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An intelligent manufacturing system is a composite intelligent system comprising humans, cyber sys-
tems, and physical systems with the aim of achieving specific manufacturing goals at an optimized level.
This kind of intelligent system is called a human–cyber–physical system (HCPS). In terms of technology,
HCPSs can both reveal technological principles and form the technological architecture for intelligent
manufacturing. It can be concluded that the essence of intelligent manufacturing is to design, construct,
and apply HCPSs in various cases and at different levels. With advances in information technology, intel-
ligent manufacturing has passed through the stages of digital manufacturing and digital-networked
manufacturing, and is evolving toward new-generation intelligent manufacturing (NGIM). NGIM is
characterized by the in-depth integration of new-generation artificial intelligence (AI) technology (i.e.,
enabling technology) with advanced manufacturing technology (i.e., root technology); it is the core
driving force of the new industrial revolution. In this study, the evolutionary footprint of intelligent
manufacturing is reviewed from the perspective of HCPSs, and the implications, characteristics, technical
frame, and key technologies of HCPSs for NGIM are then discussed in depth. Finally, an outlook of the
major challenges of HCPSs for NGIM is proposed.

� 2019 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Intelligent manufacturing is a general concept that has been
continuously evolving with the development and integration of
information technology and manufacturing technology. In general,
intelligent manufacturing has passed through the stages of digital
manufacturing and digital-networked manufacturing, and is evolv-
ing toward new-generation intelligent manufacturing (NGIM), due
to the recent fast-paced development and influential break-
throughs that have been occurring in the internet, big data, and
artificial intelligence (AI) [1–14]. Although the intelligent manufac-
turing is constantly evolving [15–24], its fundamental goals remain
the same: namely, to improve quality, increase efficiency, reduce
costs, and enhance competitiveness through unrelenting efforts
toward optimization. From the perspective of system constitution,
an intelligent manufacturing system is always a human–cyber–
physical system (HCPS)—that is, a kind of composite intelligent sys-
tem comprising humans, cyber systems, and physical systems with
the aim of achieving specific goals at an optimized level [25–28]. In
other words, the essence of intelligent manufacturing is to design,
construct, and apply HCPSs in various cases at different levels.

NGIM is characterized by the in-depth integration of new-
generation AI technology with advanced manufacturing technol-
ogy, and is the core driving force of the new industrial revolution.
In order to promote the development of NGIM, this work presents
an examination of the implications, characteristics, technical
frame, and key technologies of HCPSs for NGIM, along with an out-
look of the major challenges of HCPSs for NGIM.

The rest of this paper is organized as follows: Section 2 reviews
the evolution and development of manufacturing systems, and
Section 3 analyzes the implications of HCPSs for NGIM from system
and technology perspectives. A technical framework and key tech-
nologies of HCPSs for NGIM are presented in Section 4. Finally,
major challenges are outlined in Section 5.
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2. Evolution of HCPSs for intelligent manufacturing

2.1. Phase I: Human–physical systems for traditional manufacturing

Humans first learned to make and use tools more than two mil-
lion years ago [29]. Progressing from the Stone Age through the
Bronze Age to the Iron Age, these early simple production systems
lasted for over a million years, powered by human and animal
labor. With the development of the First Industrial Revolution,
which was marked by the invention of the steam machine, and
the Second Industrial Revolution, which was marked by the inven-
tion of the electric motor, humans have continually invented, cre-
ated, and improved various machines and applied them to
manufacture all kinds of goods [13]. These traditional manufactur-
ing systems, which were comprised of humans and physical
machines, replaced a significant amount of manual labor and sub-
stantially increased manufacturing quality, efficiency, and societal
productivity.

A traditional manufacturing system consists of two major com-
ponents—namely, humans and physical systems such as machi-
nes—and is therefore a human–physical system (HPS), as shown
in Fig. 1. In an HPS, physical systems, through which working tasks
are completed, act as the ‘‘executing body,” while humans are the
‘‘master.” Humans are both the creators of physical systems and
the managers and users of physical systems. In an HPS, many of
the activities required to complete the working tasks—such as per-
ception, cognition, learning, analysis, decision-making, control, and
operation—must be supplied by humans. For example, in machin-
Fig. 1. An HPS for traditional manufacturing.

