B. SchartelBundesanstalt für Materialforschung und -prüfung | BAM
B. Schartel
PD Dr. habil.
About
200
Publications
73,881
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
13,578
Citations
Introduction
Additional affiliations
January 1999 - December 2010
January 1996 - present
Publications
Publications (200)
Integrating natural fibers derived from local industrial waste streams into thermoplastic starch (TPS) proves to be a promising approach towards sustainable flame retardant biocomposites. Initially, three types of waste fibers from the agave, coconut, and leather industries were evaluated for their flame retardant properties in combination with alu...
Pressure-sensitive adhesive tapes are used in automotives, railway vehicles and construction, where flame retardancy is of major importance. This is why industrial applicants often buy, and industrial tape manufacturers often produce, flame-retardant adhesive tapes, advertised for their good flammability characteristics. Yet, how flame-retardant ta...
Although numerous investigations study the improvement of flame retardancy of epoxy resins using additives, maintaining the flame retardant (FRs) modes of action present in the resins upon transfer to composites is challenging. In this study, ammonium polyphosphate (APP) and inorganic silicate (InSi) are loaded at 10%, 30%, and 50% by weight, in a...
To ensure fire safety, polymers are filled with flame retardants and smoke suppressants. To meet the highest requirements, it is essential to understand the decomposition of those polymeric materials. This study reveals interactions between polymer, smoke suppressants, and flame retardants, and discusses their impact on the materials’ flame retarda...
In the processing of nanocomposites, high shear stresses at elevated temperatures orient two‐dimensional nanoparticles like graphene. This orientation leads to anisotropic mechanical, thermal or barrier properties of the nanocomposite. This anisotropy is addressed in this study by comparing graphene (few‐layer graphene, FLG) with a nanoscaled carbo...
A series of flexible polyurethane foams (FPUFs) were prepared with single and different combinations of flame retardants and additives. Expandable graphite (EG), phosphorous polyol (OP), copper (II) oxide (CuO), and/or castor oil (CAS) were added to FPUF during the foam preparation in a one-step process. The purpose of the study is to evaluate the...
The addition of nanoparticles as reinforcing fillers in elastomers yields nanocomposites with unique property profiles, which opens the door for various new application fields. Major factors influencing the performance of nanocomposites are studied by varying the type and shape of nanoparticles and their dispersion in the natural rubber matrix. The...
The impact of phosphorus-containing flame retardants (FR) on rigid polyisocyanurate (PIR) foams is studied by systematic variation of the chemical structure of the FR, including non-NCO-reactive and NCO-reactive dibenzo[d,f][1,3,2]dioxaphosphepine 6-oxide (BPPO)- and 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO)-containing compounds, am...
The enzymatic degradation of aliphatic polyesters offers unique opportunities for various use cases in materials science. Although evidently desirable, the implementation of enzymes in technical applications of polyesters is generally challenging due to the thermal lability of enzymes. To prospectively overcome this intrinsic limitation, we here ex...
Reaktive Brandschutzsysteme finden im baulichen Brandschutz Anwendung zur Erhöhung des Feuerwiderstands von Stahlkonstruktionen. Neben den Anforderungen an die Feuerwiderstandsdauer können damit auch Ansprüche an die Ästhetik erfüllt werden. Die profilfolgende Applikation und die geringen Trockenschichtdicken der Produkte ermöglichen es, das filigr...
Tailored crosslinking in elastomers is crucial for their technical applications. The incorporation of nanoparticles with high surface-to-volume ratios not only leads to the formation of physical networks and influences the ultimate performance of nanocomposites, but it also affects the chemical crosslinking reactions. The influence of few-layer gra...
Sustainable, biogenic flame retardant adjuvants for epoxy resins are receiving increased focus. Zoological products like insects, bone meal, and eggshells are available in large quantities, but remain uninvestigated as functional fillers to epoxy resins, although they are potential synergists to flame retardants. The efficacy and flame retardancy o...
The important take home message of this chapter: When multicomponent flame retardant systems are applied to polymeric materials, it becomes possible to address multiple fire properties, increase efficiency, and minimize flame retardant use to maximize polymer property balance. Flame retardants are combined or used together with adjuvants or synergi...
