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Abstract
Alice, Bob and Charlie are three remote parties. Alice and Bob share the classical knowledge
of a secret qubit state. We consider the following question: ‘how can Alice and Bob jointly
prepare the qubit state for Charlie?’ Two different protocols are proposed for such a joint
remote state preparation. The first protocol uses a single GHZ state while the second one uses
a pair of EPR states as the quantum channel whose entanglement is not necessarily maximal.

1. Introduction

Quantum networking has proven to be a promising solution
for distributed quantum computing and distributed quantum
information processing. A quantum network consists of many
distant nodes, each of which contains just a moderate number
of qubits. The different nodes are connected not only by
conventional channels in terms of classical communication but
also by quantum channels in terms of shared entanglement.
It is believed that any global task can be done via local
operations and classical communication (LOCC) provided
that enough amount of classical communication and suitable
entanglements are available (see, e.g., [1]). The problem is
therefore to devise optimally possible protocol for a given task.
One of the most striking global tasks is quantum teleportation
[2] which is transmission of a qubit state from one to another
remote location with dual usage of both classical and Einstein–
Podolsky–Rosen (EPR) [3] channels without ever physically
sending the qubit. The state to be teleported is unknown to both
the sender and the receiver and should be given to the sender
to perform a Bell-state measurement (BM) on it and a particle
of the shared entangled channel. Since a BM has four possible
results, two classical bits (cbits) are needed for broadcasting
the obtained measurement outcome. A question one may ask
is: ‘what happens if the sender is provided with complete
classical knowledge on the qubit state?’ It turns out that then
he/she can prepare the state for a remote receiver with a single-
qubit von Neumann measurement (vNM), thus reducing the
classical communication cost (CCC) to just one cbit. In this
case the qubit state must not be given to the sender who is
supposed to properly manipulate only the particle of the shared
entangled state in such a way that the other particle at a remote

location becomes exactly in the desired state or in a state up to
an elementary correction operator. Such a process was termed
remote state preparation (RSP) [4, 5] which in essence means
remote preparation of a known quantum state. Experiments
on RSP were demonstrated in [6] . Trade-off between shared
entanglement and classical communication was investigated
in [7]: in the high-entanglement limit the asymptotic CCC for
RSP of a large number of general states is one cbit per qubit
(i.e., half that of quantum teleportation). General RSP with the
triple trade-off between three basic resources: ‘classicality’
(quantifiable in units of cbits), ‘quantumness’ (quantifiable
in units of qubits) and ‘nonlocality’ (quantifiable in units of
ebits), was also dealt with in [8]. So far various aspects of
RSP have been addressed. These include oblivious RSP [9],
continuous variable RSP [10], RSP of multipartite/higher-
dimensional pure states [11], RSP of mixed states [12], RSP
of many ensembles of state [13], etc. RSP at multiple locations
[14] was studied as well.

Let Alice, Bob and Charlie be three remote parties. In this
work we consider the so-called joint remote state preparation
(JRSP) which is formulated as follows. Suppose Alice and Bob
independently share the classical knowledge of a secret qubit
state in such a way that no one alone is able to fully identify the
state. The question is ‘how can Alice and Bob jointly prepare
the qubit state for Charlie?’. We propose two JRSP protocols:
protocols 1 and 2. Protocol 1, which uses a single Greenberg–
Horne–Zeilinger (GHZ) [15] state as the quantum channel,
is presented in section 2. In this connection we note that a
protocol similar to our protocol 1 has just recently appeared
in [16] where, however, an incompatibility in normalization
procedures is encountered. We shall elucidate this delicate
issue as well in section 2. Section 3 is devoted to protocol 2
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whose quantum channel is served by a pair of EPR states.
We consider both maximally and nonmaximally entangled
quantum channels in both protocols. Some discussions
regarding the required amount and management of classical
communication as well as the implement feasibility of the
protocols are given in section 4, together with the conclusion.

