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RoadSense: Smartphone Application to Estimate
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Abstract—Monitoring the road condition has acquired a criti-
cal significance during recent years. There are different reasons
behind broadening research on this field: to start with, it will
guarantee safety and comfort to different road users; second,
smooth streets will cause less damage to the car. Our motivation
is to create a real-time Android Application RoadSense that
automatically predicts the quality of the road based on tri-axial
accelerometer and gyroscope, show the road location trace on
a geographic map using GPS and save all recorded workout
entries. C4.5 Decision tree classifier is applied on training data to
classify road segments and to build our model. Our experimental
results show consistent accuracy of 98.6%. Using this approach,
we expect to visualize a road quality map of a selected region.
Hence, we can provide constructive feedback to drivers and local
authorities. Besides, Road Manager can benefit from this system
to evaluate the state of their road network and make a checkup
on road construction projects, whether they meet or not the
required quality.

Index Terms—Road monitoring, Accelerometer, Gyroscope,
Pothole, Real time, Machine learning, Android.

I. INTRODUCTION

ACCORDING to statistics provided by World Health
Organization (WHO), road accidents have become one

of the top 10 leading causes of death in the world. Specifically,
road accidents claimed nearly 1.25 million lives per year
(2015). Studies in [1] show that most road accidents are caused
by poor condition of roads. Bad roads are a big problem
for vehicles and drivers, this is because the deterioration of
roads leads to more expensive maintenance, not only for the
road itself but also for vehicles. Accordingly, road surface
condition monitoring systems are very important solutions to
improve traffic safety, reduce accidents and protect vehicles
from damage due to bad roads. Both road managers and drivers
are interested in having sufficient information concerning road
infrastructure quality (safe or dangerous road).

Consolidated approaches for monitoring road surface condi-
tions involve the adoption of costly and sophisticated hardware
equipments such as ultrasonic [2] or specific accelerometers
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with data acquisition systems [3]. These approaches incur
a high installation and maintenance cost and require large
manual effort, which can induce error while deploying or
collecting the data. Another alternative is to use sensing
technologies to gain this information to solve the problem of
road surface condition monitoring. These days, smartphones
are widely utilized. The greater part of them are equipped
with various sorts of sensors like camera, accelerometer, GPS,
gyroscope, microphones, etc. Thus, smartphone based road
condition monitoring is one of such helpful applications to
monitor street conditions.

This paper introduces a road condition monitoring frame-
work which is based on sensors (accelerometer, gyroscope
and GPS) built in smartphones to give us the quality of
different road sections using machine learning techniques.
The contributions of this paper are manifold and can be
summarized as follows:
• As a first contribution, we design a machine-learning

algorithm (C4.5 Decision tree) to classify road segment as
compared to previous works that use simple thresholds,
SVM and fuzzy logic. Our tests show that our system
is able to detect and classify events related to road
conditions with an accuracy of 98,6%.

• Our proposed system, unlike existing solutions that re-
quire external hardware, is an inexpensive simple yet
efficient solution that is able to monitor road quality.
It is realized on Android smartphones and is highly
portable and easy to maintain. Our application provide
constructive feedback to drivers and local authorities by
plotting the evaluated road location on a Map and saving
all recorded workout entries.

• Creating an Android application that allows real-time
and automatic collection and analysis of accelerometer
and gyroscope data in order to get reliable road surface
labels in contrast to previous works that mostly use offline
methods (videos, images for data labeling).

• While most of previous works employ unimodal ac-
celerometer data, we are using gyroscope sensor in
conjunction with accelerometer sensor to derive more
accurate road quality prediction.

The rest of this article is organized as follows. Section II
presents a background on the three machine learning algo-
rithms used in the paper. Section III introduces some recent
research works related to the monitoring of road surface
conditions. Section IV describes the general idea and the
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proposed architecture. Experimental results of the proposed
work are presented in Section V. In Section VI, we conclude
the paper and we give some perspectives.

II. BACKGROUND

A. Related Works

In recent years, road condition monitoring has become a
popular research area. There has been some works in this field.
The most relevant published papers that are analysed are listed
in Table I.

