997; Levi and Judd, 1996). 

A typical PDR system consists of three parts: step detection, step- 
length estimation, and walking-direction estimation. Step detection is 
realized by searching for repeating patterns in accelerometer or gyro-
scope data during walking. Thresholding and peak detection algorithms 
are often used together for step detection, where walking motion is 
detected by thresholds, and steps are counted by peak detection (Brajdic 
and Harle, 2013). In most situations, steps are detected using an accel-
erometer, and in some situations, a gyroscope is used (Davidson and 
Piche, 2017). 

Step-length estimation is used to estimate the length of each step. 
Then, the distance can be estimated by summing all the step lengths. 

Fig. 5. Illustration of the use of virtual landmarks to calibrate a trajectory.  

VL b1

User AUser B

User C

VL b2

VL c2

VL c1

VL c3

VL a1

VL a3

VL a2

(0, 0)
VL 2VL 1

Fig. 6. Illumination of the use of virtual landmarks to align trajectories. The left figure shows the ground truth of three users; the middle figure shows the inferred 
trajectories by PDR; the right figure shows the aligned result. (VL: Virtual landmark). 

Fig. 4. Accelerometer signal results during normal walking and step detection.  
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Some research assumes that the step length of a user is a constant that is 
determined by user height (Pratama and Hidayat, 2012). There are 
several step-length models, including the step frequency-based model 
(Hilsenbeck et al., 2014) and step frequency and height-based model 
(Renaudin et al., 2012). 

Walking-direction estimation can be obtained directly from the 
readings of the magnetic compass. The integration of gyroscope signals 
can provide estimations of direction changes. The accuracy of smart-
phone sensors is low; walking direction estimation based on a single 
sensor has large errors. The combination of the magnetic compass and 
gyroscope will give better results than using the sensors separately 
(Ladetto and Merminod, 2002).  

(2) Virtual landmark 

Due to the existence of inertial sensor errors, the estimated trajectory 
deviates from the ground truth. The deviation makes it difficult to 
construct an accurate indoor map using raw PDR trajectories. Moreover, 
the trajectory inferred by the PDR algorithm contains only relative co-
ordinates. If the initial position is unknown, the crowdsourced trajec-
tories are without spatial reference. To overcome these challenges, 
virtual landmark-based approaches have been proposed for PDR 
correction. 

The virtual landmarks used for indoor mapping include inertial- 
based landmarks (e.g., elevators, stairs, escalators, and corners) and 
WiFi landmarks. Inertial-based landmarks are related to pedestrian ac-
tivity, which can be detected by an activity-detection algorithm (Yang 
et al., 2018; Zhou et al., 2019b). With the advancement of smartphone 
technology, smartphone-based activity detection has drawn attention 
from many scholars (Jain and Kanhangad, 2017; Lara and Labrador, 
2013; Ronao and Cho, 2016). For example, Crowd Inside (Alzantot et al., 
2012) proposes a decision-tree-based classification algorithm for activ-
ity detection. The activity-related locations are used as virtual land-
marks to recalibrate the crowdsourced trajectories. Refer to (Lara and 
Labrador, 2013) for smartphone-based human activity recognition. 

The virtual landmarks are used for PDR correction through two 
techniques: trajectory recalibration and trajectory alignment. Trajectory 
recalibration resets crowdsourced trajectories based on virtual land-
marks. Since the accuracy of the smartphone inertial sensors is low, the 
inferred trajectories deviate from the ground truth. If the locations of the 
virtual landmarks are known, the trajectories can be recalibrated when a 
virtual landmark is detected. Its principle is shown in Fig. 5. CrowdIn-
side (Alzantot et al., 2012) and SenseWit (He et al., 2017) utilize this 
method to assist indoor mapping. This method requires a sufficient 
number of virtual landmarks to exist in the indoor environment. 
Moreover, the positions of the virtual landmarks are inferred by PDR. 
The initial points are obtained by other localization techniques, e.g., the 
loss of the GPS fix (Alzantot et al., 2012). In a crowdsourcing-based 
system, there is usually more than one trace containing the same vir-
tual landmark. In this case, the position of the virtual landmark is esti-
mated by averaging all the traces. Due to the low accuracy of inertial 
smartphone sensors, the position estimation results are always inaccu-
rate, which limits the accuracy of the constructed maps. 

Virtual landmark-based indoor map construction systems are based 
on the assumption that there are a sufficient number of virtual land-
marks to calibrate traces. Moreover, to ensure the location estimation 
accuracy of the virtual landmarks, there needs to be enough traces 
passing through them. In reality, these assumptions do not always hold 
in all environments. 

Besides trajectory recalibration, virtual landmarks can be used for 
trajectory alignment. Trajectory alignment is important because the 

Fig. 7. Illustration of echo-based ranging (Graham et al., 2015).  

Fig. 8. Chirp signal in FMCW (Wang et al., 2018a).  

Fig. 9. Sensor signatures of different inertial-based landmarks.  
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crowdsourced trajectories are without spatial reference. The reason for 
this phenomenon is that the crowdsourced trajectories are collected by 
various users at different times; moreover, the trajectories inferred by 
PDR contain only relative coordinates. Trajectory alignment is based on 
the observation that some trajectories contain the same virtual land-
marks. That is, different users may walk through the same virtual 
landmarks. 

Fig. 6 shows the use of virtual landmarks to align crowdsourced 
trajectories. Three smartphone users walked in the indoor environment. 
There are three, two, and three turns in User A, B, and C’s trajectories, 
respectively. These turns can be used as virtual landmarks. Some virtual 
landmarks are at the same position, which can be clustered based on the 
context information (e.g., WiF signals (Zhou et al., 2015b; Zhou et al., 
2018)). For example, VL b2 / VL c2 and VL a1 / VL c3 are two clusters. 
Since PDR can only generate a relative user trajectory, the three user 
trajectories all start at the origin of a local coordinate system, as shown 
in the middle subfigure. Based on the virtual landmark clustering result, 
we can align the trajectories, as shown in the right subfigure. 

Several indoor mapping approaches utilize virtual landmarks to 
align crowdsourced trajectories. Walkie-Markie leverages WiFi-Mark as 
the virtual landmark and applies a spring relaxation-based graph opti-
mization algorithm for indoor map construction (Shen et al., 2013), 
while ALIMC utilizes activity landmarks as virtual landmarks and uses 
multidimensional scaling (MDS) to combine crowdsourced trajectories 
(Zhou et al., 2015b). Meanwhile, Zhou et al. propose a graph 

optimization method for crowdsourcing-based indoor map construction 
that leverages activity landmarks as loop positions (Zhou et al., 2018).  

(3) Simultaneous Localization and Mapping (SLAM) 

SLAM has been one of the most popular topics in the robotic field 
over the last few decades. It is designed to build a map of an unknown 
environment and simultaneously localize the robot on the map (Bailey 
and Durrant-Whyte, 2006; Grisetti et al., 2010). 

A traditional SLAM approach usually employs odometry and a laser/ 
video scanner to capture the physical space and constraints of the 
environment. In smartphone-based SLAM approaches, the step detection 
and direction estimation results are used as the rangefinder, while the 
images or wireless signals are used to observe the environment. 
SmartSLAM first utilizes the SLAM technique to construct indoor maps 
using smartphones (Shin et al., 2012). To improve the trajectory esti-
mation accuracy, some researchers use WiFi observations as landmarks 
to perform SLAM. Within these works, WiFi SLAM was first used for 
localization (Grisetti et al., 2010; Zhou et al., 2018). It utilizes inertial 
data to estimate the mobility and WiFi data for the observation model. 

3.2. Range estimation 

Because of the complex geometric structure, rebuilding an entire 
indoor scene by relying only on trajectory tracking is not sufficient. For 
example, user trajectories cannot cover indoor open spaces such as 
rooms or lobbies. Hence, other means are needed to estimate the range 
(e.g., room size and corridor width) of the indoor scene. There are four 
main range-estimation methods: PDR, structure from motion (SfM), 
echo-based ranging, and frequency modulated continuous wave 
(FMCW)-based ranging. PDR was introduced in the previous section; 
thus, this section introduces the remaining three methods.  