2. Protocol 1

To be explicit we first consider the qubit state to be remotely
prepared in the form

|q〉 = cos θ |0〉 + eiφ sin θ |1〉, (1)

with θ , φ real parameters and |0〉, |1〉 the two eigenstates of
the qubit in the computational basis. If the values of both
θ and φ are known to Alice (Bob), then she (he) is able to
remotely prepare the state |q〉 for Charlie following the original
RSP protocol proposed in [5]. Of interest here is a situation
when, say, for the sake of confidentiality, the complete classical
knowledge of |q〉 is split between Alice and Bob so that neither
Alice nor Bob alone can fully identify the state. Namely, let
the complete classical knowledge of |q〉 be split in such a
way that Alice knows only the value of θ (and not that of
φ) while Bob knows only the value of φ (and not that of θ).

As a consequence, both the teleportation [2] and the original
RSP [5] protocols will not help. Of course, if Alice and
Bob could get together to exchange their own data, then there
would be no problems. But, remember, Alice and Bob are at
spatially separated nodes. The question is: ‘how can they, only
by means of LOCC, jointly prepare the state |q〉 at Charlie’s
remote node?’ Our first protocol for such a JRSP uses a single
GHZ state in the form

|GHZ〉ABC = (α|000〉 + β|111〉)ABC (2)

of which qubit A(B,C) belongs to Alice (Bob, Charlie). Here
|000〉ABC ≡ |0〉A⊗|0〉B ⊗|0〉C, |111〉ABC ≡ |1〉A⊗|1〉B ⊗|1〉C
while the coefficients α, β are assumed real for simplicity
and α2 + β2 = 1 to satisfy the normalization condition.
Without any loss of generality we set α2 � β2. Note that
α = β = 1/

√
2(α2 > β2 > 0) corresponds to the case of

maximal (nonmaximal) entanglement.
The protocol proceeds with each of Alice and Bob

performing a vNM on her/his own qubit in an appropriate
basis. Alice’s measurement basis is {|�〉A, |�⊥〉A} which is
related to the computational basis {|0〉A, |1〉A} as

|�〉A = cos θ |0〉A + sin θ |1〉A,
(3)|�⊥〉A = sin θ |0〉A − cos θ |1〉A.

Alice is able to use basis (3) since θ is known to her. As for
Bob, he knows φ, so he is able to measure his qubit B in the
basis {|�〉B, |�⊥〉B} which is determined through {|0〉B, |1〉B}
by

|�〉B = 1√
2
(|0〉B + eiφ|1〉B),

(4)|�⊥〉B = 1√
2
(e−iφ |0〉B − |1〉B).

In terms of |�〉A, |�⊥〉A, |�〉B and |�⊥〉B the quantum
channel (2) reads

|GHZ〉ABC = 1√
2
[i|�〉A|�〉Bσy(β e−iφ sin θ |0〉 − α cos θ |1〉)C

− i|�⊥〉A|�〉B e−iφσy(β cos θ |0〉 + α eiφ sin θ |1〉)C
− |�〉A|�⊥〉B eiφσx(β e−iφ sin θ |0〉 − α cos θ |1〉)C
+ |�⊥〉A|�⊥〉Bσx(β cos θ |0〉 + α eiφ sin θ |1〉)C] (5)

with σx = {{0, 1}, {1, 0}}, σy = {{0,−i}, {i, 0}} and σz =
{{1, 0}, {0,−1}} the well-known Pauli matrices. If the
quantum channel is maximally entangled (i.e., α = β =
1/

√
2), then equation (2) simplifies to

|GHZ〉ABC = 1
2 [i|�〉A|�〉Bσy |q⊥〉C − i|�⊥〉A|�〉B e−iφσy |q〉C

− |�〉A|�⊥〉B eiφσx |q⊥〉C + |�⊥〉A|�⊥〉Bσx |q〉C], (6)

where |q⊥〉 = e−iφ sin θ |0〉 − cos θ |1〉 is the compliment state
of |q〉. As is recognized from equation (6), the total success
probability of JRSP for maximal entangled quantum channel is
1/2 : one-fourth comes from Alice–Bob finding |�⊥〉A–|�〉B
(the second line of equation (6)) and another fourth comes from
Alice–Bob finding |�⊥〉A–|�⊥〉B (the last line of equation (6)).
In the former (latter) case Charlie needs a correction by acting
σy(σx) on his qubit C to convert it to the desired state |q〉C ,
modulo possible extra global phase factor.