The behavior of the cable jacket in fire characterized by the tendency to melt and drip constitutes a major source of fire hazard. The reason is that the melted material may convey the flame from one point to another, expanding fire and contributing to the fire load. In this article, the capability of a new computational strategy based on the parti...
A systematic series of flexible polyurethane foams (FPUF) with different concentrations of flame retardants, bis([dimethoxyphosphoryl]methyl) phenyl phosphate (BDMPP), and melamine (MA) or expandable graphite (EG) was prepared. The mechanical properties of the FPUFs were evaluated by a universal testing machine. The pyrolysis behaviors and the evol...
Fire resistance testing of components made of carbon fibre reinforced polymers (CFRP) usually demands intermediate-scale or full-scale testing. A bench-scale test is presented as a practicable and efficient method to assess how different fire protective systems improve the structural integrity of CFRPs during fire. The direct flame of a fully devel...
Leather is among the most ancient, widely used materials worldwide. Industrial-scale leather production produces large quantities of organic waste attained during shaving and buffing steps during processing. In this study, leather wastes (LW) are used as fillers in flame retarded polymer composites. LW is investigated as a multifunctional bio-fille...
A phosphorous soybean-oil–based polyol was derived via epoxidation and ring opening reaction as an alternative to petrochemical-based polyol for the synthesis of flexible polyurethane foams (FPUFs). 5-wt.% and 10-wt.% of expandable graphite (EG) were added to further improve flame retardancy. The mechanical properties (tensile strength and compress...
To curtail flammability risks and improve material properties, flame retardants (FRs) and fillers are mixed into rubbers. High loadings of aluminum trihydroxide (ATH) and carbon black (CB) are the most used FRs and reinforcing additive, respectively, in rubbers. To reduce loading without losing mechanical properties, partial substitution of ATH as...
A rigid aromatic phosphorus‐containing hyperbranched flame retardant structure is synthesized from 10‐(2,5‐dihydroxyphenyl)‐10H‐9‐oxa‐10‐phosphaphenanthrene‐10‐oxide (DOPO‐HQ), tris(4‐hydroxyphenyl)phosphine oxide (THPPO), and 1,4‐terephthaloyl chloride (TPC). The resulting poly‐(DOPO‐HQ/THPPO‐terephthalate) (PDTT) is implemented as a flame retarda...
The durability of flame retardancy is a challenge for cables over long lifetimes. The degradation of flame retardance is investigated in two kinds of exposures, artificial weathering and humidity. In this basic study, typical mineral flame retardants in two polymers frequently used in cable jackets are investigated to get the fundamental picture. A...
Aluminum tris-(diethylphosphinate) (AlPi) is known to have an efficient flame-retardant effect when used in poly(butadiene terephthalates) (PBT). Additionally, better flame-retardant effects can be achieved through the partial substitution of AlPi by boehmite in multi-component systems, which have been shown to be an effective synergist due to cool...
Recycling of crosslinked fiber-reinforced polymers is difficult. Moreover, as they are often based on flammable resins, additional additives are needed. So-called “vitrimers” open the possibility of recycling and reprocessing and repairing with dynamically crosslinked chemistries. To date, vitrimer-based composites still need flame retardant additi...
Flexible polyurethane foams (FPUF) are easy to ignite and exhibit rapid flame spread. In this paper, the fire phenomena of two standard foam formulations containing tris(1,3‐dichloro‐2‐propyl) phosphate (FR‐2) and a halogen‐freepoly (ethyl ethylene phosphate) (PNX), respectively, as flame retardants are compared. A multi‐methodological approach is...
Recent disasters caused by the spread of fire in buildings and in transportations
remind us of the importance of fire protection. Using flame-retardant materials
is one important element of the firefighting strategy, which aims to prevent fire
development and propagation. These materials are used in different applications,
such as in textiles, coat...
Nowadays there are intumescent coatings available for diverse applications. There is no established assessment of their protection performance besides the standard time-temperature curve, but natural fire scenarios often play an important role. A reliable straightforward performance-based assessment is presented. The effective thermal conductivity...