Fig. 3. HCPS1.0 for digi
ing with traditional machine tools, operators must carefully
observe, analyze, manipulate, and control the machining process.
A general schematic of an HPS is shown in Fig. 2.
2.2. Phase II: HCPS1.0 for digital manufacturing

The manufacturing sector entered the era of digital manufactur-
ing in the middle of the 20th century, driven by the development
and wide application of information technologies including com-
puters, communication, and numerical control [30–33]. The infor-
mation revolution, which was marked by digitalization, led and
promoted the Third Industrial Revolution [34–36].

Compared with traditional manufacturing systems, digital
manufacturing systems are characterized by the emergence of a
cyber system between the human and physical system, transforming
the previous binary HPS into the ternary HCPS, as shown in Fig. 3. A
cyber system consists of software and hardware; its main function
is to complete various tasks that were previously performed by
human operators, including sensing, analysis, decision-making,
and control. For example, in machining with a computer numerical
control (CNC) machine tool, which is equipped with a cyber system
called the CNC system, the CNC system can automatically direct
the machine tool to complete the machining processes according
to digital machining programs provided by the operators [37].

Digital manufacturing can be defined as first-generation intelli-
gent manufacturing, and the HCPS for digital manufacturing will be
referred to herein as HCPS1.0. Compared with the HPS, HCPS1.0 has
substantially enhanced capabilities—especially in computation,
Fig. 2. Schematic of an HPS.

tal manufacturing.
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analysis, precision control, and perception—due to its integration
of the strengths of humans, cyber systems, and physical systems.
The result is remarkable: Manufacturing systems based on HCPS1.0
have significant improvements in aspects such as automation,
efficiency, quality, stability, and the ability to solve complicated
issues. In addition, not only can the manual labor of operators be
further reduced, but also some of the mental work can be
performed by cyber systems, thus effectively increasing the
efficiency of knowledge dissemination and utilization. A schematic
for HCPS1.0 is shown in Fig. 4.

As shown in Fig. 4, the upgrade from binary HPS to ternary HCPS
generated two new binary subsystems: the human–cyber system
(HCS) and the cyber–physical system (CPS) [26,38,39]. The CPS the-
ory was first proposed by American scholars at the beginning of the
21st century [40,41] and has been employed as a core technology
of Industry 4.0 in Germany [42,43].

In addition, the introduction of cyber systems has fundamen-
tally transformed the feature of machines by transforming them
from unary physical systems to binary CPSs (i.e., intelligent machi-
nes). In this sense, the Third Industrial Revolution can be regarded
as the beginning of the Second Machine Age [13].

In the context of HCPS1.0, while physical systems continue to
act as the ‘‘executing body,” cyber systems perform a significant
amount of analysis, computation, and control work previously per-
formed by humans. Humans are still the ‘‘master.” First, both phys-
ical systems and cyber systems are designed and created by
humans. The underlying analysis, computation and control models,
Fig. 4. Schematic of HCPS1.0. HCS: human–cyber system; CPS: cyber–physical
system.

Fig. 5. HCPS1.5 for digital-ne
methods, and rules are all developed by humans by drawing upon
theoretical knowledge, experience, and experimental data and pro-
gramming these into the cyber systems. In addition, the operation
of HCPS1.0 relies on the knowledge and experience of the operator
to a significant extent [44]. For example, when machining with
CNC machine tools, as mentioned above, operators must program
the machining process appropriately according to their knowledge
and experience, monitor the process, and make adjustments where
necessary.

2.3. Phase III: HCPS1.5 for digital-networked manufacturing

By the end of the 20th century, the rapidly developing internet
technology had been widely applied to the manufacturing
industry, driving a transformation from digital manufacturing to
digital-networked manufacturing [17,45–47]. Digital-networked
manufacturing is, in essence, ‘‘internet + digital manufacturing”
and can be defined as second-generation intelligent manufactur-
ing. The digital-networked manufacturing system remains an
HCPS; however, it is referred to herein as HCPS1.5, since it has fun-
damental differences compared with HCPS1.0 for digital manufac-
turing, as shown in Fig. 5. The most significant difference lies in the
cyber system. In the cyber system of HCPS1.5, the Industrial Inter-
net and the cloud platform are critical components that can con-
nect relevant cyber systems, physical systems, and humans, thus
serving as a tool for system integration. Information exchange
and coordinated and integrated optimization have become impor-
tant parts of the cyber system. Meanwhile, the humans in HCPS1.5
have become a network-connected community with common
value-creation goals, and include the people from the enterprise
hosting the system along with its suppliers, sales agents, cus-
tomers, and so on. These changes transform the manufacturing
industry, both from a product-centric model to a customer-
centric model and from a production manufacturing pattern to a
production–service manufacturing pattern.