(1) Structure from motion (SfM) 

SfM is a classical method that is used to determine camera and point 
geometry based on pixel correspondences (Snavely et al., 2010). It is 
usually used to model the 3D world from 2D images by feature detection 
and matching (Li et al., 2017b; Szeliski, 2010). The feature detection and 
matching are usually called correspondence estimation, which finds 
matching 2-D pixel sets in all the input images. Each set of matching 
pixels represents a 3-D point. Once the correspondences between images 
are estimated, SfM uses them to recover the 3-D camera poses and 3-D 
positions of the points in the feature matching sets. SfM can be consid-
ered an optimization problem to find the configuration of the camera 
poses and 3-D points that best agree with the correspondences based on 
the principle of triangulation. Developing methods to find matching 2-D 
pixels in an unorganized set of images is a research hotspot that has 

Fig. 10. Illustration of the WiFi-Mark (Shen et al., 2013).  

Fig. 11. The general process of occupancy grid map construction.  
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attracted attention from the computer vision community in recent de-
cades (Förstner, 1986; Lowe, 2004; Mikolajczyk, 2005). Various 
powerful feature extractors have been proposed (Lowe, 2004; Miko-
lajczyk, 2005), among which the scale-invariant feature transform 
(SIFT) (Lowe, 2004) is one of the most popular features.  

(2) Echo-based ranging 

Intuitively, the distance between the audio sender and the receiver 
can be calculated by the time of flight (ToF) of the acoustic signal. 
Precise time synchronization is required for ToF-based ranging. How-
ever, such precision cannot always be ensured in indoor environments. 

To mitigate time-synchronization errors, the echo-based ranging 
technique is used (Graham et al., 2015; Peng et al., 2007), as shown in 
Fig. 7. First, the system emits an acoustic signal. The signal will be re-
flected, and an echo is generated if it encounters an object. The time 
difference between the initial emitted signal and the echo wave is used 
to calculate the distance between the sender and the object. The distance 
is calculated by multiplying the time difference by the sound velocity 
and dividing the result by two.  

(3) Frequency modulated continuous wave (FMCW)-based ranging 

FMCW is a classical ranging technique that was originally designed 
for radar systems (Stove, 1992). Different from the echo-based ranging 
technique, which estimates the time delay, FMCW estimates the prop-
agation delay based on the frequency shift of the chirp signal. 

Fig. 8 illustrates the process of FMCW (Wang et al., 2018a). The red 
line denotes the transmitted signal, the blue line denotes the received 
signal, and the green line is the mixed signal composed of the trans-
mitted signal and received signal. According to the equations of signal 
processing (Wang et al., 2018a), the distance between the transceiver 
and target is calculated by D = CT

2Bfb, where D is the distance, C is the 
propagation speed, T is the sweep period, B is the sweep bandwidth, and 
fb is the frequency of the mixed signal, which is obtained by multiplying 
the transmitted signal by the received signal. 

3.3. Landmark detection 

As introduced in Section 2, an indoor map can be described as the 
connection of a sparse set of landmarks. According to smartphone sen-
sors, landmark-detection methods can be classified as inertial-based, 
WiFi-based, and visual-based ones.  

(1) Inertial-based landmark detection 

Inertial-based landmarks are based on the observation that built-in 
sensors generate unique sensing data signatures when people pass 
certain locations. These locations can be detected as landmarks. For 

example, when people take the elevator, there is an overweight or a 
weightlessness signature, which can be detected by the accelerometers 
in a smartphone. Fig. 9 shows the sensor signatures of different inertial- 
based landmarks in indoor environments.  

(2) WiFi-based landmark detection 

Walkie-Markie considers a WiFi signal sequence for landmark 
detection, which is called WiFi-Marks (Shen et al., 2013). Walkie-Markie 
utilized WiFi-Marks to combine crowdsourced trajectories. A WiFi-Mark 
is a specific position, where the Received Signal Strength (RSS) trend 
changes from increasing to decreasing, as shown in Fig. 10. The reason 
for using the RSS tread is that it is robust to device diversity.  

(3) Visual-based landmark detection 

Visual-based landmark detection is the process that applies computer 
vision techniques to extract geometric features (e.g., room layout, 
widths of entrances, and lengths/orientations of adjoining walls) from 
images. Jigsaw (Yürür et al., 2014) combined inertial data and images to 
construct indoor maps. This method extracted the sizes and coordinates 
of landmarks from the images using SfM and vanishing line detection 
algorithms. Also, CrowdMap (Chen et al., 2015b) detected the room 
layout by selecting line segments along the vanishing line direction 
based on the generated panorama. 

4. Crowdsourcing-based indoor-map construction 

After extract the basic elements and structures of indoor maps from 
crowdsourcing data, there is a need to connect and integrate these tra-
jectories, structures, and landmarks to form the indoor map. In this 
section, we introduce the different indoor map construction technolo-
gies and the details of each indoor mapping system. The indoor map 
construction technologies can be mainly divided into two ways, which 
are occupancy grid map construction and landmark-based map con-
struction. On this basis, some researchers tried to add semantic infor-
mation to maps. 

4.1. Construction of occupancy grid map 

The occupancy status of each cell can be determined by occupancy 
detection. To construct an indoor map, the boundary of the occupied 
cells is estimated. Boundary estimation is a computational geometry 
problem. For this purpose, convex, which is a concept in computational 
geometry that has been widely used for point cloud processes (Lipuš 
et al., 2019; Sampath and Shan, 2007), can be used. For example, 
CrowdInside used the alpha-shape algorithm to generate the overall 
floorplan shape (Alzantot et al., 2012; Elhamshary et al., 2018). 

Fig. 11 shows the main process of occupancy grid map construction. 

Smartphone

accelerometer

gyroscope

camera 

Data collection

Landmark placement
Landmark modeling

Map augmentation

Fig. 12. The general process of landmark-based map construction.  
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Each user step is represented by a point. Therefore, a point cloud is 
generated from the crowdsourcing trajectories. The goal of the convex 
hull algorithm is to estimate the best shape that represents the point 
cloud. The alpha-shape algorithm is implemented to generate the shape 
of the building (Edelsbrunner, et al., 1983). Compared to the building 
shape generated by the convex hull, the building shape generated by the 
alpha-shape is more accurate. 

(1) Systems for crowdsourcing-based construction of indoor occu-
pancy grid maps  

● CrowdInside 

CrowdInside is an indoor map automatic construction system based 
on crowdsourced trajectories collected by users moving in a building 
(Alzantot et al., 2012; Elhamshary et al., 2018). To generate accurate 
motion traces, it proposed an anchor point (virtual landmark)-based 
error resetting technique. Anchor points were points in the environ-
ment that can generate specific sensor features for trajectory calibration. 
CrowdInside consists of three modules: (a) the data-collection module, 
which collects crowdsourced data; (b) the trace-generation module, 
which builds accurate motion traces; and (c) the floorplan-estimation 
module, which generates the indoor map by separating the corridors 
from the rooms and detecting the room boundaries. 

Experiments were conducted in a campus building with an area of 
approximately 448 m^2. Results show that the false-positive and false- 
negative rates of anchor point detection were 0.2% and 1.3%, respec-
tively. The experiments demonstrate that CrowdInside can efficiently 
construct an indoor map using crowdsourcing trajectories. However, it is 
based on the assumption that there are sufficient numbers of anchor 
points to reset trace errors. Thus, it cannot be implemented in buildings 
with few anchor points. Moreover, CrowdInside requires that user steps 
must cover the whole area of the room, which would require much time 
to construct the indoor map because many users only move within part 
of a room.  

● SenseWit 

SenseWit is an efficient crowdsourcing-based indoor map construc-
tion application that uses only inertial sensors (Jain and Kanhangad, 
2017). Similar to CrowdInside, SenseWit is based on the observation 
that people’s activity offers useful information for location estimation. 

The SenseWit experiment was conducted with 10 volunteers in two 
environments: an office of 24 m * 19.2 m and one floor in a university 
library. Experimental results show that the feature location recognition 
achieved an accuracy higher than 85% recall and more than 90% pre-
cision. For the labeling accuracy, approximately 90% of the feature lo-
cations had errors within 1 m. The room size error was 31.4%.  