On the other hand, as can be seen from equation (5),
if entanglement of the quantum channel is nonmaximal (i.e.,
α2 > β2 > 0), then, for the outcomes |�⊥〉A–|�〉B or |�⊥〉A–
|�⊥〉B, the qubit C collapses into the (unnormalized) state

1√
2
σy(β cos θ |0〉 + α eiφ sin θ |1〉)C (7)

or
1√
2
σx(β cos θ |0〉 + α eiφ sin θ |1〉)C. (8)

After performing σy or σx on his qubit C, Charlie still needs
additional actions. Namely, Charlie introduces an ancillary
qubit C ′ in state |0〉C ′ then lets the qubits C and C ′ go through a
two-qubit gate VCC ′ followed by measuring qubit C ′. The gate
VCC ′ has, in the basis {|00〉, |01〉, |10〉, |11〉}CC ′, the following
explicit form:

VCC ′ =

⎛
⎜⎜⎜⎝

1 0 0 0
0 −β/α

√
1 − β2/α2 0

0
√

1 − β2/α2 β/α 0
0 0 0 1

⎞
⎟⎟⎟⎠ (9)

which can be constructed by two controlled-NOT gates
(CNOTs) and one controlled-ROTATION gate (CROT)

VCC ′ = CNOTCC ′ CROTC ′C CNOTCC ′ , (10)

as shown in figure 1. The action of CNOTCC ′ and CROTC ′C
in equation (10) on a two-qubit state |a〉C |b〉C ′ implies

CNOTCC ′ |a〉C |b〉C ′ = |a〉C |b ⊕ a〉C ′ , (11)

where a, b ∈ {0, 1} and ⊕ stands for an addition mod 2, while

CROTC ′C |a〉C |b〉C ′ = (Rb(ϑ)|a〉C)|b〉C ′ , (12)

where R0(ϑ) ≡ I is the 2 × 2 identity operator and

R1(ϑ) ≡ R(ϑ) =
(−cos ϑ sin ϑ

sin ϑ cos ϑ

)
, (13)
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Figure 1. The gate VCC′ defined by equation (9) in terms of two
CNOTs and a CROT. The solid circle represents the control qubit.

with cos ϑ = β/α, represents a formal rotation by an angle ϑ

in the two-dimensional Hilbert space of a qubit.
Since

VCC ′

[
1√
2
(β cos θ |0〉 + α eiφ sin θ |1〉)C |0〉C ′

]

= β√
2
|q〉C |0〉C ′ +

√
α2 − β2

2
eiφ sin θ |0〉C |1〉C ′ , (14)

the JRSP protocol succeeds when Charlie finds |0〉C ′ , which
takes place with a probability of β2/2 (if, instead, Charlie
finds |1〉C ′ , the protocol fails because this projects qubit C
onto |0〉C). The total success probability in this nonmaximally
entangled channel case is therefore 2 × β2/2 = β2.

To be more general we now consider the qubit state to be
prepared in the form

|Q〉 = x|0〉 + y|1〉, (15)

where x is real and y is a complex nonzero parameter satisfying
the normalization condition

x2 + |y|2 = 1. (16)

In addition,

x = ac, y = bd (17)

with a, c real and b, d complex nonzero coefficients.
The complete classical information of the state |Q〉 is
independently shared between Alice and Bob in the following
way: while the coefficients a, b are known only to Alice (and
by no means to Bob), the coefficients c, d are known only to
Bob (and by no means to Alice). This situation was dealt with
in [16], in which it is further assumed that

a2 + |b|2 = 1, (18)

c2 + |d|2 = 1. (19)

Unfortunately, condition (16) is not compatible with (18) and
(19). In fact, from equations (16)–(19) it follows that

a2 = c2

2c2 − 1
, (20)

|b|2 = c2 − 1

2c2 − 1
(21)

or

c2 = a2

2a2 − 1
, (22)

|d|2 = a2 − 1

2a2 − 1
. (23)

Since both a2 and |b|2 are nonzero positive, from equations
(20) and (21) it requires that c2 must be greater than 1. But for
such c there are no d to meet constraint (19). Likewise, since
both c2 and |d|2 are nonzero positive, from equations (22) and
(23) it follows that a2 must be greater than 1. But for such
a there are no b to meet the constraint (18). Therefore, the
coefficient setting in [16] is incorrect. Here we rely only on
conditions (16) and (17).