Wood products are often treated by different techniques to improve their longevity when used as building materials. Most of the time, the goal is to increase their resistance to weathering effects, deformations in material dimensions or biotic decomposition. These wood treatment techniques have a significant impact on pyrolysis and burning behavior...
Ethylene propylene diene monomer (EPDM) rubbers with the flame retardants tris(2‐ethylhexyl)phosphate, ammonium polyphosphate, polyaniline, and aluminum trihydroxide were prepared and analyzed in this study. The homogenous dispersion of the fillers in the rubber matrix was confirmed by scanning electron microscope. To investigate the interplay of t...
Hyperbranched polyphosphoesters are promising multifunctional flame retardants for epoxy resins. These polymers were prepared via thiol-ene polyaddition reactions. While key chemical transformations and modes of actions were elucidated, the role of sulfur in the chemical composition remains an open question. In this study, the FR-performance of a s...
We synthesized a library of phosphorus-based flame retardants (phosphates and phosphoramides of low and high molar mass) and investigated their behavior in two epoxy resins (one aliphatic and one aromatic). The pyrolytic and burning behavior of the two resins (via TGA, TG-FTIR, Hot stage FTIR, Py-GC/MS, PCFC, DSC, LOI, UL-94, Cone calorimeter) are...
Branched polymers are an important class of polymers with a high number of terminal groups, lower viscosity compared to their linear analogs and higher miscibility, which makes them especially interesting for flame retardant applications, where the flame retardants (FR) are blended with another polymer matrix. Hyperbranched polyphosphoesters (hbPPE...
Correction for ‘Hyperbranched phosphorus flame retardants: multifunctional additives for epoxy resins’ by Alexander Battig et al. , Polym. Chem. , 2019, DOI: 10.1039/c9py00737g.
Flame-retarded biocomposites of thermoplastic starch and natural fibres are successfully processed according to
state-of-the-art extrusion and injection moulding. Using agave fibres and henequen fibres recovered from local
industrial waste is a convincing contribution to sustainability. A systematically varied set of biocomposites is
investigate...
Rigid polyurethane foams (RPUFs) exhibit short times to ignition as well as rapid flame spread and are therefore considered to be hazardous materials. This paper focuses on the fire phenomena of RPUFs, which were investigated through a multimethodological approach. Water-blown polyurethane (PUR) foams without flame retardants (FRs) as well as water...
In this study, multicomponent flame retardant systems, consisting of ammonium polyphosphate (APP), aluminum trihydroxide (ATH), and polyaniline (PANI), were used in ethylene propylene diene monomer (EPDM) rubber. The multicomponent system was designed to improve flame retardancy and the mechanical properties of the rubber compounds, while simultane...
Der steigende Einsatz von Holz‐Kunststoff‐Verbundwerkstoffen (Wood Plastic Composite, WPC) erfordert das Wissen um seine spezifischen Eigenschaften, insbesondere dem Brandrisiko. Dabei können Flammschutzmittel die Entflammbarkeit, Wärmeabgabe und die Brandausbreitung des Materials verringern. Deshalb sind der gezielte und effiziente Einsatz und die...
Usually elastomers are loaded with high amounts of flame retardants to fulfill fire safety requirements. In this study the potential char precursor polyaniline (PANI) and the established fire retardant pentaerythritol (PER) were implemented in ethylene-propylene-diene monomer rubber (EPDM). PANI and PER were used in low loadings (7 phr) and combine...
Scientific publications addressing the durability of the flame retardance of cables during their long‐term application are rare and our understanding lacks. Three commercial flame retardants, aluminum hydroxide, aluminum diethyl phosphinate (AlPi‐Et), and intumescent flame retardant based on ammonium polyphosphate, applied in ethylene‐vinyl acetate...
Natural keratin fibres derived from Mexican tannery waste and coconut fibres from coconut processing waste were used as fillers in commercially available, biodegradable thermoplastic starch-polyester blend to obtain sustainable biocomposites. The morphology, rheological and mechanical properties as well as pyrolysis, flammability and forced flaming...
This comprehensive case study of multilayer graphene (MLG) as a multifunctional nanofiller in elastomer/graphene nanocomposites illustrates the state of the art for commercial mass application. By comparing different elastomeric matrices, the outstanding impact of MLG on the properties of nanocomposites is demonstrated to be generally beneficial. T...