● iFrame 

iFrame is an indoor floor plan construction system that can be con-
structed automatically by sharing information between smartphones 
(Qiu and Mutka, 2017). The moving trajectories of the users were esti-
mated by the dead reckoning algorithm. To mitigate the drifts in dead 
reckoning solutions, iFrame used a Markov chain to improve trajectory 
estimation and employs Bluetooth and WiFi position updates. Moreover, 
it adopted curve fit fusion to improve the output matrices and generates 
an initial shadow map. Finally, it employed the anchor points proposed 
by CrowdInside (Alzantot et al., 2012) to rebuild the floor plan. 

To evaluate iFrame, an experiment was conducted in an academic 
lab at Michigan State University. The experimental results show that 
iFrame could effectively generate a skeleton map. The layouts of 12 
rooms were reconstructed within 5–10 min. Also, the changes in the 
layout of the indoor map could be detected.  

● SmartSLAM 

SmartSLAM is a crowdsourcing-based indoor-map construction sys-
tem that combines inertial and WiFi data for crowdsourced trajectory 
estimation (Shin et al., 2012). It used the WiFi signal strength as the 
observation value and the inertial data as a mobility model. Based on the 
observation and mobility model, it employed the FastSLAM algorithm 
(Dong et al., 2018) to track the pedestrian and localize WiFi APs 
simultaneously. The pedestrian positions were used for floorplan 
construction. 

The SmartSLAM experiments were implemented in the Yonsei En-
gineering and Research Center. The localization errors were less than 4 
m on average. It was also performed in multiple buildings. The experi-
mental results demonstrate that it can build corridor paths for buildings 
with different layouts.  

● ShopProfiler 

ShopProfiler is a crowdsourcing-based system that can automatically 
profile shop type and brand name (Guo et al., 2014). It used customer 
movement patterns as the feature for shop categorizing since the 
movement patterns are different in different shops. It consists of four 
modules. The data-collection module was used to collect data from in-
ertial sensors, microphones, and WiFi. The movement pattern-capturing 
module was used to investigate movement patterns in different shops 
within a mall. The differentiating basic unit module is used to differ-
entiate a shop and corridor based on the unique features of movement. 
Moreover, a gradient-based room boundary detection algorithm was 
applied to improve system performance. Based on the collected data and 
movement patterns, ShopProfiler utilized (Support Vector Machine, 
SVM) to categorize shops and labeled the shop brand names using 
(Service Set Identifier, SSID) mining. 

To evaluate the ShopProfiler, experiments were conducted on three 
different scenarios. The experimental results show that it achieved over 
80% prediction accuracy of the shop category.  

● Jigsaw 

Jigsaw is a crowdsourcing-based floor plan reconstruction system 
that can generate indoor maps with hallway connectivity, room sizes, 
and shapes. It combined inertial data and images to construct indoor 
maps (Gao et al., 2014). The position, size, and orientation information 
were extracted from the images. The Jigsaw system consists of three 
parts: landmark modeling, landmark placement, and map 
augmentation. 

The experimental results of Jigsaw shown that the landmark position 
and orientation estimation errors were respectively 1–2 m and 5◦–9◦ in 
the 90th percentile and the hallway connectivity accuracy was 100%. 
Jigsaw can generate the floorplan of a single floor. Recently, R. Gao et al. 
extended Jigsaw by adding connection area detection, which can be 
used to reconstruct a multistory indoor floorplan (Gao et al., 2016). The 
connection areas in a multistory building include stairs, elevators, and 
escalators. The connection area detection is based on the distinctive 
patterns of the inertial and wireless signals when a user passes through 
such areas. The idea is similar to CrowdInside. The connection areas are 
detected by an unsupervised classification algorithm. By connection 
area detection, a topological map can be generated, which can be used 
for indoor navigation.  

(2) Summary 

The advantages of CrowdInside and SenseWit are that they use only 
inertial sensors to construct indoor maps. To improve the accuracy of 
crowdsourcing trajectories, these systems apply the virtual landmark- 
based trajectory recalibration method, which achieves a good result. 
However, they are based on the assumption that there is a sufficient 
number of anchor points for trajectory recalibration and that the user 
trajectories will cover the whole area of the building. iFrame assumes 

B. Zhou et al.                                                                                                                                                                                                                                    



ISPRS Journal of Photogrammetry and Remote Sensing 177 (2021) 131–146

139

that Bluetooth Received Signal Strength (RSS)is related to distance and 
needs to evaluate the RSS-distance mapping relations in advance. The 
assumption is unreliable due to the complex indoor environment, which 
has a multipath effect. Also, the pre-trained mapping relations for one 
type of smartphone are not suitable for all types. Moreover, iFrame as-
sumes that the abrupt changes in the WiFi signal are related to obstacle 
detection. This assumption is also unreliable because many factors can 
cause WiFi signal mutations, such as multipath effects and human oc-
clusion. SmartSLAM is the first SLAM-based indoor map construction 
system that uses smartphones and can achieve good mapping perfor-
mance. However, it can only generate corridor paths for buildings. 
Jigsaw requires participants to take images by two designed modes, 
Click-Rotate-Click (CRC) and Click-Walk-Click (CWC), which may cause 
inconvenience to the users. It utilizes SfM to obtain the sizes and co-
ordinates of landmarks. However, this method tends to fail in a 
featureless environment. 

The key technique of occupancy grid map construction is indoor 
positioning. However, the sensor-based indoor positioning effect is often 
influenced by the indoor environment. Only one type of sensor can’t 
apply all the situations. Besides, the visual-based method like SfM may 
construct point insufficiently accurate when images are inadequate. 
Random variations such as moving customer flows may constitute a 
disturbance to the appearance of landmarks. Moreover, this data 
collection has high energy consumption and privacy issues. Although 
the authors claimed that the storeowners welcome such exposure for 
advertisement, the security guard of the mall may prevent the partici-
pants from taking a large number of pictures. 

4.2. Construction of the landmark-based map 

Compare to the occupancy grid map construction that generally 
using user’s trajectories clustering, the landmark-based map construc-
tion tend to base on landmark recognition. As shown in Fig. 12, the main 
processes of landmark-based map construction are generally landmark 
modeling, landmark placement, and map augmentation. The locations 
of the landmarks can be estimated by the range-estimation method 
introduced in Section 3. However, there are ranging errors, which de-
grades the accuracy in landmark location estimation. Thus, the land-
mark locations tend to be assigned as a classical node-embedding 
problem and solved by optimization-based methods. The optimization 
algorithm assigns optimal coordinates to the landmarks, which can be 
divided into the spring-relaxation and multidimensional scaling (MDS) 
techniques.  

● Spring-relaxation 

The spring-relaxation technique has been widely used for coopera-
tive localization (Priyantha et al., 2003; Seet et al., 2012; Zhang et al., 
2010). Cooperative localization is used to solve the following problem: 
given a set of nodes with unknown locations and the distances between 
one node to a few neighboring nodes, determine the locations of every 
node by node-to-node communication (Priyantha et al., 2003). 

Spring-relaxation-based landmark location optimization uses the 
concept to simulate the movements of the sensor under spring forces and 
find the final resting location of the sensor, which is the estimated 
location.  

● Multidimensional Scaling (MDS) 

MDS (Borg and Groenen, 2003) is a data analysis technique that is 
often used in information visualization for exploring similarities or 
dissimilarities in data. It is a dimensionality reduction method that 
displays data graphically to make it easier to understand (Saeed et al., 
2019). The input of an MDS algorithm is a matrix of item-item dissim-
ilarities (Borg and Groenen, 2003; Bronstein et al., 2006; Yang et al., 
2012). The inter distance is usually used as a metric of dissimilarity. 

Many network localization approaches adopt MDS to estimate the lo-
cations of wireless devices (Costa et al., 2006; Shang and Ruml, 2004). 
Some researchers use MDS to estimate the locations of WiFi APs (Koo 
and Cha, 2012). They extract the dissimilarities between different WiFi 
APs based on the scanned RSS. Meanwhile, researchers use MDS to 
automatically label WiFi fingerprints for indoor localization (Yang et al., 
2012).  

