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Purpose of review

Evidence-based pharmacological interventions for obsessive compulsive disorder (OCD) are targeted
mainly at the serotonergic and dopaminergic pathways, and are not always effective. It is timely to review
the growing evidence from animal models and clinical research (e.g., brain imaging, genetics) on the role
of the glutamatergic system in OCD.

Recent findings

Emerging evidence from both animal models and clinical research (including brain imaging, neurogenetics)
supports the glutamatergic system as a potential target for pharmacotherapy in OCD. Although there have
been relatively few randomized controlled trials of glutamatergic agents in pediatric or adult OCD to date,
there is some work on riluzole, memantine, ketamine, topiramate, lamotrigine, N-acetylcysteine, and D-
cycloserine.

Summary

Given the need for more efficacious treatments in OCD, and given emergent findings on the role of the
glutamatergic system in this disorder, there is a need for additional pharmacotherapy trials on
glutamatergic agents in OCD. Possible research designs for such trials might include stand-alone
approaches, pharmacotherapy augmentation, or psychotherapy augmentation.
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INTRODUCTION

Obsessive-compulsive disorder (OCD) is a chronic
condition that is characterized by significant
impairment and contributes to an estimated 3%
global burden of disease [1,2]. Onset is often early
in life, and subsequently a range of comorbid psy-
chiatric disorders often occur. Presentation to
health services may be delayed due to shame sur-
rounding the distressing symptoms as well as low
health literacy [3,4]. The Epidemiological Catch-
ment Study estimated the lifetime prevalence in
populations in the United States to be 2.5%, data
that have been supported by the recent National
Comorbidity Survey Replication (NCS-R) and other
studies in the World Mental Health Surveys [2,5].

Evidence-based pharmacological interventions
for OCD are targeted mainly at the serotonergic
and dopaminergic pathways, and are not always
efficacious. It is timely to review the growing evi-
dence from animal models and clinical research
(e.g., brain imaging, neurogenetics) on the role of
the glutamatergic system in OCD. Before doing so,
we briefly review the diagnosis and assessment of
iams & Wilkins. Unautho
this condition, as there have been a number of
recent changes to the classification and diagnosis
of OCD and related disorders (OCRDs).
CLINICAL SYMPTOMS AND DIAGNOSIS

Core features of OCD include intrusive, distressing
thoughts, images, or urges (obsessions) which may
heighten anxiety and which are recognized by the
individual as inappropriate products of his or her
own mind. These obsessions are different in quality
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KEY POINTS

� While the standard neurobiological model of obsessive
compulsive disorder has long focused on cortico-striatal-
thalamic-cortical circuitry, work has mainly focused on
serotonergic and dopaminergic systems.

� There is growing evidence from animal research that
glutamatergic neurons are also important in stereotypic
behavior. This evidence is supported by human brain
imaging and neurogenetics research.

� There is also early evidence from clinical trials that
glutamatergic agents may be useful in the treatment of
OCD. However, additional work, using larger samples,
is needed to expand and confirm these promising but
preliminary signals.
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from simple everyday worries. The person then tries
to neutralize the obsessions with other thoughts or
mental acts (compulsions) that are often performed
in a ritualistic manner designed to prevent an unto-
ward event and alleviate anxiety.

Common obsessions include fears of contami-
nation with the compulsion of washing or clean-
ing, as well as fear of harm to self or others with
repeated act of checking and rechecking [6,7]. A third
major symptom dimension revolves around sym-
metry obsessions and compulsions. Although factor
analyses have also indicated that hoarding is another
major symptom dimension of OCD, given research
indicating that the phenomenology and psychobiol-
ogy of hoarding differs from that of other symptom
dimensions, the Diagnostic and Statistical Manual
of Mental Disorders, Fifth Edition (DSM-5) now
includes a new diagnosis of hoarding disorder [8].

Another notable change in DSM-5 is the intro-
duction of a new chapter on obsessive compulsive
and related disorders. First, there are key differences
in the phenomenology and psychobiology of OCD
and other DSM-IV anxiety disorders [8]. Second,
there are important overlaps in the phenomenology
and psychobiology of OCD with several other dis-
orders characterized by repetitive preoccupations
and/or ritualistic, stereotypical behavior [9,10]. The
DSM-5 OCRD chapter includes OCD, body dysmor-
phic disorder, hoarding disorder, trichotillomania
(hair-pulling disorder), and excoriation (skin-pick-
ing) disorder [8].

