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Abstract

With the increased need for mobility and the overcrowding of cities, the area of Intelligent Transportation aims at improving the
efficiency, safety, and productivity of transportation systems by relying on communication and sensing technologies. One of the
main challenges faced in Intelligent Transportation Systems (ITS) pertains to the real time collection of traffic and road related
data, in a cost effective, efficient, and scalable manner. The current approaches still suffer from problems related to the mobile
devices energy consumption and overhead in terms of communications and processing. To tackle the aforementioned challenges,
we propose in this paper a novel infrastructure-less on-demand vehicular sensing framework that provides accurate road condition
monitoring, while reducing the number of participating vehicles, energy consumption, and communication overhead. Our approach
is adopting the concept of Mobile Sensing as a Service (MSaaS), in which mobile owners participate in the data collection activities
and decide to offer the sensing capabilities of their phones as services to other users. Unlike existing approaches that rely on
opportunistic continuous sensing from all available cars, this ability to offer sensory data to consumers on demand can bring
significant benefits to ITS and can constitute an efficient and flexible solution to the problem of real-time traffic/road data collection.
A combination of prototyping and traffic simulation traces are used to realize the system, and a variety of test cases are used to
evaluate its performance. When compared to the traditional continuous sensing, our proposed on-demand sensing approach provides
comparable high traffic estimation accuracy while significantly reducing the resource consumption. Based on the obtained results,
using the on-demand sensing approach with 30% of cars as participants in the sensing activity, and a six-criteria matching approach
yields a reduction of 73.8% in terms of network load and a reduction of 60.3% in terms of response time (when compared to the
continuous sensing approach), while achieving a traffic estimation accuracy of 81.71%.

Keywords: Sensing as a Service; Intelligent Transportation Systems; Traffic Estimation; On Demand Sensing; Road Condition
Monitoring.

1. Introduction

With the rapid widespread of smartphones that come embed-
ded with a variety of sensors (e.g. gyroscope, GPS, and ac-
celerometer), users now hold in the palms of their hands pow-
erful devices that can be used as personal sensing platforms en-
abling the collection of a wealth of contextual information. This
integration of sensing technology in mobile devices opens the
door for a new sensing approach and era [1]. Mobile devices
can act as super sensors that are readily deployed and can be
used to dynamically collect intelligence about cities. There are
two main mobile phone sensing paradigms: Participatory sens-
ing in which the user actively participates in the data collec-
tion and sensing activity; and opportunistic sensing that occurs
in a transparent automated manner without any user involve-
ment [1]. Furthermore, different sensing modes can be adopted,
namely: Sense-once, Event-based sensing, Time-based sensing
with expiry duration, and continuous sensing.
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Sensing technologies constitute one of the key enablers of
Intelligent Transportation Systems (ITS). In fact, ITS rely on
communication and sensory technologies along with data pro-
cessing and analysis techniques to improve the safety, effi-
ciency, and productivity of transportation systems [2]. Typ-
ical ITS applications include traffic management, road safety
applications, and route planning applications. The collection
of real time traffic and road conditions constitutes an impor-
tant challenge in such applications. Conventional methods for
the collection of such information typically relied on infrastruc-
ture sensors such as surveillance cameras and inductive loops,
which may not be always available and involve high deploy-
ment and maintenance costs [3]. Recently, the idea of using
mobile crowdsensing for the collection of traffic and road re-
lated information [4] has attracted attention in academic and
industrial forums. In this approach, regular users equipped
with sensor-enabled phones collaborate to sense data related to
phenomena of interest (e.g. traffic conditions and accidents’
occurrence) [5]. The reliance on the drivers carrying sensor-
embedded phones for the collection of traffic related informa-
tion brings important benefits. The first benefit pertains to the
easy on-demand deployment of a large-scale network of sen-
sors, since millions of mobile phones are carried everyday by
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vehicle drivers. Moreover, this approach leads to important
time saving and costs reduction with respect to traditionally de-
ployed specialized sensing infrastructures. Examples of mobile
crowdsensing systems used in the area of intelligent transporta-
tions include MIT’s CarTel [6] and Microsoft Research’s Neri-
cell [7]. These systems mainly adopt a continuous sensing ap-
proach in which data is continuously sampled from all cars on
all street segments (without the explicit involvement of users),
and then processed offline on the back-end server. However,
this imposes high energy-requirements on mobile devices, en-
tails significant overhead on the mobile communication infras-
tructure, and results in large amounts of data requiring process-
ing on the server. Furthermore, the opportunistic automated
data collection strategy adopted by such systems gives rise to
privacy concerns by mobile users, which may not wish to share
sensory data that reveals sensitive information about themselves
(e.g. their geographic location).

Moreover, in similar context, the connected vehicles tech-
nology [8] has emerged recently, which enables the commu-
nication between vehicles (i.e. Vehicle to vehicle) as well
as between vehicles and the roads’ infrastructure (i.e. vehi-
cle to infrastructure), using dedicated short range communica-
tions (DSRC) [9]. In [10], a traffic estimation for highway
was estimated using connected cars with and without being
equipped with Adaptive Cruise Control. However, despite
the merits of the connected vehicles technology [11] and its po-
tential use for safety and congestion management applications,
this technology presents certain limitations when compared to
the mobile crowdsensing technology. The first limitation per-
tains to the smaller market penetration rate of connected vehi-
cles (fore casted to reach 152 million connected vehicles sold
by 2020 [12]), when compared to the massive and pervasive
market penetration of smart-phones that have passed the 2 bil-
lion device mark in 2016 and are expected to reach 2.87 bil-
lion in 2020 [13]. In fact, the effectiveness of ITS relying on
sensory technology depends on the sufficient penetration of the
technology in streets, a fact that cannot be currently guaranteed
with connected vehicles, but can be easily achieved with smart-
phones. Furthermore, smart vehicles [14] currently face limita-
tions in terms of their communication and sensing capabilities,
under adverse weather conditions.

Recently, the Mobile Sensing as a Service (MSaaS) ap-
proach has been emerged [15, 16], in which mobile devices and
users willingly participate in the sensing process and offer their
phones’ sensory data collection capabilities as services to other
users. This approach is very promising to address the aforemen-
tioned issues, and to the best of our knowledge, none of the pre-
vious related works consider it in ITS solutions. In this work,
we propose a novel vehicular sensing framework enabling on-
demand road condition monitoring in efficient and flexible man-
ner. Unlike existing solutions that rely on opportunistic contin-
uous sensing from all cars available, we advocate participatory
on-demand sensing from a selected number of cars that can of-
fer a high quality of sensed information. In the proposed frame-
work, status and traffic data sensed about any region of interest
would occur on demand, when triggered by a sensing request.
Once the sensing request is received by the sensing platform

from a data consumer, the set of targeted users acting as data
collectors will be determined by the platform based on a pro-
posed multi-criteria matching algorithm that takes into account
the collectors’ presence in the region of interest, their phones’
sensing capabilities, the users’ willingness to participate in the
sensing activity, the users’ reputation, the phones’ battery level,
and the accuracy of the data they provide. Once the sensed data
is received from the targeted data collectors, the sensing plat-
form relies on a traffic estimation algorithm to estimate the traf-
fic condition, which is sent in the form of a traffic report to the
user who sent the original sensing trigger request. More inter-
esting scenarios could be enabled by the concept of on-demand
vehicular sensing as a service such as ”On-Demand Accident
Scene Intelligence Gathering” and ”On-Demand Road Condi-
tion Monitoring”. Accident scene such as stationary cars, in-
juries and Road status such as traffic level, snow removal con-
ditions, potholes in streets, fog or bad weather conditions, road
redirection can be collected on demand by the sensing platform,
analyzed and then provided as a report to the user triggering the
sensing request. It should be noted that the messages exchanged
between the platform and the users (acting as data collectors
and data consumers) is conducted using RESTful web services
communication interfaces which we defined for our framework.