(1) Systems for crowdsourcing-based construction of indoor 
landmark-based maps  

● Walkie-Markie 

Walkie-Markie is a crowdsourcing-based indoor mapping system that 
can reconstruct pathway maps by fusing the user trajectories and special 
landmarks called WiFi-Marks(Shen et al., 2013). Walkie-Markie consists 
of a client and a backend. The client applied a walking state detection 
engine to periodically detect a user’s walking state. With the clustered 
WiFi-Marks and connecting user trajectories, the backend service 
generated the indoor pathway maps by an expansion-shrinking process. 

To evaluate the performance of Walkie-Markie, experiments were 
conducted on an office floor with an area of 3600 m^2 and an internal 
pathway length of 260 m and a shopping mall with an internal pathway 
length is approximately 310 m. The experiments were shown that the 
maximum error of the anchor nodes and path segment estimation were 
within 3 m and 2.8 m, respectively.  

● ALIMC 

ALIMC is an activity landmark-based indoor mapping system that 
constructs indoor maps by using activity landmarks to merge crowd-
sourced trajectories (Zhou et al., 2015b). Activity landmarks are virtual 
landmarks where people engage in special activities, such as elevators, 
corners, and stairs. 

ALIMC was implemented on two floors of an office building, with a 
52.5 m*52.5 m floorplan. The experimental results demonstrated that 
ALIMC achieved a good result for indoor mapping, with an 80th-percen-
tile mapping error of 0.8–1.5 m. However, ALIMC utilizes the MDS 
technique to merge crowdsourced trajectories, which is unsuitable for 
buildings with circular structures. Moreover, ALIMC is based on the 
assumption that there are enough activity landmarks in the environ-
ment, which is occasionally unrealistic. ALIMC can only generate a to-
pology map for the indoor environment.  

● G2OMap 

G2OMap is a crowdsourcing-based indoor map construction method 
that utilizes graph optimization techniques to align crowdsourcing tra-
jectories (Zhou et al., 2018). Similar to ALIMC, the initial innovation of 
G2OMap is that it used an activity landmark as the loop position point to 
realize the loop closure in the SLAM framework. 

G2OMap was implemented in an office building with a 52.5 m*52.5 
m floorplan and a shopping mall with a 100 m*70 m floorplan. The 80th- 
percentile mapping error was approximately 1.7–3.5 m.  

● Hallway 

Hallway1 leveraged the WiFi signal and motion information to 
construct an indoor map (Jiang et al., 2013). It is composed of three 
parts: room adjacency graph construction, which constructed a room 
adjacency graph; hallway layout learning, which determined the rooms 
and their orders along the hallway; and force-directed dilation, which 
optimized the overall floorplan accuracy. 

Hallway was implemented in five buildings with different floorplan 

1 We call this solution Hallway for convenience 
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structures. The experimental results show that the average room posi-
tion accuracy was 91%, the room area estimation error was 33% and the 
room geometric aspect ratio error was 24%.  

● PiLoc 

PiLoc proposes an indoor map construction method by combining 
motion and WiFi information (Luo et al., 2014). It consists of three 
components. The clustering component was used to divide all collected 
trajectories into disjoint clusters that cover different indoor environ-
ments based on the WiFi signal strength and moving vector. The cor-
relation matching component was used to find the overlapping 
trajectory segments of the different clusters based on AP signals and 
movement vectors. The overlap segments were further used to construct 
the floorplan and radio map simultaneously. Finally, the constructed 
floorplan and radio map were leveraged for indoor localization. 

PiLoc was conducted on two different floors, with sizes of 900 m^2 
and 120 m^2, to evaluate the floorplan construction performance. The 
experimental results show that PiLoc achieved average step mapping 
errors of 1.27 m–1.65 m and 0.46 m–0.6 m on the 900 m^2 and 120 m^2 
floors, respectively.  

● CISWS2 

Sankar and Seitz have proposed a novel smartphone application for 
capturing and reconstructing indoor scenes based on camera and inertial 
sensor data collected by a smartphone (Sankar and Seitz, 2012). To 
reconstruct indoor scenes, the participant first captured a video of an 
indoor environment following a few guidelines. The video was then 
indexed spatially with the camera pose information obtained by the 
inertial sensors. With the obtained video, CISWS generates a visual 
rendering of the indoor scene. The position of the camera is estimated 
based on this information, and a floorplan is generated. 

The proposed system was tested in four indoor environments. The 
results show that CISWS reconstructed the dimensions and floorplan 
with an average error of 10.45%.  

● CrowdX 

CrowdX is a crowdsourcing-based indoor floorplan construction 
system that leverages opportunistic user encounters to reset the dead- 
reckoning error (Chen et al., 2018). The relative spatial relationship 
between mobile user trace segments was derived by audio ranging and 
dead reckoning technology. CrowdX constructed a floorplan based on 
the inertial, Bluetooth, and audio data. Tracing profiling was used to 
generate traces based on inertial sensor data and check whether the 
trace contains the segments inside the room. The segments inside the 
room are used to estimate the room area, while others in the hallway are 
used to estimate the landmark position and assemble the hallway. 

Experiments in three shopping malls were conducted to evaluate 
CrowdX. The experimental results show that the average F-score was 
approximately 89.4%, and the average room area estimation error was 
approximately 20%.  

● BatMapper 

BatMapper is an acoustic sensing-based indoor floorplan construc-
tion system that combines smartphone acoustic and inertial data to 
generate indoor maps(Zhou et al., 2017a; Zhou et al., 2019a). It was 
based on the principle that the distance between a smartphone and an 
object can be estimated based on the time difference between the sound 
emission and echo reception. The input of BatMapper included data 
from three sensing modalities, i.e., acoustics, gyroscopes, and 

accelerometers. From these modalities, echo candidates and user traces 
were extracted and combined by mapping algorithms for indoor map 
construction. The output of BatMapper includes regular rooms, irregular 
rooms, and corridors. 

BatMapper was tested in three buildings: a 40*60 m laboratory, a 
50*60 m teaching building, and a 45*45 m office building. The exper-
imental results show that the distance measurement accuracy was 1–2 
cm at approximately 4 m. BatMapper could generate fine rough corridor 
shapes with 2–3 min of walking. The door detection and localization 
accuracies were 92% and 1–2 m at percentile, respectively. The room 
geometry estimation error was less than 0.3 m at the 80th percentile.  

● SAMS3 

SAMS is an acoustic-based system for indoor map construction that 
infers the structure of indoor space by analyzing the audio signals re-
flected from the environment with a smartphone (Pradhan et al., 2018). 
SAMS allowed a smartphone to emit audio signals and analyzed the 
reflected signals to estimate the distance between the smartphone and 
walls. Meanwhile, it inferred the user moving trajectory and combines it 
with the audio-based distance estimation to create the contour of the 
indoor space. 

The experimental results show that the median errors of the distance 
measurement of a single wall and multiple walls are 1.5 cm and 6 cm, 
respectively. Moreover, the maximum indoor map contour estimation 
error of SAMS is 1.2 m.  