The Pothole Patrol [4]; is a sensing application that reports
the road surface conditions. It require the integration of
particular hardware equipment; for each vehicle an embed-
ded computer running Linux is used for data processing, a
Wi-Fi card for transmitting gathered data, an external GPS
for localization, and a 3-axis accelerometer to monitor road
surface. It uses machine-learning algorithm to detect potholes.
Nericell [3] is a system developed by Microsoft to monitor
roads and traffic conditions. It requires a very complicated
hardware and software setup. It uses several external sensors
such as a microphone, GPS, Sparkfun WiTilt accelerometer.
The detection is not very accurate (False positive rate less
than 10% and false negative rate between 20% and 30%), the
system may confuse between smooth, uneven and rough roads.
Mednis et al. [5] proposed a real time system for detecting
potholes. The system employs Android OS based smartphones
having accelerometer sensor and simple algorithms to detect
events from acceleration data. Experimental results show a
true positive rate equal to 90%. The drawbacks of this work
is that the system uses only accelerometer sensor and data are
collected through specialized hardware.

Perttunen et al. [6] use a Nokia N95 mounted to a rack
on the wind-shield, with accelerometer and GPS to collect
data. Labeling is done with a camcorder attached to the
headrest of the front passenger seat. However, labeling driving
data using video is a time consuming and error prone work.
The author [7] describes a pothole detection system. The
neural network technique is used for justifying the threshold
values and the accuracy is from 90% to 95%. Smartphone
accelerometers and gyroscopes are used in [8], [9] to detect
road surface anomalies, using an audiovisual data labelling
technique with a labeller sitting beside the driver inside the
car to mention everything relevant he saw or felt. Then,
SVM is used for anomaly detection and classification with
an accuracy of 90%. Moazzam et al. [10] used a low-cost
Kinect sensor to capture and calculate the approximate volume
of a pothole. The use of infrared technology based on a
Kinect sensor for measurement is still a novel idea, and further
research is needful to decrease error rates. For methods by
image processing, Zhang et al. [11] have made use of stereo
camera images coupled with a disparity calculation algorithm
to identify potholes. Although camera-based approach have
been popular in the general field of pothole detection [12].
A recent study uses near infrared (NIR) camera to classify
several road conditions; the evaluation has been done in
laboratory conditions, and field experiments [13]. However,
a drawback of video processing methods is that they are often

considered too computationally expensive for smartphone-
based implementations. For methods by ultrasonic, an ultra-
sonic transducer is equipped on vehicles [2]. The ultrasonic
waves are continuously emitted to road surfaces and anomalies
are detected by the reflection time. However, to obtain high
accurate results, an expensive measurement device is required.
In [14], the authors present SmartRoad a crowd-sourced road
sensing system that can detect traffic lights, traffic regulators,
stop signs and road anomalies. Further, S-Road Assist [15]
detect road surface and traffic conditions using threshold-
based heuristics on data gathered from smartphone sensors.
Typically, related studies will threshold the standard deviation
of measurements from smartphone-embedded accelerometers
to detect road anomalies[16], [17].

Previous works [3], [5], [6], [8], [9] indicate that labeling the
road surface condition accurately is a difficult task. We tried to
overcome this problem by developing an android application
called Road Data Collector that automates data collection and
labeling. In the literature, uni-modal accelerometer sensor have
been applied. In our work, we are using both gyroscope and
accelerometer sensors to derive more accurate road quality pre-
diction. Moreover, while in previous work simple thresholds
on various features have been used in anomaly detectors, we
use C4.5 decision tree [18] to detect road quality. While most
existing solutions require external hardware [4], [3], [10], [2],
our solution is a real time android application implemented on
a smartphone device. Thus, it greatly reduces the overall cost
of the system. We show that our system is able to detect and
classify events related to road conditions with an accuracy of
98,6%.