To remotely prepare state (15) for Charlie, Alice performs
a vNM on qubit A in the basis {|ϕ〉A, |ϕ⊥〉A} :

|ϕ〉A = a|0〉A + b|1〉A√
a2 + |b|2

,

(24)
|ϕ⊥〉A = b∗|0〉A − a|1〉A√

a2 + |b|2
.

Alice is able to do that because she knows the values of both a
and b. As for Bob, he performs a vNM on qubit B in the basis
{|ψ〉B, |ψ⊥〉B} :

|ψ〉B = c|0〉B + d|1〉B√
c2 + |d|2

,

(25)
|ψ⊥〉B = d∗|0〉B − c|1〉B√

c2 + |d|2
.

Bob is able to do that because he knows the values of both c
and d.

In terms of |ϕ〉A, |ϕ⊥〉A, |ψ〉B and |ψ⊥〉B the quantum
channel (2) reads

|GHZ〉ABC = 1√
(a2 + |b|2)(c2 + |d|2)

× [|ϕ〉A|ψ〉B(acα|0〉 + b∗d∗β|1〉)C
+ |ϕ〉A|ψ⊥〉B(adα|0〉 − b∗cβ|1〉)C
+ |ϕ⊥〉A|ψ〉B(bcα|0〉 − ad∗β|1〉)C
+ |ϕ⊥〉A|ψ⊥〉B(bdα|0〉 + acβ|1〉)C], (26)

which for α = β = 1/
√

2 simplifies to

|GHZ〉ABC = 1√
2(a2 + |b|2)(c2 + |d|2)

× [|ϕ〉A|ψ〉B(ac|0〉 + b∗d∗|1〉)C
+ |ϕ〉A|ψ⊥〉B(ad|0〉 − b∗c|1〉)C
+ |ϕ⊥〉A|ψ〉B(bc|0〉 − ad∗|1〉)C
+ |ϕ⊥〉A|ψ⊥〉B(bd|0〉 + ac|1〉)C]. (27)

Clearly, from equation (27), when Alice finds |ϕ⊥〉A and Bob
finds |ψ⊥〉B, with a probability of 1/[2(a2 + |b|2)(c2 + |d|2)],
Charlie is able to obtain the desired state by applying a σx

on C. In particular, it can be easily checked that, when
a = cos θ, b = sin θ, c = 1 and d = exp(iφ), the

3
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situations corresponding to the two last lines in equation
(27) give rise to a success, with the total probability of
2/[2(a2 + |b|2)(c2 + |d|2)] = 1/2, as it should be.

For α2 > β2 > 0 (see equation (26)) the method presented
in [16] applies, but the correct success probability must be
β2/[(a2 +|b|2)(c2 +|d|2)] 
= β2 because (a2 +|b|2)(c2 +|d|2) 
=
1 as discussed above.

3. Protocol 2

In protocol 1 described in the preceding section a difficulty may
be associated with availability of the GHZ state. Technically,
generation of multipartite entangled states is more demanding
than that of bipartite entangled ones. In this sense, one asks:
‘can the same JRSP task be performed using only bipartite
entangled states?’ The answer is ‘yes’ and in this section we
present a new protocol for the JRSP task using a pair of EPR
states, instead of a single GHZ state.

Let Alice (Bob) and Charlie share an EPR state of the
form

|EPR〉AC1 = (α|00〉 + β|11〉)AC1 (28)(|EPR〉BC2 = (α|00〉 + β|11〉)BC2

)
(29)

of which qubit A(B) belongs to Alice (Bob) while qubits C1

and C2 are hold by Charlie. We also assume real normalization
coefficients α, β : α2 + β2 = 1. When α = β = 1/

√
2 the

EPR states are maximally entangled but when α2 > β2 > 0
their entanglement is nonmaximal.