(2) Summary 

Walkie-Markie works well for normal indoor pathways that are 
usually narrow. However, for large open areas, the performance of 
Walkie-Markie may deteriorate when users walk arbitrarily. This is 
because the WiFi-Mark clustering process may cause errors in a large 
open area. ALIMC utilizes the MDS technique to merge crowdsourced 
trajectories, which is unsuitable for buildings with circular structures. 
Moreover, it is based on the assumption that there are enough activity 
landmarks in the environment, which is sometimes unrealistic. ALIMC 
can only generate a topology map for the indoor environment. Similar to 
ALIMC, G2OMap can only generate a topology network of an indoor 
map, which is not sufficient for ILBS applications. Hallway can estimate 
the room dimensions along the corridor based on the pedestrian tra-
jectory. However, it cannot obtain the dimensions perpendicular to the 
corridor. Moreover, Hallway focuses on rectangular rooms, which is not 
suitable for more complicated layouts containing curves. For trajectory 
matching, PiLoc utilizes path and signal correlations as the metric. The 
matching algorithm works well in narrow paths. However, in open areas 
where people may walk arbitrarily, path and signal correlations may fail 
to match trajectory since the arbitrary walk path does not contain a 
sufficiently large distance. Due to this limitation, PiLoc can only 
construct the corridor path of an indoor environment. BatMapper can 
generate indoor maps by acoustic sensing using smartphones. However, 
it requires participants to walk around a whole building to collect data. 
Since the acoustic ranging distance is limited, BatMapper requires the 
participants to walk a full loop near the walls for buildings with large 
open spaces. Moreover, it requires the participants to operate the 
smartphone to collect useful data. The complicated rules designed in 
BatMapper make it unusable for an untrained user. SAMS can achieve 
good performance for indoor-map construction, which is better than 
that of BatMapper (2.6 m). However, SAMS is based on certain strict 
assumptions. First, a user is required to hold a phone in a straight line, 
keeping the phone microphone facing the walls. Second, SAMS assumes 
that a user makes only 90◦ turns and straight movements between the 
two turns to avoid heading direction errors. 

2 We use the acronyms for the title of the cited paper for easy reading. 3 We use the acronyms for the title of the cited paper for easy reading. 
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So far, the crowdsourcing-based construction for indoor landmark- 
based maps focuses on landmark recognition and connection. Most of 
the methods rely on the Manhattan world (MW) assumption, which can 
only serve for the regular indoor environment. The way of crowd-
sourcing data acquisition is another limitation. For connecting the whole 
landmark of the indoor scene, the data collectors often need to follow 
certain established rules. It is increased the difficulty of data acquisition 
and the artificial burden. 

4.3. Semantic map construction 

In addition to geometry, semantic information is also an important 
element for indoor maps. Indoor semantics represent the attributes (e.g., 
shop names and functionalities) of objects (called entity (Teng et al., 
2018)) in an indoor environment. Recently, numerous methods have 
been proposed for indoor semantic labeling. Deep learning techniques 
are usually used to recognize entities from images. The commonly-used 
entity-recognition algorithms include Faster R-CNN (Ren et al., 2015), 
SSD (Liu et al., 2016), and R-FCN (Dai et al., 2016). These algorithms use 

Table 2 
Summary of different indoor mapping solutions.  

Solutions Sensors Participation Output Experiment environment Reported accuracy 

CrowdInside ( 
Alzantot et al., 
2012) 

Inertial Passive Corridor, room A shopping mall with plenty of virtual 
landmarks, and an office floor with the 
size of about 448 m2 

Room number estimation accuracy is 100% 

SenseWit (He et al., 
2017) 

Inertial Passive Corridor, room An office with the size of 24 m × 19.2 m, 
and one floor in a campus library with 
464 m2 area 

Feature location recognition accuracy is more 
than 85% for recall, and 90% for precision; F- 
score of the hall shape is 78.7%; room size 
estimation error is 31.4% 

Walkie-Markie (Shen 
et al., 2013) 

Inertial, WiFi Passive Corridor An office floor with a size of 3600 m2, the 
total pathway length is 260 m; A shopping 
mall with an irregular layout and the 
pathway length is about 310 m. 

The maximum error is 3 m and 2.8 m for the 
anchor nodes and path segments, respectively 

ALIMC (Zhou et al., 
2015b) 

Inertial, WiFi Passive link-node model Two floors of an office building, with the 
size of 52.5 m × 52.5 m 

The 80% error is about 0.8–1.5 m 

G2OMap (Zhou et al., 
2018) 

Inertial, WiFi Passive link-node model An office building with the size of 52.5 m 
× 52.5 m, and one floor of a shopping mall 
with the size of 100 m × 70 m 

The 80% error is about 1.7–3.5 

iFrame (Qiu and 
Mutka, 2017) 

Inertial, 
WiFi, 
Bluetooth 

Proactive Corridor, room eLANs Lab of Michigan State University The error of block value is 0.041 

Hallway (Li et al., 
2017a) 

Inertial, WiFi Passive Corridor, room A classroom building, a research lab 
building, a shopping mall, and an office 
building. The sizes are unknown 

The position accuracy is 91%; the room area 
error is 33%; the average aspect ratio error is 
24% 

SmartSLAM (Shin 
et al., 2012) 

Inertial, WiFi Passive Corridor an office building, the size is unknown The average error is 3 m 

Piloc (Luo et al., 
2014) 

Inertial, WiFi Passive Corridor Four different areas cover 5528 m2 in 
total, the sizes of these four areas range 
from 120 m2 to 3000 m2 

The average SME is 1.27 m, and 0.54 m for mid- 
size office area and research lab, respectively 

Jigsaw (Gao et al., 
2014) 

Inertial, 
image 

Proactive Corridor, room Two stories of a 150 m × 70 m shopping 
mall of irregular shape, and one story of a 
140 m × 40 m long and narrow mall 

The average RMSE of floor plans is 1.01 m and 
1.32 m for landmarks and intersections, 
respectively. The average F-score of hallway 
shape estimation is 83.67%. The average room 
size error is 27.6% 

SISE (Teng et al., 
2018) 

Inertial, 
image 

Proactive Entity semantic 
and location 

An office building with the size of 4000 
m2 

The precision and recall of semantic updating 
are 81.1% and 79.8%, respectively. The 90- 
percentile location error of the changed entities 
is less than 1.5 m 

SemSense ( 
Elhamshary and 
Youssef, 2015) 

Inertial, 
images, 
WiFi, LBSN 

Proactive Corridor, room An office building with the size of 24 m ×
19.2 m, and one floor in a campus library 
with the size of 464 m2 

The average F-score of hallway shape estimation 
is 78.7%, the average room size error is 31.4% 

SnapTask (Sankar and 
Seitz, 2012) 

Image Proactive 3D model A library at Aalto University The reconstruction ratio is 100% for the library 
walls and 98.12% for the objects and traversal 
areas within the library 

IndoorCrowd2D ( 
Chen et al., 2015a) 

Inertial, 
image 

Proactive Indoor 
panoramic 
image, hallway 
skeleton 

A teaching building and a GYM The F-score of the hallway skeleton estimation is 
around 95% 

CrowdMap (Chen 
et al., 2015b) 

Inertial, 
video 

Proactive Corridor, room Two college laboratories and a GYM, the 
sizes are unknown 

The average F-score of hallway shape estimation 
is 90%, the average room size error is 9.8%, the 
average room aspect ratio is 6.5%, the average 
room location error is 1.3 m 

CISWS (Sankar and 
Seitz, 2012) 

video Proactive (with 
user interaction) 

2D and 3D indoor 
map 

N/A The average dimensions and map reconstruction 
error is 10.45% 

CrowdX (Chen et al., 
2018) 

Inertial, 
acoustic, 
Bluetooth 

Passive Corridor, room Three shopping malls, the sizes are 13000 
m2, 5200 m2, and 1800 m2, respectively 

The landmarks location error is 1 m, the average 
F-score of the hallway shape estimation is 
88.9%, the average error of room area 
estimation is 22% 

BatMapper (Zhou 
et al., 2017a) 

Inertial, 
acoustics 

Proactive Corridor, room A laboratory with the size of 40 m × 60 m, 
a teaching building with the size of 50 m 
× 60 m, and an office building with the 
size of 45 m × 45 m 

Door detection precision is 92%, and the 90% 
location error is 1–2 m; the room geometry 
estimation error is less than 0.3 m at 80% 

SAMS (Pradhan et al., 
2018) 

Inertial, 
acoustics 

Proactive Corridor, room N/A The indoor map contour estimation error is 1.2 
m  
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neural networks to extract and localize the entity in an image. After 
entity recognition, POI information (e.g., shop name and room number) 
extraction is also important for indoor maps. To extract texts from im-
ages, optical character recognition (OCR) (Smith, 2007; Ye and Doer-
mann, 2015) techniques are the common approach. ViNav (Dong et al., 
2018) uses photos as input and applies OCR techniques to extract texts 
from images. 

