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Abstract—Nowadays, the large datasets become more and more
common. However, traditional visualization techniques, which
although allow to visually analyze and explore data, can not scale
well with the large one. This restrains the ability of detecting,
recognizing and classifying phenomena of interest, such as
patterns, clusters, trends, etc. This paper proposes a method for
interactive multi-resolution visualization to overcome the prob-
lem of traditional visualization techniques when working with a
large dataset via hierarchical clustering. Based on hierarchical
clustering, users can not only examine the dataset at different
levels of detail, but also can explore many regions of interest. The
basic idea underlying this method is to choose multiple scales
from the hierarchical tree for representing the data at different
levels of abstraction, which creates an easy environment for
interactive exploration without re-run the clustering algorithm.
Moreover, we also define a criterion for evaluating the multiple
scale representation based on the concept of split factor. An
experiment of applying the proposed method into the task of
interactive visualization in a clinical case study of the large dMRI
(diffusion magnetic resonance imaging) data is also carried out.
The results show that our proposed method efficiently provides
a friendly tool for visualization the large data.

I. INTRODUCTION

To support human in analyzing and exploring large data, it
is an important task to graphically present the data [1]. Users,
in one side, have a requirements of looking at complex and
intricate data to find out some facts or trends that are not
easy to find. On the other side, they want to explore data
in details to examine each data points. In fact, the overall
premise is that users have a deeper understanding about their
data when they interact with the presented information and
view it at different levels of abstraction [2]. During the last two
decades, many interactive visualization techniques and system
have been emerged [1], [3], [4]. As large data sets become
more and more common, with the size over 1K, it has been
clear that most of the current visualization approaches lose
their effectiveness due to they have no ability to visualize and
manage the large number of data points simultaneously. In
such scenario, clustering is considered a suitable method for
understanding and exploring large data [5], [6].

However, clustering usually results in one partition of the
data, and this leads to a dramatic drawback that the validation
process is not straightforward due to the lack of ground truth
data [7]. One solution for this is hierarchical clustering [8],
which organizes data in an intuitive and interpretable structure,
namely dendrogram, not only one partition as the traditional
clustering methods. Such structure allows users to explore
in a simple way the clusters and the relationships between
instances, and leads to many applications for visualization [9]–
[11]. Nevertheless, when dealing practically with a large size

dendrogram, it becomes difficult since the number of nodes
grows exponentially with the depth of the tree and makes users
lose the overview of the whole dataset. To deal with a large
size dendrogram, many approaches have been suggested [6],
[10], [12]. However, these methods are either display at one
time only a sub-part of the structure [10], [12], or display
whole dendrogram but rely on other clustering technique [6].

In this work, we propose a method of offering a complete
and interactive visualization of the large data based on hi-
erarchical clustering. Our method allow users to apply their
perceptual abilities to make sense of data. The core of the
problem is to obtain the multiple scales representation large
data, in order to comply with the requirements of human
interactive visualization. The proposed solution combines three
steps. First, the dendrogram would be created by running
the hierarchical clustering. Second, the goodness function is
used as a measurement to select the most relevant scales for
representing the dendrogram (it is an extension of the ”relevant
function”, proposed in [13]). Lastly, we evaluate the multiple
scales based on a statistical criteria, called split factor.

Moreover, we conceive an experiment of applying our
method in a clinical case study of dMRI data. Recently,
from dMRI data, tracking algorithms [14], [15] allow to
reconstruct the 3D pathways of axons within the white matter
as a set of streamlines, called tractography. A streamline
is a vectorial representation of thousands of neuronal axons
expressing structural connectivity, and tractography is a set of
N streamlines (N ∼ 3× 105 usually). It is an important task
of segmentation the tractography into some real anatomical
structures of interest, such as cortinal spinal tract [16], [17]
involving to the amiotrophic (ALS) disease. In this experiment,
we conceive a novel computer-assisted interactive segmen-
tation process based on our method of multiple scales for
representation the large tractography.

The paper is organized as follows. Section II formally intro-
duces the problem of multiple scales for representation large
data. After that, Section III describes the detail of the method
for selecting multiple scales. The evaluating the goodness of
the representation is presented in the next Section IV. In
section V, we describe an experiment of applying the proposed
solution in the context of the tractgoraphy segmentation, pro-
vide figures to evaluate the viability of the proposed solution.
We conclude with a summary of our contribution and open
areas for future work in the last section VI.