The essence of digital-networked manufacturing is the realiza-
tion of extensive connections of humans, processes, data, and
things through networks, and the reshaping of the manufacturing
value chain through in-enterprise and inter-enterprise integration,
cooperation, sharing, and optimization of various resources. For
example, CNC machine tool manufacturers and their suppliers can
engage in remote-operation maintenance of their own products
tworked manufacturing.
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through networks, in order to jointly create values with the enter-
prises using their products. Enterprises using CNC machine tools
can also create added value through the integration and optimiza-
tion of in-enterprise sources regarding design, production, service,
and management [37,48,49].
2.4. Phase IV: HCPS2.0 for NGIM

Modern manufacturing enterprises generally face strong
demands for improvement in quality, efficiency, and quick market
response. These demands have raised an urgent need for a revolu-
tionary industrial upgrade for the manufacturing industry. On a
technical level, it is still difficult for digital-networked manufactur-
ing to overcome the huge difficulties faced by the manufacturing
industry; thus, further manufacturing technology innovation and
upgrades are greatly desired.

Since the beginning of the 21st century, huge progress has been
made in information technologies such as the internet, cloud
computing, and big data [12,50–52]. The integration of these
technological advances is leading to the strategic breakthrough of
new-generation AI, which has become the core technology of a
new round of scientific and technological revolution [2,5,53–55].

The in-depth integration of new-generation AI technology with
advanced manufacturing technology is leading to NGIM [1]. Break-
throughs and broad applications of NGIM will reshape the techno-
logical architecture, production mode, and industrial pattern of the
manufacturing industry. The information revolution, which is
marked by AI, is leading and promoting the Fourth Industrial
Revolution.

The NGIM system remains an HCPS; however, it is referred to
herein as HCPS2.0, since it has essential differences in comparison
with HCPS1.5 for digital-networked manufacturing, as shown in
Fig. 6. As in the shift from HCPS1.0 to HCPS1.5, the most distinct
changes occur in the cyber system. A new component is introduced
to the cyber system of HCPS2.0, enabling it to perform self-learning
and cognition by using new-generation AI technology; this leads to
greater power in aspects such as perception, decision-making, con-
trol, and—most importantly—the capability to learn and generate
knowledge. The knowledge base in the HCPS2.0 cyber system is
jointly built by humans and by the self-learning and cognition
Fig. 6. HCPS2.0
module of the cyber system; thus, it contains not only the
knowledge provided by humans but—more importantly—the
knowledge learned by the cyber system itself, and particularly
the knowledge that is difficult for humans to describe and process.
Moreover, the knowledge base is able to constantly upgrade,
improve, and optimize itself through self-learning and cognition
during the application process. To use a metaphor, the relationship
between humans and cyber systems has fundamentally changed
from one of ‘‘giving fish” to one of ‘‘teaching how to fish” [1,2,6].
A schematic of HCPS2.0 is shown in Fig. 7.

HCPS2.0 for NGIM can not only bring about revolutionary
changes in the means and efficiency of creating, accumulating, uti-
lizing, imparting, and inheriting manufacturing knowledge, but
also significantly increase the ability of manufacturing systems to
handle uncertain and complicated problems, thereby leading to
vast improvements in manufacturing system modeling and
decision-making. For example, in machining with intelligent
machine tools, a digital model of the entire machining system
can be built through sensing, learning, and cognition, and can then
be used to optimize and control the machining process in order to
obtain high machining quality and efficiency as well as low energy
consumption [48,49,56].

The role of humans as ‘‘master” is even more prominent in
HCPS2.0 for NGIM [28,57–61]. As the creators, managers, and oper-
ators of intelligent machines, humans’ abilities and skills will be
greatly improved and their intellectual potential will be fully
unleashed for further emancipation of the productive forces.
Knowledge engineering will free humans from a significant
amount of intellectual and manual labor and allow them to engage
in more valuable creative work.

In summary, intelligent manufacturing will better serve
humans. Having evolved from HPS to HCPS1.0 and then from
HCPS1.0 to HCPS1.5, intelligent manufacturing is evolving from
HCPS1.5 to HCPS2.0, and will advance stage by stage, spiraling
up and expanding in an infinite process, as shown in Fig. 8.