In addition to images, semantic information can also be extracted 
from other data, such as those from location-based service networks 
(LBSNs) (Elhamshary and Youssef, 2015), WiFi SSID, and microphones 
(Guo et al., 2014). These semantic information extraction methods are 
not universal. We will introduce them in the following section, which 
details each system. 

(1) Systems for crowdsourcing-based construction of indoor se-
mantic maps  

● SemSense 

SemSense is a semantic indoor floorplan construction system that 
can automatically label indoor maps with semantic labels (Elhamshary 
and Youssef, 2015). In addition to smartphone sensor data, it also used 
check-in data from location-based social networks. SemSense consists of 
two parts: client and server. A SemSense client was used to collect sensor 
data and interact with the could server. The collected sensor data 
include locations, WiFi signals, and images. 

To evaluate SemSense, experiments were conducted in four shopping 
malls including 711 stores. It achieved a semantic labeling accuracy of 
87%. Also, its coverage ratio was over 27% greater than that of the 
current location-based social networks.  

● SnapTask 

SnapTask is a crowdsourcing-based indoor map construction system 
that is based on visual data (Sankar and Seitz, 2012). The innovation of 
SnapTask is that it proposed an efficient manner to guide participants to 
collect visual data with high quality-of-information (QoI) (Noreikis 
et al., 2018). SnapTask proposed several methods to overcome specific 
challenges. First, it applied model coverage analysis to determine the 
areas lacking data. Then, it generated a data-collection strategy that 
determined which data to collect. Moreover, it developed an online tool 
for participants to mark the bounds of featureless areas to overcome the 
issue of featureless surfaces. 

SnapTask was used in a university library. The reconstruction ratio 
was 100% for walls and 98.12% for obstacles and traversable areas. 
Moreover, its model coverage was 20.72% and 34.45% better than that 
of the unguided participatory and opportunistic visual crowdsourcing 
methods, respectively. When reconstructing featureless surfaces, the 
precision and F-score of SnapTask were 98.14% and 90.23%, 
respectively.  

● IndoorCrowd2D 

IndoorCrowd2D is an indoor scene reconstruction system that can 
generate building interactive panoramic maps at a large scale with un-
trained users (Chen et al., 2015a). The interactive panoramic map 
consists of indoor panoramic images and building hallway skeletons. 
The former was used for indoor interview visualization, while the latter 
was used for interactive navigation. IndoorCrowd2D consists of two 
parts: a mobile data acquisition client and a computing backend. The 
mobile data acquisition part was used for collecting crowdsourced im-
ages and sensor data. In contrast, the cloud-computing backend was 
used for crowdsourcing data processing. 

IndoorCrowd2D was evaluated in two college buildings by untrained 
and uncorrelated volunteers. The volunteers used the data-acquisition 
application to capture indoor scenes. 55,453 images from 1151 data-
sets were collected by 25 users. The experimental results show that the 

precision, recall, and F-score of IndoorCrowd2D were 85%, 100%, and 
95%, respectively.  

● CrowdMap 

CrowdMap is a crowdsourcing system that utilizes inertial sensors 
and video data to reconstruct indoor floorplans (Chen et al., 2015b). It 
was first tracked user movements based on these data and then uses the 
inferred user trajectories and image context to generate a floorplan. 

CrowdMap was evaluated in three different college buildings. The 
precision, recall, and F-score of the hall-shape estimation results were 
approximately 88%, 93%, and 90%, respectively. The room-area esti-
mation error was 9.8%, and the room aspect ratio error was 6.5%. 
Similar to IndoorCrowd2D, CrowdMap is also based on the RMW 
assumption, which assumes that each room has a rectangular shape.  

● SISE 

SISE is a mobile crowdsourcing system that can automatically and 
continuously update indoor semantic floorplans for general entities in 
dynamic indoor environments (Teng et al., 2018). It focused on the 
problem of indoor semantic floorplan updating. SISE consists of two 
components: a mobile application and an updating engine. The mobile 
application was used to collect and upload crowdsourced data, including 
images and inertial data. In contrast, the updating engine updated in-
door semantic floorplans based on the collected crowdsourced data. 

To evaluate the SISE, experiments were implemented on one floor of 
an office building with a size of 100 m*40 m. The precision and recall of 
entity recognition were approximately 81.1% and 79.8%, respectively. 
The localization error was within 1.5 m for 90% of the changed entities.  

(2) Summary 

SnapTask constructs 3D models of indoor environments by SfM 
techniques and then converts them into indoor maps. On the one hand, 
the SfM always suffers from featureless surfaces, resulting in a lack of 
data in certain areas. On the other hand, redundant data in the hotspots 
generate extra processing costs. IndoorCrowd2D and CrowdMap are 
based on the RMW assumption, which may not be suitable for non-
rectangular buildings. 

The semantic information extraction is mainly based on image 
recognition techniques like Optical Character Recognition (OCR). The 
technique shows good performance when the character type is single. 
But, when there are more character types in the scene, the accuracy of 
the algorithm will be low. Besides, the technique of 3D Indoor Scene 
Understanding (Hedau et al., 2009) can’t apply in the nonrectangular 
buildings. For improving the accuracy of semantic map construction, the 
crowdsourcing system may consider designing a friendly human-
–computer interaction by using advanced visualization methods, such as 
Augmented Reality (AR). 

4.4. Solutions comparison 

The three types of indoor mapping solutions are compared from the 
criteria of the techniques, the algorithm, the cost, the advantage, and the 
disadvantage. 

5. Comparison of techniques 

Table 2 provides a summary of different indoor mapping solutions. 
The solutions are compared in terms of the following criteria: the sensors 
used, the method of participation, the output of the solutions, the 
experimental environment, and the reported accuracy. 

Inertial sensors are the most commonly used smartphone sensors for 
crowdsourcing-based indoor mapping solutions since inertial sensors 
can generate user trajectories, which are the most important elements 
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for indoor-map construction. One of the greatest advantages of an in-
ertial sensor-based method is that it is independent of external infra-
structure; thus, it can provide crowdsourcing data without user 
proactive effort. By contrast, the image-based solutions require users to 
proactively take photos, which may be inconvenient. The advantage of 
image-based solutions is that they can obtain accurate geometry infor-
mation of the indoor environment. Also, semantic information can be 
extracted from images. Moreover, by shooting videos, the smartphone 
can provide an interactive interface for a user to correct the mapping 
errors. WiFi-based solutions require the support of WiFi infrastructures. 
Moreover, due to the complex indoor environment, the WiFi RSS mea-
surement is unstable, which may cause large errors in indoor mapping. 
The acoustic-based solutions exploit the acoustic-based ranging tech-
nique to estimate the distance between the sound sources and object. 
These solutions require smartphones to repeatedly emit and record 
sound signals, which may affect the normal use of smartphones. 

We reviewed the performance criteria proposed in the literature to 
evaluate indoor mapping methods. These performance criteria can be 
divided into two main categories, namely, quantitative criteria and 
qualitative criteria. The qualitative criterion includes sensors used, 
participation, and output, which are listed in Table 2. The quantitative 
criteria are elaborated as follows.  

● Amount of crowdsourcing data 

The amount of data needed for constructing an indoor map is a useful 
parameter for the performance of the crowdsourcing-based method. 
Some studies evaluate the performance of inferred maps with different 
amounts of crowdsourcing data (Alzantot et al., 2012; Zhou et al., 
2015a; Zhou et al., 2018). 

Generally, the indoor mapping performance is enhanced as the 
amount of crowdsourcing data increases until it reaches a certain 
threshold. Thus, determining the amount of data needed is an interesting 
problem. However, it is difficult to obtain a common metric, for 
example, x-minutes of data per square meter, because indoor environ-
ments are complex and varied. Moreover, the quality of crowdsourced 
data may vary for different users because the map elements may be 
different in various types of environments. For example, the map ele-
ments of an office building are more complicated than those of a lobby.  

● Hallway shape 

The hallway path skeleton is an important component of an indoor 
map. Although some navigational indoor maps may display corridors as 
single lines, these kinds of the map are limited in many location services, 
such as spatial analysis and indoor positioning expression. The map with 
hallway skeleton can offer more spatial information and display a more 
accurate map. The hallway reconstruction is usually based on the oc-
cupancy grid map building, which is a dominant paradigm for envi-
ronment modeling in the smartphone. The cues of hallway construction 
generally include the boundary of the hallway, positions of cameras, and 
motion traces in the hallway. 