In order to study the performance of our vehicular platform
and compare the on-demand sensing approach to the traditional
continuous sensing approach, we combined prototyping and
simulated traffic traces to build a proof-of-concept prototype of
the system. Furthermore, we conducted extensive experiments
in which different parameters were varied, such as: the traffic
conditions on the road, the matching criteria used for partic-
ipants’ selection, the number of sensing requests received by
the platform/hour, the frequency of voluntary data publication
requests, and the percentage of cars participating in the sens-
ing activities. Four main performance metrics were measured
using various test cases, namely: The traffic estimation accu-
racy, the participants’ selection accuracy, the system’s response
time, and the system’s network load. This comparative perfor-
mance analysis gives interesting insights on the contributions
and benefits of an-demand participatory sensing approach, and
the trade-offs that can be achieved between the data collection
frequency, the percentage of cars participating in the data col-
lection activity, the traffic estimation accuracy, and the system’s
performance.

In summary, the main contributions of our participatory on-
demand sensing framework are five folds:

• High Traffic Estimation Accuracy: Our proposed approach
is able to successfully infer the traffic status in all the tested sce-
narios. The experimental results show that the estimation error
% decreases from 17.82% for 10 sensing requests received/hour
to 2.9% for 10000 sensing requests received/hour in the on-
demand approach. Such results are comparable to the standard
continuous approach, in which the estimation error decreases
from 17.7% for data voluntarily published each 10 minutes to
5.9% for data published each 30 seconds.

• Reduced Resource Consumption: Due to the fact that the
number of cars involved in on-demand sensing is reduced to a
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selected set of cars present in the area of interest, chosen based
on several selection criteria, and approached on need basis only
(instead of continuously publishing their information), impor-
tant reductions in the amount of generated network load, en-
ergy consumption on mobile devices, and amount of data re-
quiring processing on the server can be achieved. Moreover,
our proposed approach strikes a balance between traffic estima-
tion accuracy and resource consumption. This is achieved by
using contextual information and a multi-criteria participants’
selection approach to select the smallest number of data col-
lectors that can provide the best quality of sensed data, in or-
der to maintain a good traffic estimation accuracy and an im-
proved system performance (i.e. lower response time and net-
work load).

• High Quality of Sensed Information: Our approach relies
on a multi-criteria selection approach that enables the achieve-
ment of a high Quality of sensed information, by selecting the
best candidates yielding the highest quality records satisfying
multiple quality of information criteria. This participants’ se-
lection approach leads to more accurate traffic estimation re-
sults.

• Users’ control over their devices related information: Our
participatory sensing approach offers more control to mobile
phone users over the sensed data collected using their devices,
since users can accept or deny a sensing request. This is not the
case in opportunistic continuous sensing which is typically per-
formed systematically, without the involvement/consultation of
users.

• Flexible and Individual Sensing as a Service Operations:
Our approach allows more flexibility and availability of data in
any area of interest through direct individual agreements with
the user (i.e. no need for agreements with transportation and
telecommunication authorities), by tapping into the sensing ca-
pabilities of millions of mobile phones deployed across the glob
to obtain traffic conditions on any street of interest.

The rest of the paper is organized as follows: Section 2 dis-
cusses the related work. Section 3 details the proposed vehic-
ular sensing framework. Section 4 is dedicated to the descrip-
tion of the proposed traffic estimation and participants’ selec-
tion models. This is followed by the prototype and implemen-
tation in section 5 and the experimental results in Section 6. We
end the paper with our conclusions, in Section 7.

2. Related Work and Problem Statement

Several works on sensing for the continuous collection of
traffic and road related information have been recently carried
out. In this approach, a group of users having sensor-enabled
devices (e.g. mobile phones, GPS readers) collectively sense
relevant data to estimate the traffic condition in a specific area
of interest. Moreover, there is a rich literature providing traffic
estimation approaches that rely on specialized sensing devices
embedded into Intelligent transport infrastructure. In the fol-
lowing, we elaborate the main related approaches in addition to
the technical problem statement at the end of the section.

In [17], the authors proposed the use of GPS and accelerom-
eter data for the detection of traffic conditions, abnormalities,
and potholes on roads. This approach consists of five com-
ponents: smartphones, a local database (for temporary stor-
age of data), open wireless networks, a server hosting a central
database, and open street maps. The sensed data is sent to a
heuristic algorithm that analyzes it and produces roads’ traffic
status. Herring et al. [18] proposed a solution that targets traffic
conditions on highways. The model consists of one physical
component which is the GPS, and three cyber components: a
cellular network operator, cellular phone data aggregation and
traffic service provision, and traffic estimation algorithms. In
this approach, data is collected using mobile phones on specific
trajectories called virtual trip lines. This data is sent to a server
that aggregates it and sends it to the Ensemble Kalman Fil-
tering based traffic estimation algorithm. In [19], Thiagarajan
et al. proposed an approach to overcome energy consumption
and inaccurate position sampling challenges by using a Hidden
Markov Model (HMM) that depicts the trajectory of a vehicle
over a portion area in the map. They performed map match-
ing in order to estimate the travel times of the traversed road
segments. In [7], Mohan et al. proposed a solution called Neri-
Cell that focuses on the sensing component such as accelerom-
eter, microphone, GSM radio, and GPS sensors. They used In-
telligent Traffic System that needs dedicated sensors in streets
and cars. This solution consists of a system of rich monitor-
ing of road and traffic conditions that piggybacks on smart-
phones and calculates roads’ traffic status using vehicles’ ac-
celeration data. Herreraa et al. proposed two data gathering
techniques (spatial and temporal) in [20]. Spatial sampling im-
plies that equipped vehicles report their information (position,
velocity, etc..) at specific time intervals T regardless of their
positions, while temporal sampling implies that the vehicles re-
port their information as they cross some spatially defined sam-
pling points. In this approach, data is collected from mobile
devices (Nokia N95) every 3 seconds, then the instantaneous
velocity is measured at the same rate, and these data will form
a rich history of data used for traffic estimation. Also, they tar-
geted and solved the privacy aspect concerning the identity of
the users. Recently, the authors in [21] proposed a distributed
peer-to-peer approach to traffic estimation. In this approach, a
car uses V2V communication to collect position and velocity
related data from nearby cars. The data collected is sparse data
in the form of floating car data snapshots and the Underwood
traffic-engineering model based on density is used for traffic
condition estimation.

In another context, the following proposed approaches
were focusing on the importance of sensing as a service by
mobile phone sensors: Ban and Gruteser, in [22], focused
on two important issues. The first one is fine-grained urban
traffic knowledge extraction, while the second is the privacy
protection scheme. They provided a comparison between the
primary way of collecting through fixed-location sensors and
the newly suggested one through the mobile phones sensors.
Based on their claims, collecting data through fixed-location
sensors costs a lot and is not an efficient way in order to
predict traffic efficiently, while collecting and extracting data
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through mobile phones will greatly benefit the urban traffic
prediction applications in terms of performance. This type of
collecting data can provide detailed behaviors and continuous
trajectories of the vehicles. In [23], Khan et al. conducted a
survey that talks about the different monitors and usages of
mobile sensing which are: health, traffic, environment, social,
special purpose, human behavior, and commerce. It mainly
distinguishes between two types of urban sensing. The first
type is the participatory, while the second is the opportunistic.
In both types of sensing, the solutions implemented are
divided into three main parts: personal, public, and social.
In each of the solutions, authors emphasize the used type of
sensors, hardware and software description, communication
modules, and applications. In [24], Das et al. did not target
the traffic estimation on roads problem, rather they focused
on the community sensing (participatory and opportunistic).
They focused on the community sensing which targets the
embedded sensors on the mobile phones such as GPS, camera,
audio, accelerometer, and GSM. The main goals of their
paper are to ensure (1) generality by supporting a wide range
of applications with flexibility of reusing existing code, (2)
security by ensuring that the participating phones belonging
to individual users remain secure and that the applications do
not misuse sensitive sensor information, and (3) scalability
by allowing the system to scale to a large number of nodes
without placing an undue burden on the infrastructure itself.
In [25], Placzek focused on the idea of reducing the amount
of data transmitted through Vehicular Sensor Network in order
to control the roads traffic. Instead of periodically requesting
sensed data from vehicles, the proposed approach specifies
time moments when the queries should be sent. The selected
time moments are characterized by the uncertainty of traffic
estimation, and in this case, new traffic data is requested.