II. PROBLEM STATEMENT

In this part, after introducing the hierarchical clustering we
formally describe the problem of multiple scale representation.

A. Hierarchical clustering

Given a set of input patterns denoted as
X = {x1, . . . , xj, . . . , xN} where each data point
xj = (xj1, xj2, . . . , xjd)

T ∈ Rd and each measure xji
is said to be a feature (attribute, dimension, or variable).
A hierarchical tree (or dendrogram) of X is defined as
following:

Definition 1: A hierarchical tree H of an N-object set X =
{x1, . . . , xj, . . . , xN} is a collection of Q partitions on X : H =
{P0, . . . ,PQ}, with Q ≤ N , such that P0 = X and Ci ∈
Pm, Cj ∈ Pl,m > l imply Ci ⊆ Cj or Ci ∩ Cj = ∅, for all
i, j 6= i,m, l = 1, . . . , Q.
The hierarchical clustering algorithm [8] builds nested clusters
by merging them successively, and this hierarchy of clusters
represented as a tree/dendrogram. The root of the tree is the
unique cluster that gathers all the samples, the leaves being
the clusters with only one sample. It produces a structure of
clusters of X that is more informative than the unstructured
set of clusters returned by flat clustering. This characteristic
meets the requirement of creating multiple scales of one orig-
inal dataset X = {x1, . . . , xj, . . . , xN} without re-running the
clustering algorithm again. Moreover, it leads to the capability
of visualizing X in many levels of abstraction, and the users
can browse the value of level from 1 to N , to see the clusters
immediately.

Hierarchical clustering algorithms are either top down or
bottom up. Bottom-up algorithms treat each streamline as a
singleton cluster at the outset and then successively merge
(or agglomerate) pairs of clusters until all clusters have been
merged into a single cluster that contains all tracts. Bottom-
up hierarchical clustering is therefore called Hierarchical Ag-
glomerative Clustering (HAC). Top-down clustering requires a
method for splitting a cluster. It proceeds by splitting clusters
recursively until individual streamlines are reached [8].

B. Multiple scales for visualization

The hierarchical tree H structures and presents dataset X at
different levels of abstraction. A non-leaf cluster is composed
of all its child clusters, while a leaf cluster contains only a
single data item. The collection of all leaf-clusters presents
exactly every data items xi of X , while the root is a cluster
containing whole dataset X as one single node of the tree.

Definition 2: Each cluster Ci (node) of the treeH, let s(Ci)
be the level of detail of that cluster. This measurement s(Ci)
satisfies the following criteria: if Ci is an ancestor of Cj , then
s(Ci) ≥ s(Cj).
There are many properties of a cluster which could be used to
measure s(Ci). Among these, two common uses are the radius
of a cluster (maximum distance between all pair samples
of cluster Ci: ri = max∀xa,xb∈Ci,xa 6=xb{d(xa, xb)}); and the
hierarchical level of Ci in the tree H [1]: s(Ci) = height(Ci)

h ,
where heigh(Ci) is the heigh of the cluster Ci, and h is the
heigh of the tree H.

Definition 3: The range of scale of a hierarchical tree H is
[smin, smax], where smin = min∀Ci∈H{s(Ci)}, and smax =
max∀Ci∈H{s(Ci)}
Depending on which property is used to measure the level of
detail si, the value of smax and smin would be different. In
the case of using the hierarchical level, the scale range is from
[0, 1], where smin = 0 corresponds to the leaf with zero heigh,
to smax = 1 is at the root of the tree H. However, in the case
of using cluster radius, there is no guarantee that smin = 0
and smax = 1.