To evaluate how close the shapes of constructed hallways resemble 
respective ground truth, normally overlaying the reconstructed hallway 
onto its ground truth to achieve maximum overlap by aligning both the 
center point and the orientation. Precision is the ratio of the size of the 
overlap area to the whole reconstructed hallway. 

The hallway shape can be used to evaluate the similarity between the 
generated hallway path skeleton and the ground truth. To calculate this 
metric, the generated hallway path skeleton is first overlaid onto the 
ground truth. Then, the center point of the generated indoor path skel-
eton is moved and rotated to achieve maximum overlap. After that, the 
parts belonging to the room are cut off. To evaluate the hallway shape 
estimation performance, the metrics below are used: 

P =

⃒
⃒Sgen ∩ Strue

⃒
⃒

⃒
⃒Sgen

⃒
⃒

R =

⃒
⃒Sgen ∩ Strue

⃒
⃒

|Strue|

F = 2 ×
P × R
P + R  

where P, R, and F are the precision, recall, and F-score of the hallway 
shape, respectively. P is defined as the ratio of the overlapped area to the 
generated area. R is defined as the ratio of the overlapped area to the 
ground truth.  

● Room size 

The room construction is often used as the occupancy grid map, 
whose cues are segments of landmark models and motion traces inside 
the room. The accurate shape of a room is an essential part of an indoor 
map, which makes the map expression more complete and clear. The 
room size is the difference between the size of the generated room and 
that of the ground truth divided by the size of the ground truth. 

RSerror =

⃒
⃒RSgen − RStrue

⃒
⃒

RStrue 

Besides, the room aspect ratio (RAR) denotes the shape of a room, 
which is defined as the room length divided by the room width: 

RAR =
Lroom

Wroom  

where Lroom stands for the room length and Wroom is the room width. The 
RAR error is defined as follows: 

RARerror =

⃒
⃒RARgen − RARtrue

⃒
⃒

RARtrue    

● Position of feature points 

The positions of feature points are evaluated by the root mean square 
error (RMSE) of the feature points in the inferred floorplan and their 
corresponding ground truth. Given n feature points on an indoor map 
with 2D coordinates Xmap

i = (xmap
i , ymap

i ) and the corresponding ground 
truth Xgt

i =
(
xgt

i , y
gt
i
)
, i = 1,2,⋯,n, the RMSE is calculated by 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1(X
map
i − Xgt

i )
2

n

√

The RMSE of the feature points is also called the graph discrepancy 
metric (GDM) in other publications (Shen et al., 2013; Zhou et al., 
2015a; Zhou et al., 2018).  

● Graph/Shape Discrepancy Metric  
● As above, the graph discrepancy metric (GDM) reflects the difference 

between the feature points of the constructed map and that of the 
ground truth. The RMSE of the feature points is GDM. The shape 
discrepancy metric (SDM) reflects the differences between the shapes 
of the constructed paths and ground truth. To calculate the SDM, the 
link segments between feature points are uniformly sampled to 
obtain a series of sample points. The RMSE of the sample points is 
SDM. Indoor semantic information 

For indoor semantic information extraction, the performance criteria 
are similar to the classification method. The most commonly used 
criteria are precision, recall, and F-score. The F-score is defined as F = (2 
× P × R)=(P + R), where P refers to the precision and R refers to the 
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recall. 

6. Open issues and future research directions 

Crowdsourcing-based indoor mapping using smartphones is one of 
the most promising applications for indoor map construction and 
updating. The techniques have both academic and industry values. On 
the other hand, there are still challenges in applying the current research 
results to real-life applications. This section discusses the open research 
issues for crowdsourcing-based indoor mapping using smartphones and 
possible future research directions. 

6.1. Lack of uniform performance comparison criteria and datasets 

To evaluate crowdsourcing-based indoor mapping systems, many 
performance comparison criteria have been proposed, as reviewed in 
Section 4. However, some evaluation criteria are subjective and un-
quantifiable. Also, there are currently no uniform performance com-
parison criteria for indoor mapping. To alleviate this issue, it is 
worthwhile to learn from other fields. For example, in the indoor- 
localization area, there are several competitions, such as EvAAL4, 
Microsoft Indoor Localization Competition5, and PerfLoc6. In these 
competitions, the committee gives some uniform performance evalua-
tion metrics, which promote the development of the corresponding 
techniques. Thus, determining the uniform performance comparison 
criteria for indoor mapping is a promising research direction. 

Moreover, there are few benchmarking datasets for crowdsourcing- 
based indoor mapping. Evaluation experiments are usually performed 
in various indoor environments, which makes it difficult to compare 
different solutions. This issue also exists in the indoor-localization field. 
Recently, for indoor localization, researchers have published several 
datasets, which bring great benefits for related research (Lohan et al., 
2017; Mendoza-Silva et al., 2018; Mendoza-Silva et al., 2019). Also, 
benchmarking datasets in other research fields, such as Lenna images in 
the image-processing field, have achieved great success. Similarly, 
publishing crowdsourcing data for indoor mapping is important. 

6.2. Multi-sensors data fusion 

As illustrated in Section 4, although a single sensor-based method 
can implement indoor mapping, there are some limitations and differ-
ences. For example, the inertial sensors equipped in smartphones are 
used for positioning, which is not accurate enough as well known. Also, 
the positioning error accumulates with time. As well known, the 
smartphone has been equipped with many sensors (e.g., accelerometers, 
gyroscopes, magnetometers, cameras, Wi-Fi, Bluetooth, and micro-
phone). Take these advantages of different sensors can effectively 
improve the quality of indoor map construction. 

Considering that each type of sensor data has different characteris-
tics, multiple data processing methods are usually required to build a 
complete map. Such as semantic labeling, landmark recognition from an 
image, and boundary extraction based on the alpha-shape. Therefore, 
one of the most important challenges of crowdsourcing systems is fusing 
the data from multi-sensors. 

6.3. Incentive and standardization mechanism for data collection 

As it’s investigated in this paper, complex movement patterns of 
smartphones are carried by users that make it difficult for the underlying 
system to address the heading estimation issue. Besides, data collection 

consumes considerable energy from smartphones. For crowdsourcing 
indoor mapping solutions, challenges are quite different since these 
schemes need to apply satisfying incentive mechanisms to encourage 
users for data collection and contribution. Multiple studies have pro-
posed incentive mechanisms for crowdsourcing-based applications 
(Jaimes et al., 2015; Li et al., 2018; Nie et al., 2019; Tian et al., 2017; 
Wang et al., 2018b; Zhang et al., 2016). For indoor localization, Li et al. 
proposed an incentive mechanism for crowdsourcing-based WiFi 
fingerprinting (Li et al., 2018). In addition to device positions, these 
systems should struggle with the human body position as well to handle 
location jumping and map rotation. Improving the data quality and 
design quality-based incentive rules for crowdsourcing-based indoor 
mapping systems will be an important research direction. 

Recently, interactive mode-based indoor-map-construction ap-
proaches have been proposed (Chen et al, 2015a; MagicPlan, 2019; 
Sankar and Seitz, 2012). IndoorCrowd2D creates an interactive interface 
that allows users to input building floor information (Chen et al, 2015a), 
while Sankar and Seitz propose an interactive photogrammetric 
modeling-based smartphone application for indoor-map construction 
(Sankar and Seitz, 2012). Also, MagicPlan is a commercial indoor-map- 
generation application that can estimate the dimensions of the room and 
generate a corresponding map by marking the room corners via an 
augmented reality interface (MagicPlan, 2019). The data collected by 
these interactive mode-based applications are of high quality. Thus, 
designing a quick start guide and interactive interface for crowdsourced 
data collection will be helpful to improve the indoor mapping data 
quality. 