B. Machine Learning Algorithms

We employed in our research three different machines
learning algorithms. C4.5 classifier is a simple decision tree for
classification. It creates a binary tree to model the classification
process. Once the tree is built, it is applied to each tuple in
the dataset and leads to assign a class for that tuple [19][20].
While building a tree, C4.5 ignores the missing values. C4.5
allows classification via either decision trees or rules generated
from them. Support vector machines (SVM) are supervised
learning methods for classification and regression. The SVM
classifier is firstly trained, and then unknown samples go
through the classifier to be categorized. In the training process,
a hyperplane is constructed to classify data into one of the
two categories (i.e., category 0 or 1). In the testing process,
it predicts whether a new sample falls into one category or
the other. Naive Bayes algorithm is a simple probabilistic
classifier that calculates a set of probabilities by counting the
frequency and combinations of values in a given data set. The
algorithm uses Bayes theorem and assumes that all attributes
are independent of each other given the class variable.

III. SYSTEM DESIGN

Our goal is to derive a road quality recognition system
that detects, analyzes, identifies and predicts the state of road
segments using smartphone sensors. Our system does not
depend on any pre-deployed infrastructures and additional
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TABLE I: Comparison with related research in Road Surface Monitoring

Reference Smartphone sensors External hardware Data labeling Detection methods
[4] Not used Accelerometer, GPS Manually Threshold/ Machine learning algorithm
[3] Accelerometer,microphone,GPS Not used Not Mentioned Threshold
[5] Accelerometer Not used Not Mentioned Threshold
[6] Accelerometer,GPS Not used Video SVM
[7] Accelerometer,GPS Not used Not Mentioned Threshold/ Neural Network
[10] Not used Kinetic sensor Not Mentioned Three-dimensional (3D) reconstruction
[11] Not used Stereo camera images Not Mentioned Image processing algorithms
[12] Not used Camera images Manually Three-dimensional (3D) reconstruction
[13] Not used Near infrared (NIR) camera Manually Video processing methods
[2] Not used Ultrasonic sensors,GPS Not Mentioned Threshold
[14] GPS,Power Not used Manually Threshold on relative roughness
[15] Accelerometer,GPS Not used Not Mentioned Threshold
[16] Accelerometer,GPS Not used Not Mentioned Threshold the standard deviation of measurements
[17] Accelerometer Not used Not mentioned Threshold
[8], [9] Accelerometer,Gyroscope Not used Audiovisual SVM
RoadSense Accelerometer,Gyroscope,GPS Not used Automatic C4.5 decision tree

hardware. In our system, road conditions could be detected
and identified by smartphones according to readings from
accelerometer and gyroscope sensors. The life cycle of our
system is divided into 2 phases: training and prediction. We
will detail in this section these phases.

A. Training phase

In the training phase (Fig. 1), we train the classifier model
using machine-learning techniques based on the collected data.
During a preprocessing stage, a low pass filter is applied to
remove high frequency components, and then we compute
magnitude of accelerometer and gyroscope values. In the
Feature Extraction stage, effective features are extracted from
specific types of road conditions patterns on acceleration and
rotation around gravity. Afterwards, the features are selected
in the training phase and a classifier model would be gener-
ated which can realize fine-grained identification. Finally, the
classifier model is generated and saved.

1) Collecting Data from Smartphone Sensors: The Data
collection phase is the most important one; since it is respon-
sible for collecting road information. We develop an Android-
based App to collect readings from the 3-axis accelerometer
and gyroscope sensor. The sensors data of road surface quality
were collected using accelerometer and gyroscope sensors
built in the Galaxy mobile phone, mounted on the car dash-
board as shown in Fig. 2, along the vehicle path. The sampling
frequency of the sensors was 50 Hz. Several data collection
drives were performed with a varied speed, the road condition
label is pre-set before the collection starts. Once the user stops
the data acquisition, the application stores the learning data-set
as an Attribute-Relation File Format (arff) file. For the work
reported in this paper, a drive of about 40 minutes in length
(25km) was selected among the drives, as it seemed to be
a smooth segment. It was also hard to classify the anomalies
into different categories at the same time. So, the classification
in this study was not targeted to recognize different road
anomalies, but to differentiate potholes from the smooth road.
In total, we obtain 2000 samples of data.

2) Preprocessing: Accelerometer data readings usually
contained irrelevant data (noises). Therefore, a pre-processing
phase should be applied in order to reduce noise and improve
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Fig. 1: Training phase.