Definition 4: A cut L of a hierarchical tree H at a given
scale w ∈ [smin, smax] is L(w):

L(w) = {Ci|(s(Ci) ≤ w ∧ s(parent(Ci)) > w)} (1)

where parent(Ci) is the direct parent node of the cluster Ci
In general, L(w) is a partition of X , denoting a subset of
the tree H. The cut at smin, L(smin) is a set of all leaf
clusters, while the L(smax) is a single cluster representing
the whole dataset X . Intuitively, L(w) changes smoothly with
the variance of the scale parameter w, which serves as the
abstraction level of the dataset X . It could be imagined that
L(w) is a cut across a vertically oriented hierarchical tree H
that satisfies criteria: L(w) intersects each path of the tree
H, from the root to the leaf, only exactly at one point. The
cutting point would depend on the value of parameter w. It
should close to the root of the tree H when w is high, and
reversely. Moreover, the cut can be horizontal or unhorizontal
(like zigzag) as long as for each path from the root to the
leaf of the tree H, there is only one crossing with L(w). It
is an open approach for cutting the tree comparing with the
traditional one which only accepts the horizontal cut.

Definition 5: Let P and Q be two partitions of dataset X ,
P = {CP1 , . . . , CPl } and Q = {CQ1 , . . . , CQm}. Partition P is
nested in partition Q, denoted as P � Q, if and only if

P � Q↔ ∀CQi ∈ Q,∃C
P
i1 , . . . , C

P
ik
∈ P : CQi = ∪kt=1C

P
it
(2)

Definition 6: Given the scale range [smin, smax] of a tree
H, the multiple scales representation for the tree H is
an ordered set of k scale values from [smin, smax]: B =
{b1, b2, . . . , bk}, bi ∈ [smin, smax],∀i ∈ [1, k], where k is the
order of set B, which satisfies the following condition:

∀i ∈ [1, . . . , k − 1] : L(bi) � L(bi+1) (3)

Multiple scale representation problem: Given a hierarchical
tree H on a dataset X , with the scale range [smin, smax].
How to choose the multiple scales representing for the tree
H: B = {b1, b2, . . . , bk}, bi ∈ [smin, smax],∀i ∈ [1, k]?
It is an NP −problem, and there is no general solution for it.
Usually, it is chosen that b1 = smin, where the whole elements
of X are presented, and bk = smax, which corresponds to only
one virtual representation of X . However, the value of k is an
open question and totally depends on the application. In the
next section, we will discuss about how to define the k value
and also how to select each bi from [smin, smax].

III. METHODS

In this part, we present a simple and efficient method
to determine the multiple scales B = {b1, b2, . . . , bk}, bi ∈



[smin, smax], ∀i ∈ [1, k], where [smin, smax] is the range
scale of the hierarchical tree H, constructed from dataset X .
Moreover, the multiple scales B have to satisfy the condition
in Definition 6.

Definition 7: Given a cluster Ci in a hierarchical tree H,
with range scale [smin, smax], the pairwise (αCi

min, α
Ci
max) is

defined as:

αCi
min = min{wj |wj ∈ [smin, smax] ∧ Ci ∈ L(wj)}

αCi
max = max{wj |wj ∈ [smin, smax] ∧ Ci ∈ L(wj)}

(4)

Intuitively, (αCi
min, α

Ci
max) are two scale factors at which the

cluster Ci appears and disappears from the tree H. It is
considered that the good clusters would be presented for a
wide range of scale factors. Thus, the goodness of a cluster
could be measured as (αCmin − αCmax) and the best scale
representing Ci as α =

αC
max−α

C
min

2 . These two characters
can be included in the following function:

Definition 8: The goodness function R(C) of a cluster C
at a scale w is:

Rw(C) =
αCmax − αCmin

2
+

2(αCmax − w)(w − αCmin)

αCmax − αCmin
(5)

Definition 9: Given a scale w ∈ [smin, smax], the goodness
fucntion R(C) of a scale w is:

R(w) =
1

N

∑
C∈L(w)

|C|Rw(C) (6)

A plot line of the R(w) function can be found in the Figure 1.
Obviously, R(w) is a quadratic function of w, and can be
used for determining the scale factors corresponding to the
good clusters. By focussing on the local maxima of R(w), we
can estimate good scales for representing the tree H, and thus
getting the B = {b1, b2, . . . , bk}, bi ∈ [smin, smax],∀i ∈ [1, k].
In another way, the first derivation of R(w) from w is set to
zero, and we arrive a set of multiple scales B.