Problem Statement: All the aforementioned mobile sensing
related approaches rely on continuous or periodic sensing of
road and traffic data, which entails the following problems:

• High energy consumption on mobile devices due to the con-
tinuous sensing from the relevant sensor such as GPS, ac-
celerometer, etc.

• Communication overhead on mobile infrastructure due to (1)
continuous data sensing from each vehicle and (2) data collec-
tion from all the vehicles without any filtering/selection criteria
during collection. All the customizations performed by these
approaches are done at the server side, i.e. during traffic analy-
sis after collection. The impact of this problem will potentially
increase with the fast emergence of Internet of things that will
overhead the mobile infrastructure, reaching around 29 Billion
connected devices by year 2022 [26].

• High processing overhead and full availability of road data
since the current traffic analysis models and algorithms are de-
pendent on continuous and complete data collection from all
vehicles in order to estimate the mean speed, density, and flow.

In order to address the aforementioned problems, the pro-
posed framework offers on-demand and upon need data collec-

tion gathered based on several selection criteria such as avail-
ability, location, need, etc. To the best of our knowledge, none
of the current approaches in the literature have targeted the
aforementioned problems and addressed on-demand sensing in
the context of ITS and traffic estimation.

3. Vehicular Sensing Framework Overview

Figure 1 depicts the high-level architecture of the proposed
vehicular sensing framework. Our system encompasses three
main roles: Data consumers interested in the acquisition of
sensed data related to a particular area of interest within the
city (e.g. provide me with traffic conditions or snow clearance
conditions on road X); data collectors offering their phones’
data collection/sensing capabilities as services to other users;
and vehicular sensing platform acting as intermediary and data
broker between consumers and collectors. The vehicular sens-
ing platform receives sensing requests from data consumers
and matches those requests with the most suitable data collec-
tors based on some selection criteria. Afterwards, the platform
sends the sensing request to the chosen data collectors through
the matching model, who can either accept or reject it. Those
who accept the request would perform the required sensing task
and send the sensed data to the vehicular sensing platform,
which is responsible of validating, aggregating and processing
it through the relevant model and algorithms, and then send-
ing the reply to the requester. The communication between the
different roles can occur either using mobile communication in-
frastructures (e.g. 3G/4G mobile networks) or over public WiFi
hotspots if available (e.g. in smart cities).

3.1. Components Description

We now describe the functions performed by our system’s
entities in more detail:

• Data Consumer: The data consumer is a user who is inter-
ested in sensing services. To access those services, the data con-
sumer interacts with the vehicular sensing platform through a
gateway application to discover the sensing communities avail-
able. Once subscribed to a sensing community, the data con-
sumer can discover and subscribe to (all or some of) its as-
sociated services. An example of a sensing community could
be ”New York city drivers” and examples of sensing services
are ”Traffic condition monitoring service” and ”Snow clearance
notification service”. After subscribing to sensing services, a
data consumer can send a sensing trigger to the vehicular sens-
ing platform by specifying the requested data type and sensing
mode (i.e. sense once, event-based sensing, or continuous sens-
ing), as well as the geographical area of interest.

• Data Collector: A data collector is a user equipped with a
sensor-enabled mobile device, and who is willing to offer its
data collection capabilities as services to other users. The mo-
bile device should host a sensing gateway application enabling
the interaction with the vehicular sensing platform. To offer
sensing services, a data collector must first subscribe to become
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Figure 1: High Level Vehicular Sensing System Architecture

part of a sensing community. After subscription, the data col-
lector periodically publishes his/her availability to the sensing
platform (e.g. available, busy, and away) to indicate willingness
to participate in sensing activities. The data collector’s sensing
gateway application should support a number of functionalities,
including: handling sensing trigger requests from the platform;
allowing the user to initiate sensing without trigger (i.e. offer-
based sensing) and send the captured data to the sensing plat-
form; ability to collect requested data from embedded sensors;
supporting some information processing and formatting capa-
bilities; providing Geo-temporal tagging of the sensed informa-
tion; scheduling of sensing tasks; and management of sensing
sessions based on received requests.

• Vehicular Sensing Platform: The vehicular sensing plat-
form constitutes the key entity in our architecture. It acts as
intermediary between data consumers and data collectors by
matching sensing requests (in real time) with the most suitable
data sources, and offers information management and data bro-
kerage capabilities. To achieve that role, the vehicular sensing
platform consists of a number of modules, namely: communi-
cation, request handling, storage, validation, matching, iden-
tification, traffic estimation, analysis and reporting, and com-
munity membership modules. The communication module is
responsible of creating the communication messages (requests
and responses) exchanged between the platform and the users.
The request handler is responsible of identifying the type of
message received and forwarding it to the appropriate module
for further processing. The storage module is responsible for
storing sensing activities related information. The validation
module is responsible of the pre-processing of the collected
information to detect inconsistencies and calibrate data. The
matching module is a key module implementing a matching al-
gorithm that relies on certain criteria (e.g. location and avail-
ability of data collector, data collection capabilities, data ac-
curacy, available battery level, and user’s reputation) to match

sensing requests with the most suitable set of data collectors.
The identification module is responsible of assigning unique
IDs to the sensed entities, the sensing services offered, as well
as users’ roles in the system. The traffic estimation module
processes the raw sensed data and produces traffic status in-
formation based on the proposed traffic estimation model and
algorithm. The analysis and reporting module is used in some
scenarios to generate advanced reports from collected data (e.g.
accident scene summary reports). Finally, the community mem-
bership module keeps track of sensing communities, their re-
lated sensing services, as well as their subscribed users. We
provide in the following sections the technical details of the
models and algorithms deployed in the sensing platform.

3.2. Web Service based Communication Module
The communication module in the sensing platform is re-

sponsible of handling the messages among the system entities.
In the following, we present in details the type of the exchanged
messages. In our vehicular sensing system, the communication
between the components should be flexible and light weight
since the platform supports multiple sensing requests and han-
dles their response in parallel. Therefore, we select RESTful
[27] as it is the best to work for mobile Web services and web-
based applications. Representational State Transfer (REST) is
an architectural style where data is considered as resources and
accessed through Uniform Resource Identifiers (URIs).