Fig. 2: Phone orientation inside the car.

the road quality recognition. Due to several factors such as
jerks or vibrations, turning, veering, braking, and as well as
subtle changes in sensor orientation, a considerable amount
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of noise is added to these signals. A Low-Pass Filter can be
helpful to remove high frequencies signals (noise) in the input
signal by applying a suitable threshold to the filter output
reading. Once the noise reduction is completed, the filtered
accelerometer samples (x, y, z) and the filtered gyroscope
samples (x’, y’, z’) are then preprocessed where each sampled
smoothed vector was combined into a single magnitude [21]
where (m =

√
x2 + y2 + z2), (m′ =

√
x′2 + y′2 + z′2).

3) Feature Extraction: When machine-learning algorithms
are processed, representative tuple of features rather than raw
data is a more effective input. Thus, it is necessary to extract
effective features from road conditions patterns. In order to
reduce input data, the raw data obtained from the sensors
is first segmented into several windows, and features such
as frequencies are extracted from the window of samples.
This step of Feature Extraction serves as inputs into the
classification algorithms for recognizing roads quality. As
mentioned in [22], the window size is a cardinal parameter
that influences both computation and power consumption of
sensing algorithms. A sliding window of window length 64 is
applied for feature extraction stage, which proved helpful in
extracting frequency-domain features. In contrast to heuristic
features, time and frequency-domain features can describe
the information within the time-varying signal. Unlike time
domain, the frequency-domain features need another phase of
transforming the received data (in time domain) from the pre-
vious phases of the pipeline. This stage generates frequency-
domain features using very fast and efficient versions of the
Fast Fourier Transform. After computing magnitude m and m’,
the work-flow of this training phase buffers up 64 consecutive
magnitudes (m0...m63) , (m′0...m

′
63) before computing the

FFT resulting in a feature vector (f0...f63) or a vector of
Fourier coefficients. FFT transforms a time series of amplitude
over time to magnitude across frequency [23]. Since, the x,
y, z accelerometer and x’, y’, z’ gyroscope readings and
the magnitude are time domain variables; it is necessary to
convert these time-domain data into the frequency domain as
they can represent the distribution in a compact manner that
the classifier will use to build a model in further phase of
this pipeline. While computing the Fourier coefficients, the
training phase also stores the maximum (MAXacc) magnitude
of the (m0...m63), the maximum (MAXgyro) magnitude of
the (m′0...m

′
63) and the road supplied label (Smooth, Potholed)

using a native android application called Road Data Collector.
At the end of Feature extraction pipeline, a feature vector

consists of the following features or attributes: (f0...f63),
MAXacc magnitude, MAXgyro magnitude, label. The data
set is then saved as an arff file. This file format is then
analyzed by Waikato Environment for Knowledge Analysis
or WEKA [24], a knowledge analysis and machine-learning
tool. Therefore, those values can be used as features for
training. However, not all of them are equally effective for
road conditions detection and identification.

4) Feature Selection: Some features in the processed data-
set might contain redundant or irrelevant information that
can negatively affect the recognition accuracy and the clas-
sification performance. Then, implementing techniques for
selecting the most appropriate features is a suggested practice

to reduce computations and simplify the learning models. In
this work, we applied a Correlation based Feature Selection
(CFS) approach [25], taking advantage of the fact that this
method is built in WEKA. CFS works under the assumption
that features should be highly correlated with the given class
but uncorrelated with each other. CFS algorithm reduces the
number of features from 66 to 25. Finally, we identify 25
effective features that are able to capture the patterns of
different types of road conditions.

5) Training a Classifier Model to Identify road conditions:
After feature extracting and selecting, we obtain a tuple of
features for each road condition. Then a classifier model is
trained based on the tuples for all road conditions through
machine learning techniques [26] to identify road conditions.
For each road condition, the input into the machine learning
algorithm is in the form of (25-dimensional features, label),
where the 25-dimensional features are the tuples obtained
from the Feature Extraction and the label is the type of the
road. Since, the training data is a labeled data set; supervised
learning algorithms are used to infer a model from the labeled
data. For the selection of the base classification technique, we
experimented with a set of widely used algorithms (Decision
tree C4.5, Support Vector Machines, and Naive Bayes) and
picked the one that yielded the highest classification accuracy.
In a word, the classifier trains the inputs and then generates a
classifier model which conducts identification to the two types
of road conditions.