The fire resistance of lightweight sandwich panels (SW) with carbon fibre/epoxy skins and a poly(methacryl imide) (PMI) foam core is investigated in compression under direct application of a severe flame (heat flux = 200 kW m⁻²). A bench-scale test procedure was used, with the sample held vertically. The epoxy decomposition temperature was quickly...
Rigid polyurethane foams (RPUFs) typically exhibit low thermal inertia, resulting in short ignition times and rapid flame spread. In this study, the fire phenomena of RPUFs were investigated using a multi-methodological approach to gain detailed insight into the fire behaviour of pentane- and water-blown polyurethane (PUR) as well as pentane-blown...
Developing halogen‐free flame retardants with reasonably high efficiency, which thus function at limited loadings in polypropylene‐based wood/plastic composites (WPC), is still a challenge. Cost‐effective flame‐retarded WPC have been identified as a way to open the door to an interesting, broader spectrum of application in the building and transpor...
Elastomers are usually mechanically reinforced with high loadings of carbon black (CB) to achieve the properties demanded; high amounts of mineral flame retardants are used to fulfill fire safety requirements. In this study, multilayer graphene (MLG), a nanoparticle made of only 10 graphene sheets, is applied in low loadings, 3 parts per hundred ru...
Frontispiece: DOPO-containing polyesters as new flame retardants for biobased polyesters are reported. Their fire behavior is evaluated by cone calorimetry. The cover image shows the residues of five different polyesters with varied phosphorus content after forced-flaming combustion (left) and the chemical structure of selected species found in the...
Polyesters with 9,10-dihydro-9-oxy-10-phosphaphenanthrene-10-oxide-containing comonomers are synthesized aiming to improve the flame retardancy of aliphatic polyesters such as poly(butylene succinate) and poly(butylene sebacate). The influence of the chemical structure on the thermal decomposition and pyrolysis is examined using a combination of th...
A siloxane compound (MVC) and a bi-group phosphaphenanthrene/triazine compound (TGD) were employed in epoxy thermosets to explore high-efficiency flame retardant system. With only 1 wt.% MVC and 3 wt.% TGD, epoxy thermoset passed UL 94 V-0 rating test and achieved an limited oxygen index (LOI) value of 34.0%, which exhibited an excellent flame reta...
The fire stability of carbon fiber reinforced polymer (CFRP) shell structures was investigated using an intermediate-scale test setup. The shell specimens are representative of typical load-bearing CFRPs in modern civil aviation. The CFRP shell specimens were exposed to a fully developed fire with direct flame impingement to one side at a heat flux...
In addition to the acid source, charring agent, and blowing agent, the binder is a crucial part of an intumescent coating. Its primary task is to bind all compounds, but it also acts as a carbon source and influences the foaming process. A series of intumescent coatings based on five different binders was investigated in terms of insulation, foamin...
Intumescent coatings have been used for fire protection of steel for decades, but there is still a need for improvement and adaptation. The key parameters of such coatings in a fire scenario are thermal insulation, foaming dynamics, and cohesion. The fire resistance tests, large furnaces applying the standard time temperature (STT) curve, demand co...
Phosphorus-based flame retardants were incorporated into different, easily preparable matrices, such as polymeric thermoset resins and paraffin as a proposed model for polyolefins and investigated for their flame retardancy performance. The favored mode of action of each flame retardant was identified in each respective system and at each respectiv...
Several expandable graphites (EGs), differing in expansion volume but with the same mean size, are compared as flame retardants in polyurethane (PUR) foams. Not only common sulfur-intercalated graphites are investigated, but also a new one intercalated with phosphorus. The main aim of this article is to understand which properties of EG are importa...
A mono-component intumescent flame retardant named ethylenediamine-modified ammonium polyphosphate (MAPP) is used in polyethylene-octene elastomer (POE). Insight into the flame-retardant mechanisms of the MAPP is provided from a new perspective. The fire performance of POE/MAPP composites is investigated by oxygen index (OI) and vertical burning (U...