B = {bi|bi ∈ [smin, smax] ∧ δ(R(bi))

δbi
= 0} (7)

The most difficult task is to compute the pairwise
(αCi
min, α

Ci
max) for each cluster Ci ∈ H. Pascal et. al in [13]

proposed a method to calculate (αCmin, α
C
max) based on the

concept of relevant community. However, the proposed pro-
cedure is computational cost, and the complexity is between
O(n log n) and O(n2) with an average value in O(n

√
n). As

the meanwhile, the hierarchical order of the tree H provides
a good hint about the scales where each cluster appears or
disappears. By exploring this information, we suggest a more
easy and efficient way with the complexity O(1): αCi

min =
s(Ci) and αCi

max = s(parent(Ci)), where s(Ck) is the level
of detail of cluster Ck (as the Definition 2). Obviously, the
suggested way to compute (αCi

min, α
Ci
max) intuitively satisfies

the Definition 7.

IV. EVALUATION

In this part we describe criteria for evaluating the multiple
scales representation B = {b1, b2, . . . , bk} of the dataset X .
Due to the limitation of the screen size, it is the real fact
that, at a certain time, users can only exam about the total of

50 (λ1) clusters which are currently displaying on the screen.
Among of the visible clusters, the users usually select around
15 (λ2) clusters to explore or exam the detail [18]. Driven
from that, we propose a method to evaluate the represented
multi-scale set B based on a quantitative measure, called split
factor, as following.

Definition 10: Split factor ξ of a cluster C ∈ H to a scale
w ∈ [smin, smax] is ξ(C, s)

ξ(C, s) = card(P (C, s)) (8)

where P (C, s) = {Cj |(Cj ∈ H) ∧ (s(Cj) = w) ∧ (Cj ⊆ C)}
Based on the split factor of a cluster, we can define the split
factor for a set of clusters or a partition as:

Definition 11: Split factor ξ of a set of clusters P =
{C1, C2, .., Cm} ⊆ H to a scale s ∈ [smin, smax] is ξ(P, s)

ξ(P, s) =
∑
Ci∈P

ξ(Ci, s) (9)

The quantitative measure of split factor can be used to evaluate
the multiple scales representation B = {b1, b2, . . . , bk} by
computing the split factor for all of the cut each scale L(bi),
∀i ∈ [1, . . . , k]. However, as already stated before, at a
certain time, the users usually only explore or exam about
(λ2) currently visualized clusters. Due to this, we should not
calculate the split factor for the whole partition L(bi), instead
of that, only a subset of L(bi) with the order of(λ2) should
be used. At each specific scale bi ∈ B, called S(bi,λ2) is a
Gaussian distribution subset of the cut H at scale bi, L(bi),
with the order of λ2:

S(bi,λ2) = {C1, . . . , Cλ2
}, Cj ∈ L(bi),∀j ∈ [1, . . . , λ2] (10)

The evaluation procedure can be done as the following defi-
nition:

Definition 12: The set of scales B = {b1, b2, . . . , bk} is
called the best scales for representation of the tree H, given
λ1 and λ2, if the following condition satisfies

∀bi ∈ B : λ1 −∆ ≤ ξ(S(bi,λ2), bi−1) ≤ λ1 + ∆ (11)

In the case of b1, the split factor is computed to the leaf,
ξ(S(b1,λ2), 0). ∆ is a non-negative scalar, and the smaller the
value of ∆ is, the more strict the degree of the best scales is.

V. EXPERIMENTS

In the following we briefly describe our experiment for
visualizing the real large tractography to validate the proposed
approach. The evaluation based on split factor and one heuris-
tic trick to improve the visualization result are presented.

A. dMRI and tractography segmentation
Let the polyline s = { ~x1, . . . , ~xns

}, where ~x ∈ R3,
be a streamline reconstructed from dMRI data by deter-
ministic tractography algorithms [14]. Let the tractography
T = {s1, . . . , sN} be defined as a set of N streamlines. Our
experiment is motivated by a clinical research hypothesis about
the characterisation of the amiotrophic (ALS) disease, which
is known to be affected by the corticospinal tract (CST) [16],
[17]. The first task is to segment the CTS from the full brain
tractography T.



Fig. 1. Top line: goodness score of subject 109 and 205 from ALS dataset at different scales. The scales having local maximum value of goodness score
are chosen as the representation for data. Bottom line: split factor before (left) and after (right) adding heuristic constrain. After applying heuristic constrain,
the mean split factors are around the expected value λ1 = 50.