Each entity in our system is thus considered as a web service
that communicates through REST APIs. The exchanged mes-
sages, illustrated in Table 1, use the HTTP protocol and its most
commonly used operations: POST, GET, PUT, and DELETE.
POST creates a new resource and its URI will be automatically
generated. GET reads the information about the resource in an
appropriate representation. PUT updates the resource that can
be deleted through DELETE. In the proposed model, our data
set consists of Sensing Sessions split into four resources: ”Sens-
ingSession”, ”DataConsumer”, ”DataCollector” and ”Traffi-
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Resources
URI
Base URL:
http://VehicularSensing.com

HTTP
action/description

Sensing
Session

/SensingSession

/SensingSession
/{SensingSessionID}

POST: create a new sensing
session
GET: get all sessions

GET: retrieve a session. PUT:
update a session. DELETE:
terminate a sensing session

Data
Consumer

/DataConsumers
/{DataConsumerID}

GET: get info about a data con-
sumer. PUT: update a data con-
sumer info. DELETE: remove
a data consumer from a session

Data
Collector

/DataCollectors

/DataCollectors
/{DataCollectorID}

POST: create a new data collec-
tor GET: get all data collectors

GET: get info about a data
collector. PUT: update data col-
lector’s status info. DELETE:
delete a data collector

Traffic
Report

/SensingSession /SensingSession
ID/traffic

GET: get traffic report related to
a sensing session PUT: update
traffic report info. DELETE: re-
move a traffic and dissociate it
from session

Table 1: Web Services Communication Interfaces

cReport”. Each SensingSession has one DataConsumer willing
to get the traffic status of a particular road and a set of DataCol-
lectors located on the specified road and a TrafficReport gen-
erated after processing the sensed data. The ”SensingSession”
resource is identified by the URI ”http://VehicularSensing.com/

SensingSessions/SensingSessionID” where SensingSessionID
is the unique identifier of the Session. The ”DataConsumer”
is identified by ”http://VehicularSensing.com/DataConsumers/
DataConsumerID” where DataConsumerID is the identi-
fier of the requester. The ”DataCollector” is identified
by ”http://VehicularSensing.com/DataCollectors/DataCollector
ID”. The ”TrafficReport” is identified by ”http://Vehicular
Sensing.com/SensingSessions/SensingSessionID/traffic”. Ta-
ble 1 summarizes also the URIs used in column 2, along with
their operations in column 3 in order to access each resource
found in the first column.

It should be noted that the data encompassed in the differ-
ent HTTP messages and exchanged between the client and the
server is formatted as XML documents. For instance, when a
POST message is used to create a new sensing session, the data
encompassed in this message sent from the client to the server
is as follows:
<sensingSensing>

<dataType>traffic condition</dataType>
<sensingMode>sense once</sensingMode>
<areaofInterest>
<country>Canada </country>
<city>Montreal </city>
<street>Peel</street>

</areaofInterest>
<expiryTime>10-APR-17 15:30</expiryTime>

</sensingSession>
whereas the response sent back to the client contains a uniquely
created session ID and identifier for the sensing session, such
as:
”http://www.VehicularSensing.com/SS1357@CA-10042016”

4. Participants’ Selection and Traffic Estimation Models

The key models in our Vehicular Sensing platform are the
matching/participant selection model and the traffic estimation
model. We focus in these models on the scenario where a data
consumer sends a sensing trigger request to the sensing plat-
form, with the following parameters: Data type = traffic con-
dition; sensing mode = sense once; Area of interest = name of
street on which sensing is required. Once the user sends the re-
quest, the server first runs the algorithm realizing the Matching
model to retrieve the most suitable set of data collectors along
with their sensed data. Then it runs the algorithm implementing
the Traffic Estimation model to process the raw sensed data and
predict the traffic status. All the notations of the used formulas
in these two models are illustrated in Table 2.

Variable Description

R The desired road from which the traffic condition is in-
ferred

R’ An adjacent road heading toward R
R” An adjacent road heading from R
poss

l Last position of sensor s at time t1
poss

cur Current position of s at time t2
s.avail The availability of s
s.rep The reputation of s
s.capab The capability of s
s.dataAcc The data accuracy of s

Table 2: Formulas Notations

4.1. Matching and Participants’ Selection Model
The matching model is needed to retrieve the appropriate set

of collectors whenever the platform’s server receives a sensing
request. In this context, several models have been advanced
to select the suitable set. The participatory sensing framework
proposed in [28] selects the social sensors and enables to share
data based on their availability, trust and energy. To predict the
user location and estimate his availability, an algorithm called
Dynamic Tensor Analysis (DTA) is adopted since the user his-
torical trajectory is known through his daily routine. All users
with similar trajectories are clustered in ’Friends-Like Social
Sensors’ group where only one is selected to avoid the same
data collection from multiple participants. The same concept
has been proposed in [29] on how to choose the best set from a
huge number of collectors and retrieve sensing data from them.
The model focuses on finding not only the best set but also the
minimum number of participants in the set that covers a given
area of interest and satisfies certain constraints. The sensing
requests can be sent at any time and handle both temporal and
special requirements. The authors in [30] cover a certain area
of interest based on the budget constraint by focusing on the
scenario where the entire targeted region is divided into several
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sub-regions. The participants in each sub-region set specific
prices in order to respond to the sensing requests and thus the
system picks the ones with lowest prices to maximize the num-
ber of collectors. Some interpolation methods could be used in
case the incentive budget is not sufficient or no collectors are
located in the desired sub-region. In [31] and [32], the data
consumer sends sensing tasks to the system server where sev-
eral requirements are associated to the tasks such as the sensing
area, time, data granularity and quantity. The proposed selec-
tion models in [31] and [32] allow to gather the maximum num-
ber of sensory collectors while minimizing the consumption of
energy for all the participants. However, all of them did not
target ITS and Traffic condition monitoring, which limit their
relevance to our approach. Moreover, they are missing many
important criteria needed for a traffic decision model.

In this context, we propose in the sequel a new matching
model that considers several criteria for selecting the minimal
set of sensing vehicles. The first criterion is the geographic lo-
cation of the targeted collectors, which takes into consideration
two cases; in the first one the data is collected from the cars lo-
cated on the targeted road, while in the second where the data is
collected from the cars that are heading toward the desired road
and will eventually be located on it after a certain time frame.
In order to find out the position of each participating collector
without nullifying the on-demand sensing concept, each data
collector must share periodically its recent sensed data with the
server. Accordingly, the first case can be calculated since both
the positions of the participating nodes and the road coordinates
are predefined. However, concerning the second case, we deter-
mine a bounding circle around the middle of the targeted road
and take the nearby streets that fall in this circle area based on
the map topology. All cars located on the nearby streets are
then added to the set of data collectors. The second criterion
in the matching is the availability of the user. The status of
the user is checked whether available or not to recognize if he
is willing to participate in the sensing activities. At the time
a user sends a non-availability, the server should not consider
him in the set of collectors even if he is located in the desired
area of interest. The third criterion is the battery level of the
users’ mobile phone. If the phone battery level of a user is less
than or equals to 20%, then our matching approach assumes
that the mobile phone is not capable of sending/receiving any
form of data to/from the server and thus the user is not in the
appropriate set of collectors. The fourth criterion is the user’s
reputation, which helps to improve the performance of the
platform. Every time a user participates in a data collec-
tion activity, we compare his response with the actual traf-
fic condition to recognize if he misbehaved or not. Accord-
ingly, users with bad reputation are excluded from further
involvement in the traffic monitoring activities to not reduce
the accuracy of our results. Moreover, users should be mo-
tivated to behave correctly [33, 34, 35] and guarantee their
participation in the coming sensing activities with high rep-
utation. Therefore, we made the bad performance of the
user as data collector affects him negatively when taking
the role of a consumer. When intending to request a traf-
fic condition for his benefit, the user will be consequently

prevented from any request. The fifth criterion is the sensing
capabilities of the user. This is useful in the general case where
the user is sensing data related to temperature, CO2 level, or
any other type of information. We need to check if the user is
capable of sensing such type of data since not all the phones
embed variety of sensors. The sixth and final criterion is the ac-
curacy of the data sent by the user based on the type of the used
sensor. For instance, the data collected using GPS is considered
more accurate than the one collected using Wi-Fi.

In the sequel, we present the model combining all the afore-
mentioned criteria followed by its corresponding algorithm (Al-
gorithm 1). All the participating sensors S with total size n are
first selected as input to find the initial Sinit defined by

S init =

n∑
s=1

(poss
l ∈ R ∨ poss

l ∈ R′) ∧

(s.avail == true) ∧ (s.rep == high) ∧

(s.capab == true) ∧ (s.dataAcc == good)

(1)

where Sinit set holds all the sensors which their last position
poss

l at time t1 was either on R or heading toward R, and are
characterized by the following properties: are available, have
high reputation, capable to sense the required data, and have
good data accuracy. Let t1 be the time when the participants
shared the last sensed data with the server just before receiving
a traffic request from a consumer and t2 be the request time.