3. Implications of HCPS2.0 for NGIM

HCPS2.0 is a system architecture and technical framework for
NGIM, which can offer a guide to effectively solve various problems
in the upgrading of manufacturing industry. The implications of
for NGIM.
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HCPS2.0 for NGIM may be described from both system and tech-
nology perspectives.
3.1. The system perspective

HCPS2.0 for NGIM is a composite intelligent system that com-
prises relevant humans, AI-capable cyber systems, and physical
systems, with the aim of achieving specific manufacturing goals
at an optimal level. In this paradigm, physical systems, which exe-
cute the energy and material flows of manufacturing activities and
complete the manufacturing tasks, act as the ‘‘executing body.” AI-
capable cyber systems act as the core of the information flows of
the manufacturing activities, and help humans to complete the
necessary perception, cognition, analysis, decision-making, and
Fig. 8. Evolution of HCPS-based

Fig. 7. Schematic of HCPS2.0.
control of the physical systems for their optimized operation.
Humans play the role of the ‘‘master”; they are the creators of
physical systems and cyber systems, so the intelligence of cyber
systems—no matter how powerful—comes from humans. In addi-
tion, humans are the operators and users of physical systems and
cyber systems, so humans remain in the central position and pos-
sess the highest right to make decisions and enact control.

HCPS2.0 for NGIM should be geared to comprehensively
upgrade all manufacturing activities, including research and devel-
opment (R&D), production, sales, service, management, and system
integration, in order to substantially increase quality, efficiency,
and competitiveness. In other words, the essence of NGIM is to
construct and apply different HCPS2.0 systems serving different
purposes and integrate them as a network of HCPS2.0 systems in
order to deliver a revolutionary improvement of societal produc-
tivity. In general, HCPS2.0 for NGIM possesses three main charac-
teristics: intelligence, grand systems, and ubiquitous integration.

First, intelligence is the primary characteristic of HCPS2.0 for
NGIM, as HCPS2.0 systems can always keep their status and behav-
ior optimal through autonomous learning and adjustment.

Second, HCPS2.0 for NGIM can establish grand systems through
system integration. In general, HCPS2.0 for a manufacturing enter-
prise includes three functional systems—intelligent products, intel-
ligent production, and intelligent services—and two supporting
systems—the intelligent manufacturing cloud and the Industrial
Internet [52,62,63].

Third, HCPS2.0 for NGIM presents the unprecedented feature of
ubiquitous integration [4,64–66]. From one perspective, internally
dynamic integration in an enterprise is pursued for intelligent
intelligent manufacturing.



Fig. 9. Overall architecture of intelligent manufacturing based on HCPS. SoS:
system of systems.
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design, production, sales, services, and management processes,
resulting in vertical integration. The Industrial Internet and the
intelligent manufacturing cloud enable integration, sharing, collab-
oration, and optimization among enterprises, resulting in horizon-
tal integration. From another perspective, externally deep
integration should be promoted between manufacturing, financial,
and upstream and downstream industries. This integration will
result in the new commercial co-development of service-oriented
manufacturing and production-based services. In addition, NGIM
has the potential to integrate with intelligent cities, intelligent
transportation, intelligent healthcare, and intelligent agriculture
to form a giant system of intelligent ecosystems—an ‘‘intelligent
society.”

3.2. The technology perspective

In HCPS2.0, the cyber systems are equipped with powerful
intelligence by leveraging new-generation AI, thereby enabling
three major technological characteristics [6,67].

The first, most critical, characteristic is that the cyber systems
have the ability to solve uncertain and complex problems; further-
more, problem-solving methods shift from the traditional model of
emphasizing causality to an innovative model of emphasizing cor-
relation, and further toward an advanced model of deeply integrat-
ing correlation with causality. This shift will lead to fundamental
improvements in the modeling and optimization of manufacturing
systems [5–7,13].

The second most important characteristic is that the cyber sys-
tems have capacities such as learning, cognitive skills, and the gene-
ration and better utilization of knowledge [2,53–55,68–70]; these
will lead to revolutionary changes in the efficiency of knowledge
generation, utilization, importation, and accumulation, and to the
significant promotion of the marginal productivity of knowledge
as a core productive element [2,53–55,68–70].

The third characteristic is the formation of human–machine
hybrid-augmented intelligence, which gives full scope to and
synergistically integrates the advantages of human intelligence
and machine intelligence. This will result in the innovation poten-
tial of humans being fully unleashed and the innovation capacities
of the manufacturing industry increasing tremendously [2,5,8].

Overall, HCPS2.0 is currently in the stage of weak AI or narrow
AI (ability to accomplish a narrow set of goals, e.g., play chess or
drive a car) and will gain rapid development as AI advances from
narrow AI to strong AI or general AI (ability to accomplish virtually
any goal, including learning) [2,5,71].

