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We present a second-order high-resolution finite difference scheme to approximate the solution of a mathe-
matical model of the transmission dynamics of Mycobacterium marinum (Mm) in an aquatic environment.
This work extends the numerical theory and continues the preliminary studies on the model first developed
in Ackleh et al. [Structured models for the spread of Mycobacterium marinum: foundations for a numer-
ical approximation scheme, Math. Biosci. Eng. 11 (2014), pp. 679–721]. Numerical simulations demon-
strating the accuracy of the method are presented, and we compare this scheme to the first-order scheme
developed in Ackleh et al. [Structured models for the spread of Mycobacterium marinum: foundations for
a numerical approximation scheme, Math. Biosci. Eng. 11 (2014), pp. 679–721] to show that the first-
order method requires significantly more computational time to provide solutions with a similar accuracy.
We also demonstrated that the model can be a tool to understand surprising or nonintuitive phenomena
regarding competitive advantage in the context of biologically realistic growth, birth and death rates.

Keywords: ecology and evolutionary biology; population dynamics

1. Introduction

Mycobacterium marinum (Mm), a fish pathogen, is one of the closest related species to Mycobac-
terium tuberculosis (Mtb), the aetiological agent of human tuberculosis (TB). Mm shares many
of the same bacterial virulence genes required by Mtb complex to infect, grow, spread, and cause
disease in humans [16,29,41]. Mm has recently become a tractable surrogate pathogen to study
TB-like infections [16,17,29,34,38,39,41], since it grows much faster than Mtb, represents less
risk to researchers, similarly infects host macrophages (both human and fish), and many Mm and
Mtb genes are interchangeable. The magnitude of the human TB burden is paralleled by a variety
of mycobacterial pathogens in fish, and in particular by Mm [14,16,18,20,22]. As in human TB,
it appears that there is a similarly large pool of chronically Mm-infected fish with similar impli-
cations for the overall disease impact; that is, even though there is only a small proportion of the
chronically infected animals that become acute, it results in a large number of fatalities. Mm is
known to infect at least 200 fish species in marine and fresh water environments [16,18,27].
Annually, fish mycobacteriosis costs billions of dollars in combined losses to wild-caught
fisheries, to aquaculture-raised fish, to the aquarium trade, and to research colonies [22,24,27].
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2 A.S. Ackleh et al.

Despite the large economic impact, the mode(s) of Mm infection and transmission between
fish have remained speculative, with proposed modes including vertical transmission, horizontal
transmission, and infection by ingestion of Mm-laced foods [27,28]. Until recently, little experi-
mental research has been conducted to offer concrete support to one or more of these postulated
transmission models. Recently, chronic infections have been successfully induced in medaka
[15–17,32,36], thereby establishing this as an experimental species in which to study this crucial
stage of infection, and the hypothesized modes of transmission between animals. These and other
related studies revealed that Mm retrieved from infected tissues were also considerably more
infectious, likely because these bacteria reside in the caustic intracellular environment of host
macrophages of the target organs [16,19,21,30,34]. We are referring to this inducible enhanced
virulence state for Mm as ‘activated’.

Recently, two mathematical models were developed to study Mm [8,9]. In [9], a bacterial
load-structured model was created to incorporate the differences in fish behavior as a function
of infection severity, since chronic infection plays such a crucial role and these infections are
asymptomatic. Solutions of this model provided reasonable agreement with experimental data,
establishing the model’s potential as a tool within which to interpret experimental findings and
guide further experimental design. In [8], a size-structured model was developed to study key
metabolic features such as growth rates and consumption activity on disease dynamics. The
authors used this model to illustrate conditions for competitive exclusion or coexistence as deter-
mined by reproductive fitness and genetic spread in the population. The models in [8,9] were
both discretized using a first-order finite difference method. In [8], the authors proved conver-
gence of their method to a bounded variation weak solution for Equation (2); these results can
readily be extended to the model and scheme from [9]. Here, we develop for the model in [8] a
novel second-order high-resolution scheme in the spirit of those developed in [5,7,23,35,40]. To
establish convergence of this method, a substantial modification of the techniques used in [5,7]
is necessary due to the explicit modelling of the genetic or phenotypic heterogeneity between
individuals, nonlocal nonlinearities, and quadratic nonlinearities.

There has been substantial research using numerical methods to solve structured models [3,4,
6,8,9] using first-order finite difference methods. These methods have been successfully applied
to size-structured models which incorporate all nonlinear vital rates. Other methods used to study
size-structured models include finite element methods [11,13,31], monotone approximations [3],
integration along characteristics [1,10,25,26,33], and semigroup theory [12]. Several different
methods for numerically solving structured population models are reviewed and compared in [2].

In this paper, we first (Section 2) succinctly describe the model and relevant biological pro-
cesses. In Section 3, we introduce the weak solution and the finite difference scheme along with
notation that is used throughout the paper. In Section 4, we give the estimates for the finite differ-
ence approximations, and in Section 5, we show that the finite difference scheme converges to the
unique weak solution of the model. In Section 6, we confirm the second-order convergence estab-
lished previously, and illustrate some features of the model. We begin by showing the order of
the method by applying the scheme to a linear model with a smooth solution, and then to the full
nonlinear model. Next, we compare the results from the first-order scheme designed in [8] to the
second-order scheme designed here and close Section 6 with an exploration of biologically ten-
able growth, birth, and death rates, and demonstrate the model’s utility in the resulting outcomes,
which are not immediately intuitive. Finally, we make our concluding remarks in Section 7.