Since the server requires two recent sensed data for the
collectors to estimate the roads conditions, the server sends
sensing requests to each car in the list and gets their new
positions and speeds as response. Hence, once the collectors in
the set Sinit are found, the platform sends them sensed request
to collect the appropriate data in order to estimate the road
condition. The new set of sensors Sfinal collected after receiving
Sinit’ responses is defined by

S f inal =

S init.size∑
s=1

(poss
l ∈ R ∧ poss

cur ∈ R) ∨

(poss
l ∈ R ∧ poss

cur ∈ R′′) ∨

(poss
l ∈ R′ ∧ poss

cur ∈ R)

(2)

where set Sfinal contains the cars that are located on R at time
t2 and were located on R’ at time t1, the cars that are located
in the destination R at both t1 and t2, and the cars that were
found on the road R at t1 and becomes on its adjacent R” at t2.
Accordingly, the cars, heading toward the desired destination
and changed their directions, are removed from the list and the
rest will be sent to the traffic estimation module.

4.2. Traffic Estimation Model
Once the vehicular platform successfully performs the

matching process, the platform forwards the two sensed data
poss

l and poss
cur for each sensor s in the set of collectors S f inal

to the traffic estimation module in order to estimate the speed
on the specified road on which the traffic condition is inferred.
Since the sensors have varied positions on the map, some of
them may have poss

l located on the specified road, while others
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Algorithm 1 - Matching
1: Input: All cars si participating in sensing services
2: Output: Set of targeted cars Sfinal located in the specified destination
3: Construct a list Sinit: Ø for the estimated targeted cars
4: for each sensor si do
5: get si last position poss

l from the server’s database
6: if poss

l == onRoad ‖ poss
l == headingToRoad then

7: if si == available then
8: if batteryLevel ≥ 20% then
9: if reputation == high then

10: if capability == true then
11: if dataAcc == good then
12: add si to Sinit

13: Construct a new list Sfinal for the targeted cars
14: for each sensor si in S init do
15: send sensing request ri to si and get its current position poss

cur
16: if poss

l == onRoad && poss
cur == onRoad then

17: add si to S f inal

18: if poss
l == onRoad && poss

cur == outOfRoad then
19: add si to S f inal

20: if poss
l == headingToRoad && poss

cur == onRoad then
21: add si to S f inal

located on its adjacent roads, as the set of collectors encom-
passes the cars heading toward the desired destination. Simi-
larly, at time t2, when the server sends the sensing request to
the set of selected data collectors, the sensors’ poss

cur could ei-
ther be on the specified road or on its adjacent one in case it
left it. The distance of road traveled by sensor s is denoted as
ri(poss

l , poss
cur), which takes only the distance traveled within

the two intersections of the road without the adjacent links as
the data consumers ask for the condition of a specific road.
Knowing ri(poss

l , poss
cur) of each sensor si during the interval

(t1, t2), the server can compute their average speed vi defined
by

vi =
ri(poss

l , poss
cur)

(t1, t2)
(3)

The road condition represented by the mean speed is calculated
according to equation (4) [36]

vmean(t2) =

∑
s∈S f inal(t2)

[vi × ri(poss
l , poss

cur)]∑
s∈S f inal(t2)

ri(poss
l , poss

cur)
(4)

where the mean speed vmean of a particular road at the request
time t2 is a function of the length of the road traveled and cov-
ered by each sensor s in the final set S f inal, along with their av-
erage mobile speed. Note that this approach is widely used for
traffic speed estimation, and works under the assumption that
vehicles’ speeds are constant. Typically, the ground truth (vGT )
is calculated using video surveillance of real traffic, which is a
statistical measure that describes the entire traffic flow as fol-
lows

vGT (tk) =
l

1
|Ci(tk)| ×

∑
c∈Ci(tk) 4tc

(5)

We use visual observation of the traffic simulation to determine
a set of cars Ci(tk) that enter the road segment within a certain
time window (t1, t2) ⊆ (tk - τ, tk + τ), where tk is the chosen mo-
ment in time to calculate the ground truth and τ is a predefined
constant. For those set of cars, we calculated the time taken by
each one of them (4tc) to traverse the road segment of length l.
To determine the accuracy of the obtained results, we calculate

the estimation error using equation (6) that represents the abso-
lute value of the calculated mean speed minus the ground truth

Ē =| vmean − vGT | (6)

5. Prototype and Implementation

In order to validate our proposed solution, we combined pro-
totyping with simulation traces generated using VanetMobiSim,
which is a widely used traffic simulator that generates realistic
vehicular movement traces, based on macroscopic and micro-
scopic mobility models [37]. Instead of using real sensory data
collected using phones, we opted for simulation traces as it al-
lows the generation of a large set of data for our experiments
and enables the control of different parameters (e.g. roads’
topology, number of cars used, mobility model, and speed lim-
its on the roads). In our experiments, we used a macroscopic
mobility model that deals with properties such as traffic den-
sity, speed and flow.

5.1. Prototype software architecture

Figure 2 illustrates our prototype software architecture. The
prototype, which was implemented in JAVA, consists of three
main components: a data consumer node generating sensing
trigger requests; a vehicular sensing platform node matching
requests with collectors, managing the sensed data and esti-
mating traffic status; and data collector nodes responding to
the sensing requests and publishing their sensed data. Com-
munication between the different components is achieved using
REST APIs. To simplify the development of RESTful Web Ser-
vices, we have selected the open source Jersey framework [27]
that functions as a JAX-RS Reference Implementation [38], and
Grizzly Application server that deploys the web services. Each
component encompasses a PostgreSQL repository [39] to store
the relevant sensed data.

As shown in Figure 2, the data consumer is a node consist-
ing of a request/response handling module responsible of the
generation of sensing requests and the handling of responses; a
sensing session manager responsible of the tracking of the sens-
ing sessions and their status; and a local sensing data repository
(SDR) storing the collected data and the sensing sessions’ sta-
tuses.

The vehicular sensing platform is the main node in our pro-
totype. It consists of the following modules: a request/response
handler responsible of the processing of received requests and
responses; a validation and matching module implementing the
matching algorithm and validating the data received; a request
dispatcher and request queue responsible of queuing and dis-
patching requests to selected data collectors; a resource naming
module responsible of assigning IDs to sensed entities, sens-
ing services, and users; a publication engine handling voluntary
data publications from data collectors; a traffic estimation mod-
ule implementing the proposed traffic estimation algorithm; an
analysis and reporting module responsible of the generation of
advanced traffic reports from the collected data; and a sensing
data repository (SDR) storing the sensed data, the generated
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Figure 2: Prototype Components

traffic reports, the sensing sessions’ status as well as informa-
tion about data collectors and consumers.

Instead of hosting the data collector node logic on real mobile
devices, we used instances of the data collector nodes running
on one machine to simulate a large number of data collectors.
Furthermore, we used VanetMobiSim to simulate different traf-
fic conditions (i.e. the positions and speeds of the cars moving
on the simulated roads), and stored this information in a file that
was made accessible to the data collectors’ instances. This file,
which contains information related to all simulated car nodes,
is initially processed by each data collector node to retrieve
its specific information throughout the simulation lifetime, and
stored on a local DB on the node in question. This combination
of prototyping and simulated traffic data allows testing at differ-
ent scales, not to mention the control of the traffic parameters
that would not be possible with a real life prototype deployed
on smart phones hosted in moving vehicles.
To achieve the functionality of a data collector, each data col-
lector node consists of a request/response handling module re-
sponsible of receiving the sensing requests and publishing their
sensed data; a sensing data publication module responsible of
publishing the sensed data to the platform (either following a
trigger or voluntarily); a sensing session manager module re-
sponsible of the tracking of the sensing sessions and their status;
a scheduler module responsible of scheduling the processing of
multiple requests received from the platform; an info acquisi-

tion module responsible of the retrieval of the car position and
velocity sensed data (at that specific time instance) from the
PostgreSQL local database (the SDR) hosted by the data col-
lector node; an information processor module responsible of
processing and formatting the messages exchanged via REST
API between the vehicular sensing platform and the data col-
lector node; and a SDR that stores all the data collector posi-
tion/velocity information throughout the lifetime of the simula-
tion, to be used whenever the platform asks for data collection.
It should be noted that the information stored in the SDR is used
either to publish data voluntarily to the sensing platform with-
out any solicitation and trigger, or used to respond to sensing
requests by sending the vehicle’s velocity and position at cer-
tain time instance to the platform, thus covering two modes of
information publication (trigger based publication and volun-
tary publication).