B. Prediction phase

The prediction phase (Fig. 3), is installed on smartphone,
which senses real-time vehicular dynamics to detect and iden-
tify road conditions. Our system first senses the readings of
accelerometer and gyroscope embedded on smartphone. After
getting real-time readings from sensors, the preprocessing
is performed on sensors readings. Afterwards, our system
extracts features from patterns of the road conditions, then
predict the road quality based on the classifier model trained
in the training stage and show the road location trace on
a geographic map. Finally, a history of all reported road
condition is saved.

IV. PERFORMANCE EVALUATION

The overall goal of this evaluation is to determine the
accuracy and effectiveness with which our system is able to
detect road conditions. In this section, we evaluate our system
in two steps:
• Analytical Validation :Evaluate the performance of dif-

ferent classifiers based on several metrics.
• Experimental Validation : Test the feasibility of the whole

system in real driving environments.

A. Analytical Validation

The learning data-set with the selected features is passed
as input to various classification algorithms in order to select
the most appropriate model. To evaluate the effectiveness of
different classifiers, cross validation is used as the evaluation
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method. More specifically, the smartphone sensor dataset is
divided into test and training sets.

The goal of cross-validation is to define a subset of data
or a validation set to test the model for the training phase, in
order to scrutinize the problems such as over-fitting. In order to
determine whether a classifier is better than another, a 10 fold
cross validation were performed, where 1/10 of both data were
used only for testing purpose. We have used several measures
in order to evaluate the performance of classifiers used.

1) Classification accuracy: The accuracy can explain the
overall classification performance for all the activity classes
as the follows:

Accuracy =
(TP + TN)

(TP + TN + FP + FN)
(1)

Fig. 4 shows the classification accuracies of different machine
learning algorithms with and without feature selection. As
is evident from Fig. 6, C4.5 is the most accurate classifier
compared to SVM and Naive Bayes with the average accuracy
of 98.50%, CFS algorithm increases the average accuracy by
0.1%. We can see that C4.5 perform well when using CFS
algorithm; this high accuracy was achieved by fusing data from
accelerometer and gyroscope sensors to reduce the number of
false positives. Support Vector Machine performs poorly in
accuracy (95.25%) and Naive Bayesian Classifier is a close
competitor in terms of accuracy (96.90%).

2) TP Rate and FP Rate: True positive rate is the percent-
age of positive cases correctly classified as belonging to the
positive class.

TPRate =
TP

(TP + FN)
(2)
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Fig. 4: Accuracy of each algorithm.

False positive rate is the percentage of negative cases misclas-
sified as belonging to the positive class.

FPRate =
FP

(FP + TN)
(3)

From the above results of Table II, in true positive element
rate, C4.5 > naive bayes > SVM ; in false positive element
rate, naive bayes > SVM > C4.5.

TABLE II: Performance comparison of Three Algorithms
using different metrics

Classifier TP
Rate

FP
Rate

Precision Recall F-Measure ROC
Area

C4.5 0.985 0.064 0.985 0.985 0.985 0.987

SVM 0.953 0.265 0.951 0.953 0.950 0.844

Naives
Bayes

0.969 0.049 0.972 0.969 0.970 0.976

3) Precision, Recall and F-measure: The precision is an-
other metric which can explain about the ratio of the correctly
classified positive instances to the total number of instances
classified as positive and is mathematically calculated as
follows:

Precision =
TP

(TP + FP )
(4)

The recall also known as the true positive rate or sensitivity,
is a measure of how good is the classifier to correctly predict
actual positives samples

Recall =
TP

(TP + FN)
(5)

the F-measure is a measure of a test’s accuracy. The F-
measure can be interpreted as a weighted average of the
precision and recall

F −measure =
2× precision× recall

(Precision+Recall)
(6)

Both precision and recall are therefore based on an under-
standing and measure of relevance. Precision can be seen as a
measure of exactness or quality, whereas recall is a measure
of completeness or quantity.
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In precision C4.5 >SVM >naive bayes; in recall ratio,
C4.5 >naive bayes >SVM (Table II). Since F-measure is
the harmonic mean of precision and recall, hence to know
which classifier is the best in terms of precision and recall,
we can calculate the F-measure value (Table II). The average
F-measure value of C4.5 is the biggest among the three, that is
0.985. Nave Bayes has average F-measure of 0.969 and SVM
of 0.950. Therefore we can say that C4.5 is the best in terms
of precision and recall .