Basic paths towards fully green flame retarded kenaf fiber reinforced polylactic acid (K-PLA) biocomposites are compared. Multicomponent flame retardant systems are investigated using an amount of 20 wt% such as Mg(OH)2 (MH), ammonium polyphosphate (APP) and expandable graphite (EG), and combinations with silicon dioxide or layered silicate (LS) na...
Thermal insulation and mechanical resistance play a crucial role for the performance of an intumescent coating. Both properties depend strongly on the morphology and morphological development of the foamed residue. Small amounts (4 wt%) of fiberglass, clay and a copper salt, respectively, are incorporated into an intumescent coating to study their...
A phosphaphenanthrene and triazinetrione group containing flame retardant (TAD) is combined with organically modified montmorillonite (OMMT) in epoxy resin thermosets (EP) to improve the performance of the flame-retardant system. When only 1 wt% OMMT/4 wt% TAD is introduced into the EP, the limited oxygen index (LOI) rises from 26% to 36.9% and a V...
The potential synergists aluminium diethylphosphinate (AlPi), boehmite (AlO(OH)) and melamine polyphosphate (MPP) were compared in flame-retardant epoxy resin (EP)/melamine poly(magnesium phosphate) (S600). The pyrolysis, the fire behaviour as well as the chemical interactions in the gas and condensed phases were investigated by various methods. Fl...
Fire resistance has become a key property for structural lightweight sandwich components in aviation, shipping, railway vehicles, and construction. The development of future composite materials and components demands adequate test procedures for simultaneous application of compression and fully developed fire. Therefore an intermediate-scale approa...
The effects of reducing specimen size on the fire behavior of polymeric materials were investigated by means of the rapid mass calorimeter, a high-throughput screening instrument. Results from the rapid mass calorimeter were compared with those from the cone calorimeter. Correlation coefficients between the different measures of each method and bet...
de Wesentlich für das Sicherheitsniveau und damit die nachhaltige Wettbewerbsfähigkeit des Technologiestandorts Deutschland ist der Brandschutz in Industrieanlagen, in Gebäuden und im Transportwesen. Der vorbeugende bauliche Brandschutz hat u. a. das Ziel, die Brand‐ und Rauchausbreitung im Brandfall für eine gewisse Zeit zu behindern, damit die er...
A systematic comparison of chemical interactions and fire behaviour is presented for the thermoplastic elastomer (block copolymer styrene-ethylene-butadiene-styrene) (TPE‐S)/diethyl- and methylvinyl siloxane (Si)/poly(phenylene oxide) (PPO), flame-retarded with aluminium diethylphosphinate (AlPi) and with ammonium polyphosphate (APP), respectively....
Synergistic multicomponent systems containing melamine poly(metal phosphate)s have been recently proposed as flame retardants. This work focuses on the decomposition pathways, molecular mechanisms and morphology of the fire residues of epoxy resin (EP) flame retarded with melamine poly(zinc phosphate) (MPZnP) to explain the modes of action and syne...
Multilayer
Graphene (MLG), a nanoparticle with a specific surface of BET = 250 m2/g and thus made of only approximately 10 graphene sheets, is proposed as a nanofiller for rubbers. When homogenously dispersed, it works at low loadings enabling the replacement of carbon black (CB), increase in efficiency, or reduction in filler concentration. Actual...
The functionalization of a natural sodium montmorillonite (MMT) with (3-glycidyloxypropyl)trimethoxysilane by a silylation procedure is presented, and its use as nanofiller in the melt compounding of low density polyethylene (LDPE) nanocomposites. In particular, the effects on the thermal stability and flame retardant properties of melt compounded...
Condensed-phase mechanisms play a major role in fire-retardant polymers. Generations of development have followed the concept of charring to improve fire properties. Whereas the principal reactions are believed to be known, the specific description for multicomponent systems is lacking, as is the picture across different systems. A two-step approac...
The influence of distinct carbon based nanofillers: expanded graphite (EG), conducting carbon black (CB), thermally reduced graphene oxide (TRGO) and multi-walled carbon nanotubes (CNT) on the thermal, dielectric, electrical and rheological properties of polybutylene terephthalate (PBT) was examined. The glass transition temperature (Tg) of PBT nan...