5.2. Testbed Setup, Datasets, and Test Scenarios

As shown in Figure 3, the experimental setup consists of
three main components: One data consumer node triggering the
sensing requests, one vehicular sensing platform node respon-
sible of data and sensing requests/responses management and
implementing the matching and traffic estimation algorithms,
and one data collector management node that instantiates the
needed data collector instances and dispatches sensing requests
to the relevant ones. The used machines are equipped with Intel
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Figure 3: Testbed Setup

CoreTM2 Duo E6550, 2.33GHz processor and 4GB of RAM,
10000 RPM HDD, 100MBPS link and running Ubuntu 12.04
LTS.

To populate the raw data repository accessible to the data col-
lector instances, four data sets were generated using VanetMo-
biSim simulations. The simulation runs were configured to sim-
ulated four traffic conditions, namely: free flowing, moderately
congested, congested, and highly congested. Furthermore, in
order to compare our proposed on-demand sensing approach to
the traditional continuous sensing approach, two test scenarios
were used in our experiments as illustrated in Figures 4 and 5.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3. Sensing Request 

Data Consumer Vehicular 

sensing platform 

Data Collector 1 

Data Collector 2 

Data Collector n 

1. Sensing Request 

2. Matching/ 

selection 

` 

4. Sensing 

operation 

3. Sensing Request 

3. Sensing Request 

5. Sensing response 

5. Sensing response 

5. Sensing response 

6. Traffic 

Estimation 

7. Sensing Response 

. 

. 

4. Sensing 

operation 

4. Sensing 

operation 

Figure 4: On Demand Sensing Scenario

In the on-demand sensing scenario depicted in Figure 4, the
first interaction is triggered by the data consumer, which sends
a sensing request to the vehicular sensing platform asking for
the traffic condition in an area of interest (i.e. specific position
or street). The sensing platform will then run the matching al-
gorithm to get the list of suitable data collectors satisfying the
matching criteria and forward to them the sensing request. Each

data collector will perform the sensing operation (i.e. acquiring
its position and speed in that case) and sends the sensed infor-
mation as a response to the sensing platform. After receiving
the responses from all targeted data collectors, the sensing plat-
form will run the traffic estimation algorithm to estimate the
traffic speed/condition. This information is then used to build
a traffic report, which is sent by the sensing platform as final
response to the data consumer. 
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Figure 5: Continuous Sensing Scenario

In the continuous sensing approach depicted in Figure 5, the
sensing operation is performed in a continuous fashion by all
the data collectors, which publish their sensed information on
a regular basis to the sensing platform. When a data con-
sumer sends a sensing request to the platform, the latter uses the
sensed information previously published to estimate the traffic
condition using the traffic estimation algorithm, and then sends
the final response (i.e. the traffic report) to the data consumer.

6. Experimental Results and Discussion

6.1. Performance Evaluation Strategy and Metrics

The objectives of the experiments we conducted are to: (1)
assess the performance of the two main algorithms imple-
mented by the on-demand sensing platform (i.e. the matching
and the traffic estimation algorithms); (2) evaluate the overall
system performance including all the communications and pro-
cessing overhead; and (3) compare the performance of the on-
demand and continuous sensing approaches, using the two test
scenarios presented in figures 4 and 5.

To achieve those goals, a number of testing approaches and
performance metrics were used, as summarized in table 3. The
detailed analysis of the conducted tests will be presented in the
coming sections.

6.2. Algorithms’ Performance Evaluation

6.2.1. Traffic estimation algorithm
Figure 6 depicts the performance of our traffic estimation al-

gorithm, when applied to four types of roads: a free flowing

10



Test Category Performance Metric Description of how metric was
measured/calculated Test scenarios used

Traffic Estimation
Algorithm

- Mean speed
- Ground truth
- Traffic estimation Error

Mean speed: calculated using equation 4
Ground truth: calculated using equation 5
Estimation error: calculated using equation 6

Four scenarios were used:
1. Free flowing road 2. Moderately Congested road
3. Congested road 4. Highly Congested road.

Matching
Algorithm

Response time
Time needed for the matching algorithm to return the
set of selected cars located in the area of interest and
matching the specified matching criteria.

Four variants of the matching algorithm were tested by vary-
ing the dataset (i.e. the # of cars processed during the selec-
tion) and the matching criteria used. The four variants are: 1.
Six matching criteria (Proximity, availability, Data collection
capability, accuracy, battery level, reputation) 2. Four match-
ing Criteria (Proximity, availability, Data collection capabil-
ity, accuracy) 3. Three matching Criteria (Proximity, avail-
ability, Data collection capability) 4. Two matching Criteria
(Proximity & availability)
The dataset for each experiment was crafted in a way to show

the difference between the different matching criteria. For in-
stance, to highlight the effect of reputation as matching crite-
ria, we introduced malicious nodes that injected wrong data in
the data set nodes, which would be filtered out only if reputa-
tion is used as matching criteria. For accuracy, we introduced
data that is rounded and not very accurate. This approach al-
lows the differentiation between the different versions of the
multi-criteria matching algorithm, and to show the trade-off

between performance and accuracy.

Matching error %
Matching error %: calculated as # of cars selected by
algorithm / # of cars satisfying the matching criteria
(calculated manually) * 100

System
Load
Testing

Response time
Time from when sensing request (msg. 1 in fig. 4)
is sent until sensing response (msg. 7 in fig. 4) is
received.

Using the on-demand sensing scenario presented in Fig. 4,
we varied the number of requests sent by the data consumer
to the platform from 1 to 2000 requests, and measured the
systems response time and network load.

Network Load Size of packets exchanged for the end-to-end interac-
tion (between sensing request and sensing response)

System Data
Frequency Based
Testing -
Continuous
Sensing Approach

Response time
Time from when traffic condition request (msg. 4 in
fig. 5) is sent until traffic condition response (msg. 5
in fig. 5) is received.

Using the continuous sensing scenario presented in Fig. 5, we
varied the frequency of the voluntary data publications made
by data collectors to the platform, as follows: each 30 secs,
each 1 minute, each 5 minutes, and each 10 minutes. The fol-
lowing metrics were measured: response time, network load,
and traffic estimation error.

Network load
Size of packets exchanged for the end-to-end interac-
tion (between voluntary publication of data and traffic
condition response)

Traffic estimation error % Calculated using equation 6

System Data
Frequency Based
Testing - On
Demand Sensing

Response time
Time from when sensing request (msg. 1 in fig. 4)
is sent until sensing response (msg. 7 in fig. 4) is
received.

Using the on-demand sensing scenario presented in Fig. 4,
we varied the number of received sensing requests/hour by
the platform, as follows: 10 requests/h, 100 requests/h, 500
requests/h, 1000 requests/h, and 10,000 requests/h The fol-
lowing metrics were measured: response time, network load,
and traffic estimation error.

Network load Size of packets exchanged for the end-to-end interac-
tion (between sensing request and sensing response)

Traffic estimation error % Calculated using equation 6

Participation %
Based Testing

Response time
Time from when sensing request (msg. 1 in fig. 4)
is sent until sensing response (msg. 7 in fig. 4) is
received.