4) ROC Curve: A receiver operating characteristics (ROC)
analysis is another metric used in machine learning to evaluate
and compare classifier performance through the AUC (Area
under ROC curve). ROC performance of a classifier is usually
represented by a value, which is the area under the ROC
curve (AUC) [27]. AUC has known as a statistical measure
for evaluating classification, ranking models and selecting the
best classification method. The value of AUC is between 0
and 1. From Table II, The AUC of C4.5 is 0.987, followed by
Nave Bayes 0.976 and SVM 0.844.

5) Confusion Matrix: The most straightforward way to
evaluate the performance of classifiers is based on the confu-
sion matrix analysis. A confusion matrix contains information
about actual and predicted classifications done by a classifica-
tion system.

The confusion matrix of three algorithms was shown in
Table III. In the table, the value of diagonal lines should be
mainly focused and the greater it is, the more the examples are
correctly classified. From Table III (a), it could be found that
there were 1938 groups of samples. The number of correctly
classified examples of SVM algorithm was 1846, 92 wrong
examples; the number of correctly classified examples of naive
Bayesian classifier was 1878, 60 wrong examples(Table III
(b)).

Table III (c) shows the confusion matrix for the classifi-
cation results obtained from C4.5 Classifier. From this table,
The number of correctly classified examples was 1911, 27
wrong examples. It can be seen that the first row has 1690
instances corresponding to class smooth, where 1680 are
correctly classified and the other 10 were misclassified as
potholed.

These false negatives can be explained by the presence of
rough road considered as smooth during the learning phase.
However, the second row has 248 instances corresponding to
class potholed, suggesting that 17 instances were misclassified
as smooth. These false positives are due to the absence of some
kind of pothole during the learning phase.

The experiment we carried out reveals that C4.5 Decision
Tree Classifier outperforms SVM and naive Bayesian. It is the
best in all performance parameters. So we decided that C4.5
should be the choice for the optimal classifier.

Results of analyses are good enough to motivate us to use
C4.5 in order to discover patterns of road conditions and
predicting the quality of an unknown road.

Then, Decision Tree C4.5 algorithms are a pruned decision
tree that works well for recognizing tasks, well-known for
their low computations and reasonable accuracies. The main
reason C4.5 decision tree was chosen to serve, as a model for
classification, is that it produces simpler rules and removes

TABLE III: Confusion Matrix for all classifiers

(a) SVM

Class Label Smooth Potholed
Smooth 1673 17
Potholed 75 173

(b) Naive Bayes

Class Label Smooth Potholed
Smooth 1643 47
Potholed 13 235

(c) C4.5

Class Label Smooth Potholed
Smooth 1680 10
Potholed 17 231

insignificant parameters before it begins a process of tree
induction. Moreover, Decision tree can handle datasets that
may have errors, or missing values. Decision Tree is believed
to be a better solution to be integrated into smartphone
applications. As a decision tree model, it is easy to compute
when implemented as a set of IF-THEN rules.

6) Impact of smartphone sensors: From Fig. 8, the overall
accuracy of C4.5 classifier is 96,74% using only accelerometer
features. Besides, Fig. 8, shows that gyroscope features are
more determinant to identify road conditions. As exhibited
by the results, the gyroscope features is efficient enough to
recognize road conditions, which are also simple and practical
to be extracted from smartphone sensor readings.