HCPS2.0 can be regarded as a universal solution that will effec-
tively solve the challenges occurring in the transformation and
upgrading of the manufacturing industry, and that can be widely
applied for product innovation, production innovation, and service
innovation in discrete manufacturing and process-oriented manu-
facturing. HCPS2.0 is expected to progress as follows:

HCPS2.0 will enable manufacturing systems with new-
generation AI technology. While there are many approaches to
the innovation-driven development of manufacturing engineering,
two are particularly important. The first of these approaches is
original innovation in manufacturing technology, which is funda-
mental and of the utmost importance. The second approach is
the application of common enabling technologies to promote manu-
facturing technology, which can result in the development of
innovative manufacturing technology through the integration of
the two technologies, and which can be used to upgrade various
manufacturing systems. This kind of innovation is revolutionary,
integrative, and universal. The common enabling technologies of
the last three industrial revolutions were the steam engine, electric
motor technology, and digital technology, respectively; in the
Fourth Industrial Revolution, the common enabling technology is
AI technology [1]. The in-depth integration of these generic
enabling technologies with manufacturing technologies drives
revolutionary transformation and upgrading of the manufacturing
sector. Therefore, NGIM based on HCPS2.0 will be the main driver
of the innovation-driven development of the manufacturing sector
and the main roadmap of its transformation and upgrading.

However, new-generation AI technology must be thoroughly
integrated with technologies in the manufacturing domain to cre-
ate NGIM technologies. Because manufacturing is the foundation
and enabling technologies are used to upgrade manufacturing,
enabling technologies can give full scope only through in-depth
integration with manufacturing technologies. To sum up, manufac-
turing technologies are the fundamental technology, while intelli-
gent technologies are the enabling technology; thus, there should
be dialectical unity and integrative development between these
technologies. From a perspective that focuses on intelligent tech-
nology, NGIM can be seen as the endeavor to promote and apply
advanced information technologies. From a perspective that
focuses on manufacturing technology, however, NGIM can also
be seen as the endeavor to employ generic enabling technologies
to promote innovation in and the upgrading of manufacturing sys-
tems in different industries.
4. Technical framework of HCPS2.0 for NGIM

4.1. Overall architecture of HCPS2.0

The overall architecture of HCPS for intelligent manufacturing
can be described from the three dimensions of intelligent manufac-
turing: the value dimension, the technical dimension, and the
organizational dimension [72,73], as shown in Fig. 9.
4.1.1. The value dimension of intelligent manufacturing and the
functional properties of the HCPS

The fundamental goal of intelligent manufacturing is to achieve
value creation and value optimization by the construction and
application of HCPSs. The value of intelligent manufacturing is
mainly reflected in product innovation, intelligent production,
intelligent services, and system integration [74,75], which corre-
spond to product (R&D) HCPS, production HCPS, service HCPS,
and integrated HCPS, respectively.

When products are made to be digital, networked, and intelli-
gent through innovation, their product functions and performance
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are enhanced, which increases their added value and market com-
petitiveness. Meanwhile, it is important to increase product quality
and efficiency in product design by applying innovative processes
via digital, networked, and intelligent technologies [76]. Product
innovations can be further divided into categories such as product
design innovation, evaluation and validation innovation, and their
integration. Product (R&D) HCPSs can likewise be further divided.

Intelligent production will realize high-quality, flexible, effi-
cient, and sustainable product manufacturing by comprehensively
enhancing production and management innovation via digital, net-
worked, and intelligent methods [75,77]. In general, production
activity can be divided into process design, process engineering,
quality assurance, production management, and their integration.
Some of these links can be further divided. For example, process
engineering can be divided into multiple production lines and their
integration, and a production line can be further divided into
equipment and their integration. Likewise, production HCPSs can
be further broken down into sub-layers.

Intelligent services include user-centric services that are pro-
vided throughout the life-cycle of products via digital, networked,
and intelligent technologies [63,74,78,79]; such services include
customization and remote operation and maintenance, which
extend to service-oriented manufacturing and production-based
services. In this way, intelligent service HCPSs can be divided into
customization service HCPSs and remote operation and main-
tenance HCPSs, among others.