Using the on-demand sensing scenario presented in Fig. 4, we
varied the % of cars participating in the sensing activity and
to see the impact on the accuracy of the results. The % of tar-
geted cars was varied from 100% of cars (continuous sensing
case), to 70%, to 50%, to 30%, to 10%. The following met-
rics were measured: response time, network load, and traffic
estimation error.

Network load Size of packets exchanged for the end-to-end interac-
tion (between sensing request and sensing response)

Traffic estimation error % Calculated using equation 6

Quality of Sensed
Information Test-
ing

Traffic estimation error Calculated using equation 6

Using the on-demand sensing scenario presented in Fig. 4, we
varied the % of cars participating in the sensing activity (from
100% to 10%) as well as the matching criteria used (using 6,
4, 3, 2, and 1 matching criterion) in order to study the impact
of the selection criteria on the Quality of sensed information
& traffic estimation accuracy. The traffic estimation error was
measured in that case.

Table 3: Testing Strategies and Metrics

road, a moderately congested road, a congested road, and a
highly congested road. For each scenario, we calculated the
estimated mean speed, the ground truth for the road, and the
traffic estimation error, as shown in the figure. By analyzing
the obtained results, we notice that the mean speed estimation
method yields more accurate results in the free flowing roads
than in the more congested road, with an estimated mean speed
of 39 Km/h on a road with a ground truth of 30.26 Km/h (for the
free flowing case), vs. an estimated mean speed of 6.39 Km/h
on a highly congested road with a ground truth of 3.16 Km/h.
Another observation is that the mean speed method resulted in
speed over-estimation in both congested and uncongested con-

ditions. In absolute vehicular speed terms, the obtained traffic
estimation results are very good since we are more interested in
the traffic status (i.e. free flowing, moderately congested, con-
gested, and highly congested) rather than the actual speed on
the road. Thus, since the estimated traffic mean speed values
were close to the ground truth values on the tested roads, the
correct traffic condition was inferred in the four tested scenar-
ios.
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Figure 6: Traffic estimation results

6.2.2. Matching algorithm
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Figure 7: Performance for six/four/three/two criteria of matching algorithm

Figure 7(a) shows the performance of the multi-criteria
matching algorithm, when all six selection criteria (i.e. avail-
ability, proximity, data collection capability, accuracy, battery
level, and reputation) are used for participants’ selection. In this
experiment, the number of cars on the road, which were pro-
cessed during the matching varied from 50 cars to 1000 cars.
As expected, when the number of cars available on the road
increased (i.e. the size of the dataset increased), the number
of targeted collectors matching the selection criteria increased.
For instance, when the number of cars on the road is 50, the
number of selected data collectors is 4, while when there were
1000 cars on the road, the number of targeted collectors rose
to 80. Examining the performance of the 6-criteria matching
algorithm, we observe that the algorithm yielded good results,
by selecting 4 out of 4 eligible cars for a dataset of 50 cars (i.e.
matching error percentage of 0%), and 10 out of 11 eligible
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Figure 8: Load testing results for on-demand sensing platform

cars for a dataset of 100 cars (i.e. matching error percentage
of 10%). We notice that the matching error % increases with
an increase of the size of the cars datasets processed. For in-
stance, when the dataset consisted of 800 cars, the number of
selected cars was 37 out of 52 eligible cars (i.e. a matching
error percentage of 29%). As for the matching algorithm’s re-
sponse time, it varied between 220 ms in the case of 50 pro-
cessed cars to 296 ms when 1000 cars were processed, which is
an acceptable performance that would bear minimum impact on
the end-to-end system response time. The other variants of the
multi-criteria matching algorithm exhibit a similar performance
from response time and matching error %, as shown in figure
7(b), (c) and (d). It should be noted that in some scenarios,
small delay from the data collectors’ side may occur when
specifying their locations and sending their responses back
to the server. However, not to affect the waiting time of the
requester, we set a threshold for the collectors’ responses
and we neglect any reply that comes after. Such delay in
figure 7(b) is around 65 milliseconds, which is considered
relatively small.

6.2.3. System’s Performance Evaluation
A. Load Testing:

In order to evaluate the behavior of the on-demand sensing
system under variable loading conditions, we conducted some
load tests using the test setup shown in figure 4. Figure 8 shows
the obtained load testing results.

As shown in figure 8, the on-demand sensing system shows
a logarithmic growth pattern in terms of response time, which
ranged from 1.52 s for 1 sensing request to 20.9 s for a 2000
sensing requests. The response time is affected by four main
operations related to on-demand sensing, namely: the multi-
criteria participants’ selection process; the waiting time re-
quired to receive sensed data from the targeted participants;
the concurrent access to platform’s DB for storage of different
pieces of sensed data; the traffic estimation process and gener-
ation of traffic reports. The logarithmic growth pattern can be
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explained by the fact that at the beginning, data collectors need
to be contacted to satisfy the sensing requests. However, as the
number of sensing requests related to a certain area increases,
the need for contacting data collectors diminishes, since fresh
data is already available in the system and can be used directly
for traffic estimation.

As for the generated network load, it showed a polynomial
(quadratic) growth pattern with values ranging from 120 KB
for 1 sensing request to 21689 KB for 2000 sensing requests.
The network load’s growth pattern can be explained by the fact
that the more sensing requests are received, the more data col-
lectors are targeted which multiples the number of messages
exchanged through the system.

B. Data-Frequency Based Testing in On-Demand vs Con-
tinuous Sensing:

In order to compare the on-demand and continuous sens-
ing approaches, we conducted data frequency based testing in
which we varied the sensing frequency (i.e. the number of sens-
ing requests received per hour by the on-demand sensing plat-
form and the number of voluntary publications made in contin-
uous sensing mode) and measured the response time and net-
work load generated in both cases. The presented results in
Figures 9 and 10 illustrate clearly the benefits of the proposed
on-demand approach in terms of traffic overhead and network
load compared to the continuous, while maintaining very close
traffic estimation accuracy in both of them.
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Figure 9: Data frequency based testing results for on-demand sensing approach

Figure 9 shows the data frequency based testing results for
the on-demand sensing approach in terms of network load, re-
sponse time, and traffic estimation accuracy (error %) as a func-
tion of the average number of received sensing requests/hour.
As shown in the figure, the on-demand sensing system shows
a logarithmic growth pattern in terms of response time, which
increases from 15.264 s to 30.165 s as the average number of
received sensing requests per hour increases from 10 to 10000.
This growth pattern can be explained by the fact that the more
requests are received per hour, the more fresh data is available
in the platform, which can be reused to answer subsequent re-

quests without the need to resort to data collectors. Further-
more, in some cases, the current traffic status reports may be al-
ready available in the system due to many requests in the same
area, which will decrease the response time to the new data con-
sumers requesting traffic conditions in the same area. On the
other hand, the system’s network load exhibits a polynomial
(quadratic) trend line, ranging from 340 KB for an average of
10 sensing requests received/hour up to 3568 KB for an aver-
age of 10000 sensing request received/hour. This polynomial
increase is attributed to the additional number of data collec-
tors required for new requests, thus generating additional traffic
load. As for the traffic estimation accuracy, we notice that as
the average number of sensing received by hour increases, the
traffic estimation error % decreases, dropping from 17.82% es-
timation error for 10 sensing requests received/hour to 2.9%
estimation error for 10000 sensing requests received/hour. This
can be explained by the fact that the more requests are received,
the more data points are collected about a certain area, and the
more accurate the traffic estimation results will be.
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Figure 10: Data frequency based testing results for continuous sensing ap-
proach

On the other hand, Figure 10 shows the data frequency based
testing results for the continuous sensing approach in terms of
network load, response time, and traffic estimation accuracy
(error %) as a function of the voluntary data publication fre-
quency. Similar to the on-demand sensing case, in the con-
tinuous sensing case, we notice that the traffic estimation er-
ror decreases with the increase of the voluntary data publica-
tion frequency, dropping from an estimation error of 17.7% for
data voluntarily published each 10 minutes to an estimation er-
ror of 5.9% for data published each 30 seconds. On the other
hand, the network load follows a polynomial (quadratic) growth
curve, which is expected with the increase in the number of data
publication messages associated with an increased publication
frequency (i.e. from each 10 minutes to each 30 seconds) . Fi-
nally, we notice that the response time remains constant with
respect to the voluntary data publication frequency. This is due
to the fact that when the platform receives a traffic condition
request, it uses the data previously published in the system to
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estimate the traffic and send the final response. Therefore, the
data publication frequency bears no effect on the response time
in the continuous sensing case.