To remotely prepare state (1), exactly as in protocol 1, here
Alice and Bob also begin with measuring her/his own qubit in
basis (3) and (4), respectively. In terms of |�〉A, |�⊥〉A, |�〉B
and |�⊥〉B the quantum channels (28) and (29) read

|EPR〉AC1 |EPR〉BC2

= 1√
2

[|�〉A|�〉B(α cos θ |0〉 + β sin θ |1〉)C1(α|0〉
+ β e−iφ|1〉)C2 − |�⊥〉A|�〉B(β cos θ |1〉
−α sin θ |0〉)C1(α|0〉 + β e−iφ|1〉)C2 + |�〉A|�⊥〉B
× (α cos θ |0〉 + β sin θ |1〉)C1(α eiφ|0〉 − β|1〉)C2

− |�⊥〉A|�⊥〉B(β cos θ |1〉
−α sin θ |0〉)C1(α eiφ|0〉 − β|1〉)C2

]
. (30)

As is clear from equation (30), for whatever measurement
outcome of Alice and Bob, neither of Charlie’s qubits
C1 and C2 can be converted to the desired one by an
elementary operation U ∈ {I, σx, σy, σz}. Fortunately, a
further application by Charlie of a CNOT on qubits C1 and
C2 followed by measuring C2 proves useful. Under the action
of CNOTC1C2 equation (30) becomes

CNOTC1C2 |EPR〉AC1 |EPR〉BC2

= 1√
2

{|�〉A|�〉B
[
iσy(β

2 e−iφ sin θ |0〉 − α2 cos θ |1〉)C1 |0〉C2

+ e−iφαβ(cos θ |0〉 + eiφ sin θ |1〉)C1 |1〉C2

]
− |�⊥〉A|�〉B

[
i e−iφσy(β

2 cos θ |0〉
+ α2 eiφ sin θ |1〉)C1 |0〉C2 − αβ( e−iφ sin θ |0〉
− cos θ |1〉)C1 |1〉C2

] − |�〉A|�⊥〉B
[
eiφσx(β

2 e−iφ sin θ |0〉

−α2 cos θ |1〉)C1 |0〉C2 + αβσz(cos θ |0〉
+ eiφ sin θ |1〉)C1 |1〉C2

]
+ |�⊥〉A|�⊥〉B

[
σx(β

2 cos θ |0〉
+ α2 eiφ sin θ |1〉)C1 |0〉C2 − αβ eiφσz

× (e−iφ sin θ |0〉 − cos θ |1〉)C1 |1〉C2

]}
, (31)

where σx, σy and σz act only on qubit C1.

First we consider the case of maximally entangled
quantum channels with α = β = 1/

√
2 for which

equation (31) reduces to

CNOTC1C2 |EPR〉AC1 |EPR〉BC2

= 1
2
√

2

{|�〉A|�〉B
[
iσy |q⊥〉C1 |0〉C2 + e−iφ|q〉C1 |1〉C2

]
− |�⊥〉A|�〉B

[
i e−iφσy |q〉C1 |0〉C2 − |q⊥〉C1 |1〉C2

]
− |�〉A|�⊥〉B

[
eiφσx |q⊥〉C1 |0〉C2 + σz|q〉C1 |1〉C2

]
+ |�⊥〉A|�⊥〉B

[
σx |q〉C1 |0〉C2 − eiφσz|q⊥〉C1 |1〉C2

]}
. (32)

Clearly, if the measurement outcomes of Alice, Bob
and Charlie are

{|�〉A, |�〉B, |1〉C2

}
,
{|�⊥〉A, |�〉B, |0〉C2

}
,{|�〉A, |�⊥〉B, |1〉C2

}
or

{|�⊥〉A, |�⊥〉B, |0〉C2

}
, each happens

with an equal probability of 1/8, the state of qubit C1 can be
transformed to |q〉C1 (possibly up to an unimportant global
phase factor) by an elementary operation U = I, σy, σz or σx,

respectively. The total success probability of JRSP in this case
is thus 4 × 1/8 = 1/2.