In spite that recently there is an increasing literature in
automatic tractography segmentation using machine learning
techniques [19], [20], applications in the clinical domain rely
on manual segmentation. The manual segmentation process
consumes a lot of time and effort due to the large number of
streamlines, in the order of 3×105, which make it intrinsically
difficult both to inspect and to unfold the anatomical structures.
Moreover, it is claimed that there is a lack of software tools to
support and to simply this segmentation process [18]. In this
experiment, we conceive a novel computer-assisted interactive
process based on the method of multiple scales for represen-
tation the large tractography described in Section III. After
computing the set of multiple scales B = {b1, b2, . . . , bk},
our tool first displays T as the cut at b1, L(b1) ; and let user
select some of clusters to identify a superset of the streamlines
of interest. This superset is then to be displayed at the next
scale and again the user is requested to select the relevant
clusters. The process of re-display and manual selection is
iterated until the remaining streamlines faithfully represent the
desired anatomical structure of interest.

ALS dataset: the data we used in this experiment is recorded
with a 3T scanner at Utah Brain Institute. It consisted the
recordings of 12 ALS patients and 12 healthy controls; 64
(+1, i.e. b = 0) gradients; b-value= 1000; anatomical scan
(2×2×2mm3). We reconstruct the streamlines using EuDX, a
deterministic tracking algorithm [21] from the DiPy library 1.

Dissimilarity representation: due to the fact that each
streamline has different length and different number of points
we need to find a representation φ of streamline in a vectorial

1http://www.dipy.org

space, by mapping a streamline s from its original space T
to a vector of Rd - φ : T 7→ Rd, where d is the dimension
of the new space. One suggestion for this is the dissimilarity
representation [22]. It is a lossy Euclidean embedding algo-
rithm was previously proposed in [23] for streamlines. The
dissimilarity representation is defined as φdΠ(X) : X 7→ Rp
s.t. φdΠ(X) = [d(X, X̃1), . . . , d(X, X̃p)], where d is a distance
function between streamlines, and Π = {X̃1, . . . , X̃p} ⊂ X
is a set of p streamlines called prototypes. More detail can be
found in [23], [24].

By applying the hierarchical clustering algorithm (in Sec-
tion II-A) on the dissimilarity approximation, the hierarchical
tree H of the tractography T could be created.

B. Multiple scales for representation
As the measurement for computing the level of detail of

a cluster s(Ci), we use the height of the cluster Ci within
the hierarchical tree H. The reason is that this measurement
leads to continuous and thus provides smooth transitions on
our hierarchical display. Let h be the height of hierarchical tree
H: h = height(H), at the leaf Cleaf of H, the heigh is in the
order of zero, thus smin = 0. In the similar way, smax = 1
because at the root Croot of the tree H, heigh(Croot) = h.
The range scale of H is [smin, smax] = [0, 1], and ∀Ci ∈
H, s(Ci) = height(Ci)

h , where heigh(Ci) is the heigh of
the cluster Ci [1]. Intuitively, this measurement satisfies the
condition of Definition 2 about the level of detail in, because
if Ci is an ancestor of Cj , then heigh(Ci) ≥ heigh(Cj) and
thus, s(Ci) ≥ s(Cj)

Looking at the local maxima of the goodness score as in
the Definition 9, we can estimate the most relevant scale



Fig. 2. Clusters at chosen scales in the best representation B1 of the tractography of subject 109 in ALS dataset: (A) Full tractography ≈ 3×105 streamlines;
(B) Computation of 150 clusters and selection of 20 clusters (in white); (C) ≈ 15000 streamlines corresponding to previous selection; (D) Computation of
50 clusters and selection of 25 clusters; (E) ≈ 3000 streamlines corresponding to the previous selection; (F) Computation of 50 clusters and selection of 15
clusters; ( G) ≈ 1500 streamlines corresponding to the previous selection; (H) Computation of 50 clusters and selection of 25 clusters; (I) ≈ 500 streamlines
corresponding to previous selection and representing the segmented CST.