C. Participation Based Testing in On-Demand vs Con-
tinuous sensing:
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Figure 11: Participation based testing results for On-Demand vs Continu-
ous approaches

The continuous sensing approach can be considered as a spe-
cial case of on-demand sensing approach, in which data is ac-
quired on a regular basis from a 100% of the cars, instead of
occasionally from some of the cars. In order to test the impact
of the percentage of cars participating in the sensing activity on
the accuracy of the traffic estimation results, we carried a test in
which the % of participating cars is varied from 10% to 100%
and measured the response time, network load, and traffic esti-
mation error. Figure 11 depicts the obtained results.

As observed, both the network load and response time in-
crease in a linear fashion with the increase in the % of cars par-
ticipating in the sensing activity. For instance, the network load
and response time respectively achieved for 10% of cars tar-
geted are 110 KB and 3 s. For a 100% of cars targeted (i.e. the
continuous sensing case), the network load and response time
increased to 1760 KB and 15.5 s. This is an expected result
as more participation results in more messages exchange (i.e.
higher network load) and more time to process those messages
(i.e. higher response time). On the other hand, we notice that
the traffic estimation error decreases in a logarithmic fashion,
with the increase in the % of participating cars. This is due to
the fact that the more cars are targeted, the more data points are
collected about a certain area, and the more accurate is the traf-
fic estimation result. It should however be mentioned that there
is a compromise between the accuracy of the traffic estimation
result needed and the system’s performance in terms of network
load and response time. In fact, a higher traffic estimation ac-
curacy will be associated with a poorer system performance in
terms of network load and response time. For instance, with a
100 % of cars targeted, we obtain the lowest traffic estimation
error (i.e. 8.3%) along with the highest network load (i.e. 1760

KB) and the highest response time (i.e. 15.5 s). Decreasing
the percentage of car participation to 50% results in penalty of
4% of additional traffic estimation error, but an improvement of
50.9% in terms of network load and an improvement of 46.5%
in terms of response time. In the case of 30% participation rate,
the additional traffic estimation error accrued is 10%, while the
improvement in terms of network load is 73.8% and the im-
provement in terms of response time is 60.3%. Moreover, it is
worth to mention about the high accuracy achieved by the pro-
posed on-demand approach, where in all the cases the traffic
estimation error is acceptable in order to determine the traffic
status of the road, especially 30% and above, where the error
rate starts to be similar to the continuous approach.

D. Impact of Selection Criteria on Quality of Sensed Infor-
mation and Traffic Estimation Accuracy:

In order to evaluate the impact of the participants’ selection
criteria on the traffic estimation accuracy, we varied both the %
of cars targeted for a sensing activity as well as the # of criteria
used for participants’ selection from the ones targeted. Figure
12 depicts the obtained results.

As expected, for the 5 sets of matching/selection criteria used
(i.e. 6 matching criteria, 4 matching criteria, 3 matching crite-
ria, 2 matching criteria, and 1 matching criterion), increasing
the % of cars targeted for sensing has a positive impact on the
traffic estimation accuracy. Furthermore, when the same % of
cars are targeted and the different variants of the matching ap-
proach are compared, the more selection criteria we use, the
more accurate is the traffic estimation result. As shown in the
figure, the 6-criteria matching approach (the blue curve) outper-
forms all other approaches (i.e. 4 criteria, 3 criteria, 2 criteria,
1 criteria) for all % of participating cars used. This is due to
the fact that for the same % of cars targeted, the 6-selection cri-
teria approach selects the best candidates yielding the highest
quality records satisfying multiple quality of information crite-
ria. Although the other approaches select the same number of
candidates in each test scenario, the selected candidates provide
lower quality information since some of the quality criteria are
not considered in the selection process, thus yielding less accu-
rate traffic estimation results.

It is very important to mention that even with less % of tar-
geted cars, the selection approaches with more criteria outper-
form those with less selection criteria targeting a higher % of
cars in some cases. As an example illustrated in the blue dotted
area in Figure 12, the 6-selection criteria approach achieves a
traffic estimation error percentage of 29.015% with only 10% of
targeted cars, which is a lower traffic estimation error than the
ones achieved by the 2-criteria approach and 1-criteria approach
targeting 30% and 50% of the cars (yielding traffic estimation
errors ranging between 30.29% and 38.84%). The same applies
when comparing the 6-criteria approach targeting 30% of cars,
to all other variants targeting 50%, 70%, and even 100% of cars
(see green dotted area in the figure). This implies that using the
6 criteria approach and targeting 30% cars as candidates’ yields
more accurate results than targeting 100% of cars with only 4
selection criteria. We can therefore conclude that there exists
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Figure 12: Impact of Selection Criteria on Traffic Estimation Accuracy

a trade-off between the number of selection criteria (i.e. the
complexity of the selection approach) and the accuracy of the
traffic estimation results obtained. Therefore, when more con-
textual information is available and multiple selection criteria
can be used for participants’ selection, a small % of participat-
ing cars can be targeted while achieving high traffic estimation
accuracy. On the other hand, in the case of lack of availabil-
ity of contextual information and the inability to use multiple
selection criteria, a larger % of participating cars need to be
targeted to compensate for the lower quality data records and
maintain good traffic estimation accuracy. Based on the tests
we conducted and the results obtained, we can conclude that
using 6 matching criteria and 30% of targeted cars achieves the
best trade-off in the test scenario and environment we used.

7. Conclusion

In this paper, we have proposed a novel infrastructure-less
vehicular sensing framework enabling the on-demand sensing
of traffic conditions, about any area of interest, by relying on
a select set of mobile phone owners acting as data collectors.
RESTful web service communication interfaces were defined
to enable the communication between the sensing platform and
the users. Furthermore, a multi-criteria participants’ selection
model and a mean-speed based traffic estimation model were
proposed to support the operation of the vehicular sensing plat-
form. The framework architecture was fully implemented using
a combination of prototyping and traffic simulation traces gen-
erated using VanetMobiSim.

The obtained experimental results explore the benefits that
can be offered by an on-demand participatory sensing approach
in terms of achieving high traffic estimation accuracy and re-
source efficiency, when compared to the traditional opportunis-
tic continuous sensing approach. Among the lessons learned
from this work, we note the following: The on demand sensing
is able to successfully infer the traffic status category regard-
less of the minor variation in the mean speed compared to the
ground truth. Furthermore, we observed that more complex par-
ticipants’ selection approaches that rely on contextual informa-
tion to select the best participants (offering the highest quality
sensing data records) can yield a high traffic estimation accu-
racy, even with a low percentage of vehicles participating in
the sensing activity. On the other hand, if this contextual infor-
mation is not available and simpler participants’ selection ap-
proaches must be used, then a higher percentage of participants’
vehicles must be employed to compensate for the lower quality
in the sensed data records and maintain a high traffic estima-
tion accuracy. Those results clearly demonstrate that the pro-
posed on-demand participatory sensing approach can achieve
high traffic estimation accuracy, while maintaining a good sys-
tem’s performance in terms of reduced response time and net-
work load.
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