As noted above, OCD often has early onset, and
significant comorbidity. Without treatment, the
course is somewhat variable, but is characterized by
a long lag between symptom onset and formal diag-
nosis, and often by continued symptomatology. In
the clinical setting, it is useful to assess symptom
severity using a standardized symptom severity scale
Copyright © Lippincott Williams & Wilkins. Unau
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such as the Yale–Brown Obsessive Compulsive Scale
(YBOCS), comorbid disorders, and functional impair-
ment.
ANIMAL STUDIES

As noted, evidence-based treatments of OCD target
the serotonergic and dopaminergic neurotransmitter
systems. Similarly, animal models of and clinical
research on OCD have focused on these systems,
and their role in modulating the cortico-striatal-
thalamic-cortical (CSTC) circuitry thought to under-
lie OCD symptoms. For example, in an exciting new
line of research, optogenetic techniques have been
used to repeatedly hyperstimulate corticostriatal
neurons, resulting in excessive grooming behavior,
which then responded to fluoxetine [11–13]. How-
ever, recent basic work has also provided insights into
the role of glutamate in repetitive behavior [14,15

&&

].
We briefly review some of the key laboratory studies.

The D1CT-7 (cyclin D1 promoter controlling the
expression of cholera toxin) model was the first
genetic mouse model to test the CSTC theory of
OCD. Cholera toxin activates signal transduction
of stimulatory G-protein and synthesis of cyclic
adenosine monophosphate (cAMP). Hyperactiva-
tion of the cortical–limbic glutamatergic neurons
in these transgenic mice led to OCD-like stereotyp-
ical behavior and tics [14]. Furthermore, the D1CT-7
mice exposed to the N-methyl-D-aspartate (NMDA)
receptor antagonist MK 801 showed increased
repetitive climbing and leaping, and stereotypical
behavior [13].

A role for changes in glutamate signaling and
transmission was found in two knockout mouse
models characterized by compulsive behavior.
These models focused on the disks large-associated
protein 3 (DLGAP3), also known as SAP90/PSD95-
associated protein 3 (SAPAP3), as well as on
SLITRK5, which are the scaffold proteins in the
postsynaptic membranes of neuronal synapses,
predominantly in the striatum [15

&&

].
Genetic deletion of DLGAP3/SAPAP3 resulted in

increased anxiety and compulsive grooming behav-
iors, perhaps analogous to those seen in human
participants with trichotillomania (hair-pulling dis-
order) and in skin-picking disorder [16,17]. The
DLGAP3-knockout mice were found to have changes
in NMDA receptor composition, namely greater
numbers of NR1 (GRIN1) and NR2B (GRIN2B) sub-
units, and fewer NR2A (GRIN2A) subunits of striatal
neurons [15

&&

,16]. These changes suggest that gluta-
mate dysfunction in CSTC circuitry also plays a role
in compulsive behaviors [18]. Indeed, an association
has been found between SAPAP3 variants and early-
onset OCD in some work [15

&&

,17].
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Deletion of the SLITRK5 gene resulted in
behavioral phenotypes similar to those seen in the
DLGAP3-knockout mice, with excessive grooming
of facial hair and severe skin excoriations [19]. How-
ever, there were differences between the two models
in the expression of the NR2A and NR2B glutamate
receptor subunits in the striatum at postmortem.
With SLITRK5 gene deletions, the striatal expression
of both receptor subunits was reduced. In the mice
with DLGAP3 deletions, striatal expression of only
NR2A was decreased, whereas that of NR2B was
increased [15

&&

,16]. Again, there is some evidence
of an association between SLITRK5 variants
and obsessive compulsive and related disorders,
although not all studies are consistent [20].

The signal attenuation model is an intriguing
rodent model based on classical conditioning prin-
ciples, with rats developing lever-pressing initially
in response to a food reward. A light stimulus is then
introduced to encourage extinction of the stimulus-
food correlation but some continue lever-pressing
compulsively. Rats treated with D-cycloserine (DCS),
a partial NMDA receptor agonist, showed reduced
compulsive behavior compared with the control
group [21].

Repetitive digging and marble-burying behavior
is another model that can be used to study obsessive
compulsive and related symptoms. Mice studies
indicate that the NMDA antagonist amantadine
inhibits this marble-burying behavior without
affecting motor movement [22].