As a key characteristic of NGIM, deep integration is an impor-
tant aspect of the way in which NGIM delivers its value [4]. Given
the functional properties of HCPSs, their deep integration will lead
to multifunctional, integrated, and complex HCPSs.
4.1.2. The technical dimension of intelligent manufacturing and the
technical properties of HCPS

The technology of intelligent manufacturing has evolved from
digital manufacturing (HCPS1.0) to digital-networked manufactur-
ing (HCPS1.5), and then to NGIM (HCPS2.0), as shown in Fig. 10 [1].
Digital manufacturing is the foundation of intelligent manufactur-
ing, and has evolved through three basic paradigms. Digital-
networked manufacturing provides the necessary network infras-
tructure for intelligent manufacturing while integrating the busi-
ness value chain. On the basis of previous two paradigms, NGIM
makes manufacturing capable of true AI by integrating advanced
manufacturing technology with new-generation AI technology
and is a core technology of a new round of industrial revolution.

The three basic paradigms of HCPS-based intelligent manufac-
turing reflect the intrinsic patterns of the development of intelli-
gent manufacturing. These three paradigms have unfolded
Fig. 10. Three basic paradigms of intelligent manufacturing [1].
progressively—each with its own characteristics and each solving
problems in its respective stage—thus reflecting the progression
of the integrated development of advanced information technology
and manufacturing technology. However, the three basic para-
digms are not entirely independent; rather, they are iterative and
correlated with each other, thereby reflecting a fusion in the char-
acteristics of intelligent manufacturing development [35].

4.1.3. The organizational dimension of intelligent manufacturing and
the systematic properties of HCPS

The organization of intelligent manufacturing consists of three
levels—intelligent unit, intelligent system, and intelligent system
of systems (SoS)—which correspond to unit-level HCPS, system-
level HCPS, and SoS-level HCPS, respectively [39,80,81].

An intelligent unit is the smallest functional unit of intelligent
manufacturing. It is comprised of humans, cyber systems, and
physical systems. An intelligent system integrates multiple intelli-
gent units through the industrial network to achieve automated
data flow in a larger scope and across broader areas. It helps to
improve the breadth, accuracy, and depth of manufacturing
resource allocation across production lines, workshops, and busi-
nesses to form a system-level HCPS. An intelligent SoS is a system
that integrates multiple intelligent systems through Industrial-
Internet-based integration across systems and platforms. It creates
an open, coordinated, and shared industrial ecosystem, thus form-
ing an SoS-level HCPS. The three-level architecture model of HCPS
for intelligent manufacturing is shown in Fig. 11.

In summary, the overall architecture of HCPS2.0 for NGIM can
be described using the multi-level hierarchical structure shown
in Fig. 12.

4.2. Key technologies of unit-level HCPS2.0

For a unit-level HCPS2.0, regardless of its purpose (whether a
design system, production equipment, etc.), the critical technolo-
gies can be divided into the three categories of manufacturing
domain technologies, machine intelligence technologies, and
human–machine collaboration technologies, as shown in Fig. 13.

4.2.1. Manufacturing domain technologies
Manufacturing domain technologies are the technologies

involved in the physical systems of an HCPS; they include generic
manufacturing technologies and specialized domain technologies
[9]. Intelligent manufacturing has its roots in manufacturing.
Therefore, manufacturing technologies are a basic technology of
HCPS for intelligent manufacturing. Meanwhile, intelligent
manufacturing not only involves discrete manufacturing and
Fig. 11. Three-level architecture model of HCPS for intelligent manufacturing.
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Fig. 13. Technology diagram of unit-level HCPS2.0.
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process-oriented manufacturing, but also covers all of the product
life-cycle. Therefore, it encompasses a broad range of manufacturing
domain technologies [9], which can be grouped according to
different perspectives. From the perspective of production
processes, for example, these technologies can be divided into
cutting technology, casting technology, welding technology,
plastic-forming technology, heat treatment technology, and addi-
tive manufacturing technology, among others [82–86].
4.2.2. Machine intelligence technologies
Machine intelligence technologies are the technologies involved

in the cyber systems of an HCPS2.0. These technologies are based
on the in-depth integration of AI technology with manufacturing
domain knowledge, and are capable of achieving specific HCPS
goals. Cyber systems direct HCPSs by helping humans with the
necessary perception, cognition, analysis, decision-making, and
control of HCPSs so that their physical systems can run optimally.
Machine intelligence technologies are mainly divided into the fol-
lowing four groups: intelligent sensing, autonomous cognition,
intelligent decision-making, and intelligent control.

(1) Intelligent sensing. Sensing is the foundation and precondi-
tion of cognitive learning, decision, and control. Here, the task is to
effectively acquire all kinds of internal and external information,
including the acquisition, transmission, and processing of informa-
tion. Critical technologies include sensing plan design, high-
performance sensors, and real-time and intelligent data collection
[87,88].