Next, we consider the case of nonmaximally entangled
quantum channels with α2 > β2 > 0. From equation (31) one
can see that, whenever the measurement outcomes of Alice,
Bob and Charlie are

{|�〉A, |�〉B, |1〉C2

}
or

{|�〉A, |�⊥〉B,

|1〉C2

}
, each happens with an equal probability of α2β2/2, the

state of qubit C1 collapses automatically into |q〉C1 or can be
σz-corrected to be in |q〉C1 . However, the measurement
outcomes

{|�⊥〉A, |�〉B, |0〉C2

}
or

{|�⊥〉A, |�⊥〉B, |0〉C2

}
project C1 onto the (unnormalized) state

1√
2
σy(β

2 cos θ |0〉 + α2 eiφ sin θ |1〉)C1 (33)

or
1√
2
σx(β

2 cos θ |0〉 + α2 eiφ sin θ |1〉)C1 , (34)

which are not yet the desired one. Here a similar trick as
in protocol 1 can be invoked. Namely, first Charlie applies
σy or σx on C1 to have it in the state ∝ (β2 cos θ |0〉 +
α2 eiφ sin θ |1〉)C1 . Then Charlie introduces an ancillary qubit
C ′ in state |0〉C ′ and lets the qubits C1 and C ′ go through a
two-qubit gate UC1C ′ followed by measuring qubit C ′. The gate
UC1C ′ has the explicit form

UC1C ′ =

⎛
⎜⎜⎜⎝

1 0 0 0
0 −β2/α2

√
1 − β4/α4 0

0
√

1 − β4/α4 β2/α2 0
0 0 0 1

⎞
⎟⎟⎟⎠ (35)

in the basis {|00〉, |01〉, |10〉, |11〉}C1C ′ . This gate UC1C ′ can
be constructed in a similar way as for VCC ′ , i.e., UC1C ′ =
CNOTC1C ′ CROT C ′C1 CNOTC1C ′ except that now we have
cos ϑ = β2/α2.

Because

UC1C ′

[
1√
2
(β2 cos θ |0〉 + α2 eiφ sin θ |1〉)C1 |0〉C ′

]

= β2

√
2
|q〉C1 |0〉C ′ +

√
α4 − β4

2
eiφ sin θ |0〉C1 |1〉C ′ (36)

4
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when the outcome of Charlie’s measuring C ′ is |0〉C ′ the
state of qubit C1 becomes |q〉C1 with a probability of β4/2.

Consequently, the overall success probability of protocol 2
in the case of nonmaximally entangled quantum channels is
2(α2β2/2 + β4/2) = β2.

To remotely prepare state (1), exactly as in protocol
1, here Alice and Bob also begin with measuring her/his
own qubit in the basis (24) and (25), respectively. In
terms of |ϕ〉A, |ϕ⊥〉A, |ψ〉B and |ψ⊥〉B, the expression for
CNOTC1C2 |EPR〉AC1 |EPR〉BC2 reads

CNOTC1C2 |EPR〉AC1 |EPR〉BC2 = 1√
(a2 + |b|2)(c2 + |d|2)

× {|ϕ〉A|ψ〉B
[
(α2ac|0〉 + β2b∗d∗|1〉)C1 |0〉C2

+ αβ(ad∗|0〉 + cb∗|1〉)C1 |1〉C2

]
+ |ϕ〉A|ψ⊥〉B

[
(α2ad|0〉

−β2b∗c|1〉)C1 |0〉C2 − αβ(ac|0〉 − b∗d|1〉)C1 |1〉C2

]
+ |ϕ⊥〉A|ψ〉B

[
(α2bc|0〉 − β2ad∗|1〉)C1 |0〉C2

+ αβ(bd∗|0〉 − ac|1〉)C1 |1〉C2

]
+|ϕ⊥〉A|ψ⊥〉B

[
(α2bd|0〉 + β2ac|1〉)C1 |0〉C2

−αβ(bc|0〉 + ad|1〉)C1 |1〉C2

]}
, (37)

which in the case of α = β = 1/
√

2 simplifies to

CNOTC1C2 |EPR〉AC1 |EPR〉BC2 = 1

2
√

(a2 + |b|2)(c2 + |d|2)
×{|ϕ〉A|ψ〉B

[
(ac|0〉 + b∗d∗|1〉)C1 |0〉C2

+ (ad∗|0〉 + cb∗|1〉)C1 |1〉C2

]
+ |ϕ〉A|ψ⊥〉B

× [
(ad|0〉 − b∗c|1〉)C1 |0〉C2 − (ac|0〉 − b∗d|1〉)C1 |1〉C2

]
+ |ϕ⊥〉A|ψ〉B

[
(bc|0〉 − ad∗|1〉)C1 |0〉C2

+ (bd∗|0〉 − ac|1〉)C1 |1〉C2

]
+ |ϕ⊥〉A|ψ⊥〉B

[
(bd|0〉 + ac|1〉)C1 |0〉C2

− (bc|0〉 + ad|1〉)C1 |1〉C2

]}
. (38)