Although conducting studies and interpreting
data on rodents is clearly different from human
participants due to the absence of language to
describe the experience of the obsessive behaviors
from the individual’s perspective [23], such work
provides an important foundation for moving from
bench to bedside. In the next section, we review
clinical research focused on alterations in the
glutamatergic system in OCD.
CLINICAL STUDIES

Cognitive-affective research on OCD has indicated
that this disorder is characterized by abnormalities
in reversal learning, and perhaps by disturbances in
the processing of particular affects such as disgust
[24,25]. OCD has also been conceptualized in terms
of excessive release of procedural strategies presum-
ably reflecting disorder either in the striatum (which
plays an important role in mediating such habitual
behaviors) or in cortical structures (which play an
important role in modifying activity in relevant
subcortical structures).

Early cases of OCD after cortico-striatal neuro-
logical damage gave impetus to a cortico-striatal
opyright © Lippincott Williams & Wilkins. Unautho
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model of OCD, and this has been supported by brain
imaging research. Both structural and functional
studies have emphasized the role of ventral CSTC
circuitry in OCD [26–29]. Structural studies have
shown evidence of alterations in the volume of the
relevant structures, as well as abnormalities in the
relevant white matter structures, whereas functional
studies have demonstrated hyperactivation of these
circuits during exposure to feared stimuli as well as
abnormalities in functional connectivity [30–33].

Thus, for example, early PET and single-photon
emission computed tomography (SPECT) studies
indicated increased glucose metabolism in CSTC cir-
cuitry, comprising the orbitofrontal cortex, anterior
cingulate cortex, caudate, and thalamus [34,35]. Key
neurotransmitter systems in these regions include
the serotonin and dopamine systems, and both mole-
cular imaging studies and pharmacotherapy studies
havepointed to their involvement inOCD[36]. Thus,
there was a reduction of glucose metabolism in the
same regions after treatment with selective serotonin
reuptake inhibitors (SSRIs) [37,38].

There are, however, two main types of glutamate
receptors in many cortical and subcortical circuits
[38]. Glutamatergic cortical tracts descend to act
directly on the striatum with synapses on medium
spiny neurons [15

&&

]. Inhibitory neurons connect
to the basal ganglia structures in two pathways
with opposite complex actions: the direct striato-
nigral pathway and the indirect striatopallidal path-
way [36]. Magnetic resonance spectroscopy (MRS)
studies in OCD have found reduced glutamate con-
centration in the anterior cingulate of patients with
OCD [15

&&

,28,39].
Other clinical research methods support the role

of the glutamatergic system in OCD [36]. Two stud-
ies examining the cerebrospinal fluid (CSF) of
people with OCD reported increased concentrations
of glutamate [40,41]. One of the studies looked at
the association between OCD and CSF autoanti-
bodies binding to the proteins in the thalamus
and basal ganglia and found significantly more
binding of these autoantibodies to thalamic and
basal ganglia homogenates, and higher CSF gluta-
mine and glycine levels, in individuals with OCD
than in healthy controls [3,41]. This finding is
consistent with a theory of abnormal excitatory
neurotransmitter transmission in treatment-refrac-
tory OCD.

Genetic studies further confirm a role for the
glutamatergic system in OCD. Solute carrier 1
(SLC1A1) encodes for the main neuronal excitatory
amino acid transporter 3 (EAAT3), also known as
excitatory amino acid carrier 1, EAAC1. Several
family studies have shown significant associations
between single nucleotide polymorphisms (SNPs) of
rized reproduction of this article is prohibited.
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this gene and OCD susceptibility [42–46]. Other
genes to show associations between SNPs and
OCD are GRIN2B, which encodes for the NR2B
receptor subunits, GRIK2 and GRIK, and DLGAP3
[16,47,48]. Gene variants in the glutamatergic sys-
tem have been associated with specific alterations in
brain imaging studies, including lower concen-
trations of glutamate in the anterior cingulate
associated with GRIN2B, and higher glutamate con-
centrations in the caudate nuclei of pediatric
patients with OCD [23,33]. Although not all data
are consistent, findings pointing to glutamatergic
involvement in OCD are some of the most widely
replicated of the candidate gene studies in OCD
[36,48,49]. Furthermore, a genome-wide association
study of OCD found that in a case–control analysis,
the lowest two P values were found within DLGAP1,
another member of the neuronal postsynaptic
density complex [50].
PHARMACOTHERAPY

SSRIs have been well studied in OCD, and are con-
sidered a first-line pharmacotherapy. A meta-analysis
of SSRI studies suggested that higher doses are associ-
ated with a greater effect size [51]. Compared with the
highly serotonergic tricyclic antidepressant clomipr-
amine, SSRIs are better tolerated and safer [51,52].
The best studied SRI augmentation strategy for treat-
ment-refractory OCD is the use of low-dose dopa-
mine blockers [52,53]. However, a substantial
proportion of OCD individuals fail to response to
SSRIs, or to augmentation treatment.