(2) Autonomous cognition. The task of cognition is to effec-
tively acquire the knowledge that is required for the system to
achieve its goals; this task is key to effective decision-making
and control. The cognitive tasks of HCPS2.0 are generally com-
pleted based on collaboration between cyber systems and humans.
Therefore, it is necessary to solve problems related to the autono-
mous cognition of intelligent machines and human–machine col-
laboration. The core task of the autonomous cognition of
intelligent machines is system modeling (including parameter
identification); key technologies involve the self-learning of model
structure, self-learning of model parameters, and model evaluation
and self-learning optimization [85].

(3) Intelligent decision-making. The task of intelligent decision-
making is to assess the system status and determine the optimized
action. The decision-making tasks of HCPS2.0 are generally com-
pleted based on collaboration between cyber systems and humans.
Therefore, it is necessary to solve problems related to the intelligent
decision-making of machines and human–machine collaborations.
Key intelligent decision-making technologies involve the accurate
assessment of system status, optimization of the decision-making
model, and the predictive analysis of decision risk [73].

(4) Intelligent control. The task of control is to adjust the sys-
tem based on decisions in order to achieve the system’s goals. This
task is necessary in order to solve the problems of division of labor
and coordination of human–machine collaboration and the autono-
mous control of machines. The core issue of intelligent control is to
deal with the uncertainty of the system itself and the environment,
and to develop intelligent control technology such as adaptive con-
trol [85,89].

4.2.3. Human–machine collaboration technologies
Intelligent manufacturing presents many uncertain and com-

plex problems that cannot be solved by human intelligence or by
machine intelligence alone. Human–machine hybrid-augmented
intelligence is a typical characteristic of new-generation AI [70].
It is a core critical technology of HCPS2.0 for NGIM that involves
human–machine collaboration at the cognition, decision, and con-
trol levels, as well as human–computer interaction technology
[60,61].



Fig. 14. Unit-level HCPS2.0 and intelligent machine tools. CAD: computer-aided design; CAM: computer-aided manufacturing; NC: numerical control; PID: proportional–
integral–derivative. i-code stands for intelligent code, which is a new adaptive intelligent controlling code.
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Unit-level HCPS2.0 is the foundation of NGIM. Fig. 14 shows the
schematic of an intelligent machine tool as a unit-level HCPS2.0:
an advanced cyber system capable of intelligent sensing, autono-
mous cognition and intelligent decision-making, and intelligent
control implementation of the machine tool (i.e., physical system)
[56].

4.3. Key technologies of system-level HCPS2.0 and SoS-level HCPS2.0

Integration is the essential characteristic of system-level and
SoS-level HCPSs, which are geared to integrate information and
achieve optimal resource allocation with a larger scope [4]. Inte-
gration can take place at different levels of breadth and depth,
and thus deliver an open, coordinated, and shared ecosystem at
the level of a production line, shop floor, enterprise, or industry.
While HCPSs at different levels vary in terms of the content inte-
grated and functions delivered, they have basically the same struc-
ture and implementation architecture. Fig. 15 presents the system
structure and implementation architecture of an enterprise-level
HCPS2.0. This is a system of HCPSs that includes an intelligent
Fig. 15. Enterprise-level HCPS2.0.
product HCPS, intelligent production HCPS, and intelligent service
HCPS, which are integrated through the Industrial Internet and
cloud platform and controlled by an enterprise-level intelligent
management and decision-making system.

In addition to the enabling technologies of the abovementioned
unit-level HCPS2.0, system-level HCPS2.0 and SoS-level HCPS2.0
have their own critical technologies, which are mainly system inte-
gration technologies. These include generic technologies such as
the Industrial Internet, cloud platforms, and industrial big data
[12,51,52,71,79,90], as well as technologies that are required to
achieve system integration, management, and decision-making,
such as enterprise-level intelligent decision-making technologies
and systems, intelligent production scheduling technologies and
systems, intelligent security management technologies and sys-
tems, and so forth.

Fig. 16 illustrates the schematic of the commercial COSMOPlat
platform as a system-level HCPS [91]. This HCPS platform allows
users to be involved in the entire process from idea to design to
order to ownership. Its quintessence is ‘‘user-centricity,” and its
core is ‘‘user connections”: connection between user and all ele-
ments, connection between user and machine, and connection
between user and the entire process, thus, ultimately, achieving
mass customization for better business benefits and customer ser-
vice level.
5. Major challenges in HCPS2.0 for NGIM

As a core technology of the Fourth Industrial Revolution, NGIM
is unprecedented in terms of the sectors involved, issues to be
studied, and challenges to be overcome [20,40,73,92–99]. Corre-
sponding to the three major technological advancements discussed
in Section 3.2, NGIM faces three major challenges: system model-
ing, knowledge engineering, and human–machine symbiosis.