From equation (38) it is evident that, if the
measurement outcomes of Alice, Bob and Charlie are{|ϕ⊥〉A, |ψ⊥〉B, |0〉C2

}
, which occurs with a probability of

1/[4(a2 + |b|2)(c2 + |d|2)], the state of qubit C1 can be
transformed to |Q〉C1 by application of σx. In particular, if
a = cos θ, b = sin θ, c = 1 and d = exp(iφ), all the outcomes{|ϕ〉A, |ψ〉B, |1〉C2

}
,

{|ϕ⊥〉A, |ψ〉B, |0〉C2

}
,

{|ϕ〉A, |ψ⊥〉B,

|1〉C2

}
and

{|ϕ⊥〉A, |ψ⊥〉B, |0〉C2

}
are fine and the total success

probability adds to be 4/[4(a2 + |b|2)(c2 + |d|2)] = 1/2, as it
should be.

For α2 > β2 > 0, from equation (37) it follows
that, whenever the measurement outcomes are

{|ϕ⊥〉A, |ψ⊥〉B,

|0〉C2

}
the qubit C1 is projected onto the (unnormalized) state

(α2bd|0〉 + β2ac|1〉)C1 = σx(β
2ac|0〉 + α2bd|1〉)C1 . Charlie

then applies σx on C1 followed by using an ancilla C ′ and the
gate UC1C ′ (see equations (35) and (36)) as described above
in order to obtain the desired state |Q〉C1 . The probability for
such situation is β4/[(a2 + |b|2)(c2 + |d|2)].

4. Discussion and conclusion

Before the conclusion, we give some discussions regarding the
required amounts of classical communication and quantum

entanglement as well as the feasibility of our proposed
protocols.

As is well known, classical communication plays a crucial
role in any quantum protocol. In fact, without classical
communication the quantum channel remains passive. In
general, in each of our protocols 2 cbits (one announced
by Alice and the other by Bob on their vNM outcome) are
needed for Charlie to complete the state preparation at his
node. In some cases the cbits can be cleverly managed to
instruct Charlie’s actions. Let us illustrate this for the state
|q〉 given by equation (1). Let Alice’s measurement outcome
be a = {0, 1} if she finds {|�〉A, |�⊥〉A}, Bob’s measurement
outcome be b = {0, 1} if he finds {|�〉B, |�⊥〉B} and, Charlie’s
measurement outcome be c = {0, 1} if she finds

{|0〉C2, |1〉C2

}
.

Then, for protocol 1, a = 0 means a failure for both
maximal and nonmaximal entanglement, a = 1 indicates a
deterministic success without ancillas for maximally entangled
quantum channel and a probabilistic success with using
ancillas for nonmaximally entangled quantum channel, while
the value of b indicates the right correction operator (b = 0 →
σy, b = 1 → σx). As for protocol 2, a ⊕c = 0 means a failure
for both maximal and nonmaximal entanglement, a ⊕ c = 1
signals a deterministic success without ancillas for maximally
entangled quantum channel and a probabilistic success for
nonmaximally entangled quantum channel (note in the latter
case that the value of a provides an additional useful guidance:
a = 0 needs no ancillas, a = 1 requires using ancillas), while
the value of (a ⊕ b, c) instructs the right correction operator
(namely, {(a ⊕ b, c)} = {(0, 0), (0, 1), (1, 0), (1, 1)} →
{σx, I, σy, σz}).

It is worth noting also that the failure mentioned above
(i.e., when a = 0 in protocol 1 and a ⊕ c = 0 in protocol 2)
implies impossibility of joint preparation of the exact state
|q〉 at Charlie’s site. However, as can easily be realized
from equations (5) and (31), the exact complement state
|q⊥〉 = e−iφ sin θ |0〉 − cos θ |1〉 can be obtained instead in
those failure events. If Charlie’s purpose is just to simulate
the measurement statistics, he can do that all the time with
maximally (or 2β2 of the time with nonmaximally) entangled
quantum channels since he is always able to suitably change
his measuring apparatus whenever he gets |q⊥〉 (for more detail
on this issue see [5]). In this sense the failure events of JRSP
are not entirely useless.