factors for representing the tree H, and thus get the multiple
scale representation B = {b1, b2, . . . , bk}. The Figure 1 shows
the plot lines of two goodness scores of subject 109(left)
and control 205(right) from ALS dataset. For example with
subject 109 (left) the multiple scale representation B1 could
be concluded as B1 = { 8

h1
, 10
h1
, 12
h1
, 18
h1
, 22
h1
, 25
h1
, 27
h1
}, where

h1 is the heigh of the hierarchical tree H109 of subject
109: h1 = height(H109). Similarly, with control 205, B2 =
{ 10
h2
, 16
h2
, 19
h2
, 24
h2
, 27
h2
}, where h2 = height(H205). Taking into

account that bi should be chosen from the small scale factor
to the large one in order to satisfy the condition of an ordered
set in the Definition 6, of which the underlying idea is to
make sure a continuous and smooth order of visualization
when users switch among these levels. This experiment exams
the ability of our proposed method to compute the multiple
scales representation for a large data. Note that we just present
here the two samples of results, we also run on other subjects
and get the equivalent multiple scale representation for each
of them. A representation of B1 is showed in the Figure 2.

We are now in the state of being ready to evaluate the
multiple scale representation B = {b1, b2, . . . , bk}. Based on
the Definition 12 about the goodness of a scale factor b ∈ B,
we implemented a program for evaluating the best scales
representation B with λ1 = 50 and λ2 = 15. In Figure 1
- left, we plot the mean goodness score of each multiple

scale representation for subject 109 and control 205 from ALS
dataset, together the standard derivation of 20 iterations. Note
that on the horizontal axis, the cut scales l represented on the
figure is the index of the corresponding real scale l

h .
Except for the first chosen scale b1, almost other scale

bk ∈ B, k 6= 1, the split factor ξ(S(bi,λ2), bi+1) satisfies the
condition in Equation 11. Note that from the leaf (scale 0) the
goodness score increases linearly, reaches the peak at scale B1,
and then gets a fluctuating variety. It shows that the split factor
of the cut at b1 to the leaf (scale 0), ξ(S(b1,λ2), 0)), is usually
very large comparing with other split factors. However, in the
point view of visualization, all the split factor ξ(S(bi,λ2), bi+1)
should be around λ1. Due to this, for the saking of better
representation, we add an heuristic constrain to the chosen
scale set: the distance between two closest scales bi and bi−1

should not exceed a threshold δ: d(bi, bi−1) ≤ δ (in the case
of b1, the distance with the leaf, d(b1, 0), is used). The results
after adding constrain are showed in the Figure 1 - right (with
δ = 4/h) where the mean split factor is close to λ1 = 50.
This approach is run on many subjects from ALS dataset,
the sizes of which vary from 200K to 300K. These results
demonstrate that our proposed method of choosing multiple
scales for visualization large data is efficient and robust to the
size of the large data. An example is presented in the Figure 2,
in which the clusters of tractography of subject 109 in ALS



dataset at different chosen scales are visualized.

VI. CONCLUSION

In this paper, we presented a method for addressing the
problem faced when attemping to interactively visualize a
large dataset. The core principle behinds the framework was
to choose multiple scales for representing the data from the
hierarchical clustering. Moreover, we also proposed a function
to evaluate the goodness of each chosen scale based on the
concept of split factor. We instantiate this framework with
an application of building the interactive visualization large
dMRI data in the procedure of tractogaphy segmentation, and
provide concrete result on it performance. Experiments have
shown that our method provide a significant improvement for
visualization the large data at different scales, which verifies
the effectiveness of the interactive hierarchical visualization.
Beside, we are convinced that this method can be easily
integrated to any current display techniques without having
to vary the data or the interactive exploration tool.

As mention is the section III, the level of detail of each
cluster, s(Ci), can be computed based on radius or heigh [1].
In this paper we choose the multiple scales only based on
the heigh of cluster. The same job but based on the radius
needs to be investigated. Moreover, this work is a part of an
going resarch project focusing on computer-aided tractography
segmentation, where machine learning techniques are used to
assist medical practitioners to do the segmentaion task more
easily, flexibly and effectively. In the future, we want to further
improve the interactive segmentation tool by providing the
function of adding or eleminating data points x into or from
the current dataset X , and updating the visualization result
without re-run the clustering algorithm.
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