Fig. 16. System-level HCPS in the COSMOPlat.
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5.1. System modeling: In-depth integration of mathematical modeling
and big-data-driven intelligent modeling

System modeling is key to CPSs and to digital twin technology
[22,42,49,74,77,100–102]. The effective establishment of models
of manufacturing systems at different levels is the foundation of
optimal decision-making and the intelligent control of manufac-
turing systems. Although mathematical modeling can ably reveal
the objective laws of the physical world [103], it is inadequate to
handle the highly uncertain and complex issues in intelligent
manufacturing systems [49,75,104]. Big-data-driven intelligent
modeling could solve these issues [5,53]. In theory, a hybrid mod-
eling method based on the in-depth integration of mathematical
modeling and big-data-driven intelligent modeling could funda-
mentally improve the modeling of NGIM systems based on
HCPS2.0; however, such a method presents the following major
challenges:

(1) In big data intelligent modeling, how can industrial big data
be acquired and managed with greater efficiency? How can the
effective learning of knowledge in big data be enabled? How can
the ability to solve uncertain and complex problems be further
improved [50,93,97,105–107]?

(2) In hybrid modeling, how can full scope be given to the
strengths of each of the two modeling methods, and how can they
be integrated synergistically into hybrid modeling? For example,
how can manufacturing system dynamic models be effectively
established [11,67,75,103,108]?

5.2. Knowledge engineering: In-depth integration of manufacturing
technology (root technology) and intelligent technology (enabling
technology)

In essence, NGIM is an advanced manufacturing knowledge
engineering activity, in which manufacturing systems in different
industries are enabled by digital-networked intelligent technolo-
gies to bring about revolutionary changes in how manufacturing
domain knowledge is generated, utilized, and shared. These
changes will lead to even more advanced forms of intelligent manu-
facturing [21,109] that will drive a new round of industrial revo-
lution. Advanced manufacturing knowledge engineering involves
the integration of manufacturing technology (root technologies)
and intelligent technology (enabling technologies). It presents the
following three major groups of challenges:

(1) A challenge in manufacturing domain technology (root tech-
nology) development is the question of how to continue to achieve
innovation in the diverse aspects of this technology, such as design,
process, materials, and industrial form [86,110,111].

(2) Challenges in intelligent technology (enabling technology)
development include how to achieve steady improvements in uni-
versality, stability, and security, and how to advance from weak AI
to strong AI [2,53,54,70].

(3) Even more significant challenges are presented by the cross-
over from the in-depth integration of manufacturing technology
and intelligent technology [112–114]. These include: How can
manufacturing technology be effectively enabled with intelligent
technology? How can intelligent technology be utilized in the
manufacturing sector to develop and advance manufacturing
domain knowledge? How can dynamic digital twin models be
established and optimized to enhance different manufacturing sys-
tems? How can the enormous gaps be bridged between manufac-
turing technology and digital technology, between different
academic disciplines, between enterprises, and between experts?
How can entrepreneurs, technologists, and skilled workers grow
into champions for NGIM in the manufacturing sector?

5.3. Human–machine symbiosis: In-depth integration of humans and
CPSs (intelligent machines)

Intelligent manufacturing based on HCPS calls for humans to
take on a greater role in order to form a human–machine symbiosis
[2,8,28,38,57–60,70,73,115,116] that will bring diverse challenges,
including the following:

(1) How can the effective division of work and cooperation
between humans and intelligent machines be better achieved?
How can the individual advantages of human intelligence and
machine intelligence be fully utilized and inspired by each other
in order to simultaneously grow [53,70]?

(2) How can human–machine hybrid-augmented intelligence
be achieved [70]?

(3) How can safety, privacy, ethical, and other issues that may
be introduced by AI and intelligent manufacturing be addressed
[2,99]?
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In line with the ancient Chinese concept of harmony between
humans and nature, there should be close cooperation and in-
depth integration between humans and CPSs (i.e., intelligent
machines) in order to realize NGIM systems as a harmonious state
of human–machine symbiosis, and in order to move these tech-
nologies forward for the benefit of humankind.
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