However, when we combine the accelerometer with the
gyroscope features, the framework accuracy was up to 98,6%.
So we can say that gyroscope sensor is important to confirm
the detection results in addition to the accelerometer sensor.
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C4.5 accuracy increases to 98,6 % when we combine accelerometer with gyroscope features.
Gyroscope sensor is usefull to confirm the detection result in addition to the accelerometer sensor

Fig. 5: Impact of smartphone sensors.

B. Experimental Validation

In this section, we first present the prototype of our applica-
tion, then we evaluate and test the performance of our system
in real driving environments
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1) Application Oviewer: Once the classifier was chosen,
the C4.5 model is created outside the application that is using
Weka data mining tool. The model is converted into rules
and incorporated into the application as an activity. Building
this application involved some work to display information
in real time on map and to implement the database, which
display all recorded road conditions. We develop the road
condition monitoring application RoadSense and test it on
Android Smartphone Samsung galaxy alpha. The smartphone
provides an accelerometer sensor and a gyroscope sensor. We
have used Android platform because it is open source and
has a fairly versatile API (Application Programmer Interface).
When the application is started, the application calls Android’s
location listener, which takes the user location and route in
a moving vehicle from the phone’s inbuilt GPS. After the
system is started, the monitoring daemon keeps running in
background as a Service in Android, collecting and recording
the readings of sensors. These readings are processed, and
then passed to the WEKA Classifier activity to predict the
road conditions status. When road condition is detected, the
map notification component works to send the road condition
directly on map and show the route traveled by the driver in
real time. Once the road condition is detected, it needs to be
stored somewhere. The Android API supports development
of a SQLite database. All event detected are stored in the
database. The initial design included a list view that read the
entries in the database and displayed them using the List View
format. Users could remove events from the list, which would
delete them from the table. Using this application, the driver
can get knowledge of the road before traveling. We expect to
visualize a road quality map of a selected region. Providing
constructive feedback to the driver and local authorities is
crucial. Road Manager can benefit from this system to evaluate
the state of their road network and make a check on the road
construction project, whether they meet required quality or
not.

2) Experimental environment and Snapshots: In this sec-
tion, we describe our experiments made to test the perfor-
mance of the whole system. We install the android application
RoadSense on smartphone (Samsung galaxy alpha). We re-
cruited a volunteer participant for our study, and deployed the
smartphone on the vehicle dashboard. The phone operate in a
completely autonomous manner, requiring no user intervention
from the participant. The application is run by the driver
in real driving environments. The drivers is asked to drive
just as how he normally do. The entire experiment lasted for
about 3 weeks. We choose different road circumstance like
smooth and potholed. The RoadSense application detect in
real time the road quality, and show the road location trace
on a geographic map with some useful information including
the number of potholes, the percentage of smooth type on
the traveled road, the speed of the vehicle, and the distance
traveled. The snapshots attached are the output result of our
application. Fig.6 shows that when traveling a potholed road,
the application successfully predict that the type of this road
is potholed. An illustration overlaying Google map of the road
traveled is shown in Fig. 7, indicating that the road segment is
smooth. The application also keeps the record of all reported

road condition. Our various experiment results show that our
application can effectively and efficiently predict the road type.

Fig. 6: Potholed road.

Fig. 7: Smooth road.

V. CONCLUSION

In this paper, we studied a machine-learning algorithm
for prediction of road quality. It uses an accelerometer and
gyroscope sensor for collection of data and GPS for plotting
the road location trace in Google map. We have tested three
classification algorithms: decision tree C4.5, SVM and Naive
Bayes. Our experimentation shows the superiority of C4.5
in term of detection accuracy (98,6%). Our best results is
obtained thanks to a grouping of two sensors; accelerometer
and gyroscope. The smartphone-based method is very useful
because it removes the need to deploying special sensors in
vehicle. It has the advantage of high scalability as smartphone
users increases day by day. Thus, we have developed a smart-
phone application RoadSense. The RoadSense application is
an attempt to provide its users with better knowledge about
the routes of their transportation. With further work in this
field, it is possible for this project to play a proactive part
in improving road conditions in developing countries. To this
end, our system can be used to create a personal road type
warning system that maintains a historical record of road
conditions. As a future work, we aim to improve the road type
detection algorithm through detecting other road anomalies
and trying other machine learning classifiers.
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