7. Conclusions 

With the development of ILBS, indoor-map construction has attrac-
ted enormous interest in both academic and industrial communities. The 
latest smartphones are equipped with various sensors, such as inertial 
sensors, WiFi, cameras, and microphones. The existence of such sensors 
makes smartphones a low-cost and up-to-date spatial data source, which 
is especially suitable for crowdsourcing-based indoor mapping. 
Numerous studies have been proposed during the last decade; however, 
a systematic review is lacked. In this paper, we survey the state-of-the- 
art crowdsourcing-based indoor mapping techniques via smartphones. 
We investigate the general process of crowdsourcing-based indoor 
mapping and highlight the key steps. Within these steps, we discuss and 
compare the functionality, advantages, and drawbacks of existing sys-
tems. Furthermore, we discussed the performance evaluation, open is-
sues, and future research directions. Finally, we expect that this study 
will provide a useful perspective for recent crowdsourcing-based indoor 
mapping techniques using smartphones and promote its future 
development. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Acknowledgments: 

This work was supported in part by National Key R&D Program of 
China (2016YFB0502203); Shenzhen Scientific Research and Develop-
ment Funding Program (JCYJ20190808113603556, 
KQTD20180412181337494); Guangdong Basic and Applied Basic 
Research Foundation (2019A1515011910); National Natural Science 
Foundation of China (42001324). 

4 http://evaal.aaloa.org/  
5 https://www.microsoft.com/en-us/research/event/microsoft- 

indoor-localization-competition-ipsn-2017/  
6 https://perfloc.nist.gov/ 

B. Zhou et al.                                                                                                                                                                                                                                    

http://evaal.aaloa.org/
https://www.microsoft.com/en-us/research/event/microsoft-indoor-localization-competition-ipsn-2017/
https://www.microsoft.com/en-us/research/event/microsoft-indoor-localization-competition-ipsn-2017/
https://perfloc.nist.gov/


ISPRS Journal of Photogrammetry and Remote Sensing 177 (2021) 131–146

145

References 

Alzantot, M., Youssef, M., 2012. Crowdinside: automatic construction of indoor 
floorplans. In: Proceedings of the 20th International Conference on Advances in 
Geographic Information Systems. ACM, pp. 99–108. 

Bailey, T., Durrant-Whyte, H., 2006. Simultaneous localization and mapping (SLAM): 
Part II. IEEE Robotics Automation Magazine. 13 (3), 108–117. 

Borg, I., Groenen, P., 2003. Modern multidimensional scaling: Theory and applications. 
J. Educ. Meas. 40 (3), 277–280. 

Brajdic, A., Harle, R., 2013. Walk detection and step counting on unconstrained 
smartphones. In: Proceedings of the 2013 ACM international joint conference on 
Pervasive and ubiquitous computing. ACM, pp. 225–234. 

Bronstein, A.M., Bronstein, M.M., Kimmel, R., 2006. Generalized multidimensional 
scaling: a framework for isometry-invariant partial surface matching. Proc. Natl. 
Acad. Sci. 103 (5), 1168–1172. 

Cadena, C., Carlone, L., Carrillo, H., Latif, Y., Scaramuzzaet, D., Neira, J., Reid, I., 
Leonard, J.J., 2016. Past, present, and future of simultaneous localization and 
mapping: Toward the robust-perception age. IEEE Trans. Rob. 32 (6), 1309–1332. 

Chen, H., Li, F., Hei, X., Wang, Y.u., 2018. CrowdX: enhancing automatic construction of 
indoor floorplan with opportunistic encounters. Proc. ACM Interact. Mob. Wearable 
Ubiquitous Technol. 2 (4), 1–21. https://doi.org/10.1145/3287037. 

Chen, S., Li, M., Ren, K., Fu, X., Qiao, C., 2015a. Rise of the indoor crowd: Reconstruction 
of building interior view via mobile crowdsourcing. In: Proceedings of the 13th ACM 
Conference on Embedded Networked Sensor Systems, ACM, pp. 59–71. 

Chen, S., Li, M., Ren, K., Qiao, C., 2015b. Crowd map: Accurate reconstruction of indoor 
floor plans from crowdsourced sensor-rich videos. In: Distributed Computing 
Systems (ICDCS), 2015 IEEE 35th International Conference on, IEEE, pp. 1–10. 

Connolly, P., Boone, D., 2013. Indoor location in retail: Where is the money. Business 
Models Analysis Report. 

Costa, J.A., Patwari, N., Hero III, A.O., 2006. Distributed weighted-multidimensional 
scaling for node localization in sensor networks. ACM Trans. Sens. Netw. 2 (1), 
39–64. 

Zhou, B., Zheng, T., Huang, J., Zhang, Y., Tu, W., Li, Q., 2021. A pedestrian network 
construction system based on crowdsourced walking trajectories. IEEE Internet 
Things J. 8 (9), 7203–7213. 

Dai, J., Li, Y., He, K., Sun, J., 2016. R-fcn: Object detection via region-based fully 
convolutional networks. In: Advances in neural information processing systems, pp. 
379-387. 

Davidson, P., Piche, R., 2017. A Survey of Selected Indoor Positioning Methods for 
Smartphones. IEEE Commun. Surv. Tutorials 19 (2), 1347–1370. 

Dong, J., Noreikis, M., Xiao, Y., Yla-Jaaski, A., 2018. ViNav: A Vision-based Indoor 
Navigation System for Smartphones. IEEE Transactions on Mobile Computing. 18(6), 
1461-1475. 

Edelsbrunner, H., Kirkpatrick, D., Seidel, R., 1983. On the shape of a set of points in the 
plane. IEEE Trans. Inf. Theory 29 (4), 551–559. 

Elhamshary, M.M., Alzantot, M.F., Youssef, M., 2018. JustWalk: A crowdsourcing 
approach for the automatic construction of indoor floorplans. IEEE Trans. Mob. 
Comput. 18 (10), 2358–2371. 

Elhamshary, M., Youssef, M., 2015. SemSense: Automatic construction of semantic 
indoor floorplans. In: Indoor Positioning and Indoor Navigation (IPIN), 2015 
International Conference on, IEEE, pp. 1–11. 

Endres, F., Hess, J., Sturm, J., Cremers, D., Burgard, W., 2014. 3-D mapping with an RGB- 
D camera. IEEE Trans. Rob. 30 (1), 177–187. 

Fan, X., Liu, J., Wang, Z., Jiang, Y., Liu, X., 2017. Crowdsourcing in ITS: The state of the 
work and the networking. 55(6), 126-128. 

Förstner, W., 1986. A feature based correspondence algorithm for image matching. ISPRS 
Com III, Rovaniemi, pp. 150–166. 

Ganti, R.K., Ye, F., Lei, H., 2011. Mobile crowdsensing: current state and future 
challenges. IEEE Commun. Mag. 49 (11), 32–39. 

Gao, R., Zhao, M., Ye, T., Ye, F., Luo, G., Wang, Y., Bian, K., Wang, T., Li, X., 2016. Multi- 
story indoor floor plan reconstruction via mobile crowdsensing. IEEE Trans. Mob. 
Comput. 15 (6), 1427–1442. 

Gao, R., Zhao, M., Ye, T., Ye, F., Wang, Y., Bian, L., Wang, T., Li, X., 2014. Jigsaw: Indoor 
floor plan reconstruction via mobile crowdsensing. In: In: Proceedings of the 20th 
annual international conference on Mobile computing and networking. ACM, 
pp. 249–260. 
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Lipuš, B., Žalik, B., 2019. 3D convex hull-based registration method for point cloud 
watermark extraction. Sensors 19 (15), 3268. 

Liu, H., Shi, R., Zhu, L., Jing, C., 2014. Conversion of model file information from IFC to 
GML. In: Geoscience and Remote Sensing Symposium (IGARSS), pp. 3133–3136. 

Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.-Y., Berg, A.C., 2016. SSD: 
Single shot multibox detector. In: European conference on computer vision, 
Springer, pp. 21–37. 

Liu, X., Zhou, B., Huang, P., Xue, W., Li, Q., Zhu, J., Qiu, L., 2021. Kalman filter-based 
data fusion of Wi-Fi RTT and PDR for indoor localization. IEEE Sens. J. 21 (6), 
8479–8490. 
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