Given the evidence from animal models and
human research that the glutamatergic system is
involved in OCD, it seems reasonable to target this
system in pharmacotherapy. Potential glutamater-
gic agents include riluzole, memantine, and other
NMDA-receptor antagonists (e.g., amantadine and
ketamine), and certain anticonvulsants with gluta-
matergic properties (e.g., topiramate and lamotri-
gine), N-acetylcysteine (NAC), and DCS [15

&&

,54].
Riluzole is a calcium and sodium-channel

blocker, which inhibits synaptic glutamate release
and enhances glutamate uptake by astrocytes.
Open-label trials have indicated that riluzole is effec-
tive in reducing OCD symptoms in more than half
the pediatric and adult samples studied [55,56].
However, no randomized controlled trial (RCT) of
riluzole in OCD has yet been published.

The NMDA receptor antagonist memantine has
US Food and Drug Administration (FDA) approval for
the treatment of moderate Alzheimer‘s dementia.
One open-label study indicated its potential value
as an augmentation strategy in treatment-resistant
OCD [57]. Another open-label trial indicated efficacy
Copyright © Lippincott Williams & Wilkins. Unau
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of memantine treatment in OCD, but not in gener-
alized anxiety disorder [58]. These findings suggest
that further work with this agent in OCD may
be warranted.

To date, there are no studies of treatment of
OCD in humans with another NMDA antagonist,
amantadine [22,28]. Ketamine is a glutamate modu-
lator demonstrated in one open-label trial to have
short-lived effects on treatment-resistant OCD
symptoms without any sustained improvement
[58]. In a recent randomized controlled cross-over
trial, a single dose of ketamine resulted in improved
symptoms in individuals not on any other treat-
ment for OCD [59,60].

Small trials of other glutamatergic agents such as
the anticonvulsants topiramate and lamotrigine
have shown promise as monotherapy or augment-
ing agents in OCD [61–64]. A small RCT reported
improvement of OCD symptoms with topiramate
augmentation of SSRI medication [62]. Several case
reports suggest that lamotrigine may be efficacious
in augmenting SSRI treatments, although there are
no RCTs [65,66]. However, one small study of lamo-
trigine augmentation of SSRI treatment of OCD did
not demonstrate statistically significant symptom
improvement [67].

NAC is a nutraceutical that increases extracellu-
lar glutamate by its action on the cystine oxidative
pathway. A case study examining augmentation of
fluoxetine with NAC suggested that this agent may
be efficacious in OCD [68]. However, a more recent
case series of patients with refractory OCD did not
provide support for this augmentation strategy [69].
Notably, however, NAC was effective in a RCT of
trichotillomania in adults [70] with some case
reports of efficacy in skin picking [71]. On the other
hand, NAC was ineffective in a RCT of trichotillo-
mania in children [72].

There has been increasing interest, emerging
from laboratory work on fear extinction, on the
use of DCS to augment the effects of cognitive-
behavioral therapy in anxiety and related disorders
[52]. Two well designed trials have suggested that
DCS is effective in the augmentation of exposure
therapy for OCD [73,74]. However, one study did
not show any improvement with DCS-enhanced
exposure response prevention therapy [75]. A range
of methological issues may contribute to explaining
these inconsistent findings, and additional work on
DCS as augmentation for cognitive-behavioral
therapy is required [52].
CONCLUSION

Animal studies and clinical research (including
brain imaging and neurogenetic studies) have
thorized reproduction of this article is prohibited.
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pointed to the role of the glutamatergic system in
OCD. Although further work is needed to con-
solidate and extend this early work, it is notable
there is already some preliminary evidence for the
efficacy of various glutamatergic drugs in OCD.
However, there are few well designed, randomized
placebo-controlled trials of such agents. Such trials
are sorely needed, given the chronicity and severity
of OCD, and the fact that many individuals with this
disorder fail to respond to first-line agents.
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