As for the entanglement amount of the quantum channel,
it determines the success probability of the JRSP. The
entanglement amount of state (2) can be assessed by C(A|BC),

C(B|CA) and C(C|AB), while that of states (28)–(29) can be
assessed by C(A|C1) and C(B|C2), with C(X|Y ) the concurrence
[17] of the composite system XY with respect to the partition
(X|Y ). In our protocols C(A|BC) = C(B|CA) = C(C|AB) =
C(A|C1) = C(B|C2) = 2

√
(1 − β2)β2 = C. Hence, for β2 � α2,

i.e., 0 � β2 � 1/2, C is monotonously increasing with β2,

starting from C = 0 for β2 = 0 and approaching C = 1
for β2 → 1/2. In our protocols the calculated success
probability is proportional to β2, implying that sharing a
nonzero entanglement amount is compulsorily necessary and,
as should be expected, the larger the shared entanglement
amount the higher the success probability.
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As for feasibility, we stress that our protocols could be
implemented iff the following three conditions are satisfied:
(i) the participating parties have successfully shared the
entangled states (2) or (28)–(29), (ii) perfect measuring devices
for vNMs at all the parties’ locations and perfect operations
of two-qubit gates at Charlie’s are available, and (iii) Charlie
has quantum memories to store his qubit(s) until receiving the
classical communication from Alice and Bob. The condition
(i) is associated with the pre-protocol preparation which is
practically demanding due to losses and decoherence during
distribution of the entangled qubits. Generally, to meet the
condition (i), entanglement distillation procedures (see, e.g.,
[18]) should be carried out, which is beyond the scope of the
present paper. As in all other works of similar topics, here we
start our protocols with the assumption that states (2) or (28)–
(29) have been a priori provided. The condition (ii) is ideal
since in practice errors appear in both qubit measuring and
gate operating. If so, the prepared state will not be faithful.
But, in some cases, it can be made optimally close to the
desired state by an error-correcting procedure. This issue,
however, is not touched upon here. As for the condition
(iii), it cannot be avoided because super-luminal signaling is
prohibited. This condition is also required in teleportation
[2], RSP [5] as well as in many other global quantum
tasks.

In conclusion, we have proposed two different new
quantum protocols to remotely prepare a secret qubit state
whose full classical knowledge is split among two distant
parties. Individually neither party can do the task, but
working in concert the two parties can. Each party performs a
vNM measurement in the basis determined by his/her partial
classical knowledge of the state to be prepared. Then they
publicly broadcast their measurement outcomes according
to which a third remote party is able to reconstruct the
desired state. As for the quantum channels, protocol 1
uses a single GHZ state and protocol 2 uses a pair of EPR
states. For the state |Q〉 (see equation (1)) a success is
achieved when Alice finds |ϕ⊥〉A and Bob finds |ψ⊥〉B in
both the protocols. However, protocol 1 yields a success
probability of 1/[2(a2 + |b|2)(c2 + |d|2)](β2/[(a2 + |b|2)(c2 +
|d|2)]) if the quantum channel is maximally (nonmaximally)
entangled, whereas the corresponding probability of protocol
2 is 1/[4(a2 + |b|2)(c2 + |d|2)](β4/[(a2 + |b|2)(c2 + |d|2)]).
For the state |q〉 (see equation (1)), both protocols 1 and
2 succeed with a total probability of 50% in the case of
maximally entangled quantum channels and of β2 if the
shared entanglement is only partial. When there is maximal
entanglement no ancillas are needed at all. When this is not so
the need of using ancillas appears but it is protocol-dependent:
protocol 1 always requires ancillas, while sometimes ancillas
are not necessary in protocol 2. The advantage in quantum
resources of protocol 2 is that it only utilizes EPR states. But its
technical disadvantage is that it requires Charlie to be capable
of performing a CNOT. Since nowadays GHZ, EPR states can
be produced and various controlled-U gates can be engineered,
our protocols could be implemented in the future when

the aforementioned conditions (i) and (ii) become realized
technologically.
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