2. The structured model

We consider m distinct physiological groups, i = 1, . . . , m, of fish with identical characteristics
within each group. Within each physiological group, fish are either infected with Mm, or not
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Journal of Biological Dynamics 3

infected and susceptible to Mm. In this model, infected fish and susceptible fish grow, die, and
procreate at different rates. Let Si(t, x) be the density of susceptible fish and Ii(t, x) be the density
of infected fish in class i of size x ∈ [xmin, xmax] at time t ∈ [0, T], where T is some arbitrary
finite time. Other model variables include the number of carrier mosquito larvae, M (t), activated
bacteria (Mm) in the environment, Ba(t), and unactivated bacteria (Mm) in the environment,
Bu(t).

The growth, death, and procreation rates are represented by gi(P, x), μi(P, x), and β i(P, x)
for susceptible fish and g̃i(P, x), μ̃i(P, x), and β̃ i(P, x) for infected fish. The dependence on P(t)
represents the possible impact of crowding on a fish’s ability to grow, survive, and reproduce,
where the total population is

P(t) =
m∑

i=1

∫ xmax

xmin

(Si(t, x)+ Ii(t, x)) dx. (1)

There are four modes of transmission for susceptible fish to become infected (per capita): (i)
consumption of food sources that may contain unactivated bacteria, ν1δ1Bu, and (ii) activated
bacteria, ν2δ2Ba, (iii) consumption of mosquito larvae that are carrying an effective load of bac-
teria, ν3ζci

2M , and (iv) consumption of biofilms that may contain unactivated Mm, ν4ci
1Bu. The

parameters ν1, ν2, ν3, and ν4 are effective transmission rates, δ1 and δ2 are the rates at which fish
encounter unactivated and activated bacteria, respectively, ζ represents the bacterial dose within
a ‘typical’ mosquito larvae, while ci

1(x) and ci
2(x) are fish consumption rates.

In accordance with experimental studies [16,17], there is no vertical transmission in this model
and therefore there is zero flux of fish at the minimum size. Thus, the flux condition for suscep-
tible fish are the ‘births’ (hatchlings) from susceptible fish as well as infected fish. Incorporated
into the total birth rates is a selection-mutation matrix, p, which represents the probability of a
fish of type � giving birth to a fish of type i and is the (i, �)th entry. We construct the matrix so
that the entries are ordered according to similarity, so that adjacent indices represent physiologi-
cally similar classes. We observe that

∑m
i=1 pi� = 1, the fractions of births of all types i from an

individual of type � sum to one.
Activated bacteria are released into the environment primarily through shedding by infected

fish at rate I(t; ρ) (where ρ i(x) is the per capita shedding rate of fish of type i and size x), and
go into an unactivated state if they remain planktonic for a period of time 1/λ. We also note
that unactivated and activated bacteria are taken up through a fish’s gills at rates of δ1BuP and
δ2BaP, respectively. We use H(t) to represent the actions of humans that may provide a source
of unactivated bacteria. The rates S(t; c1) and I(t; c̃1) represent the loss of unactivated bacteria
in biofilms by consumption from susceptible and infected fish, respectively. Mosquito larvae
consume unactivated bacteria at a rate of cM M ∗Bu, where cM is the consumption rate of bacteria
per capita mosquito larva and M ∗ denotes the (assumed in excess and therefore constant) total
larval population. In the above, we have used the notation

S(t; c1) =
m∑

i=1

∫ xmax

xmin

ci
1(x)S

i(t, x) dx,

I(t; c̃1) =
m∑

i=1

∫ xmax

xmin

c̃i
1(x)I

i(t, x) dx,

I(t; ρ) =
m∑

i=1

∫ xmax

xmin

ρ i(x)Ii(t, x) dx where ρ i(x) = ρ̄ i x − xmin

xmax − xmin
,

and ρ̄ i is a positive constant. We note that S(t; c2) and I(t; c̃2) are defined similarly.
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4 A.S. Ackleh et al.

While the total mosquito larvae population is constant, the number of those that are carriers
of Mm, however, is a dynamically changing quantity. As mosquito larvae consume Mm-
laden biofilms, and other common food sources, they become effective carriers of Mm at rate
εcM (M ∗ − M )Bu, where ε scales for the effective number of unactivated bacteria needed to
consider mosquito larvae as a carrier of Mm. Note that M ∗ − M represents the population of
mosquito larvae that are not carriers of Mm. Carrier mosquito larvae are lost through maturation
out of the larval stage at rate μM M and through consumption by susceptible and infected fish at
rates S(t; c2) and I(t; c̃2), respectively.

The model equations are then given by

∂Si

∂t
+ ∂(giSi)

∂x
+ μiSi + (ν1δ1Bu + ν2δ2Ba + ν3ζci

2M + ν4ci
1Bu)S

i = 0,

∂Ii

∂t
+ ∂(g̃iI i)

∂x
+ μ̃iI i − (ν1δ1Bu + ν2δ2Ba + ν3ζci

2M + ν4ci
1Bu)S

i = 0,

dBa

dt
= I(t; ρ)− δ2BaP − λBa,

dBu

dt
= H + λBa − cM M ∗Bu − δ1BuP − S(t; c1)Bu − I(t; c̃1)Bu,

dM

dt
= εcM (M

∗ − M )Bu − μM M − S(t; c2)M − I(t; c̃2)M ,

(2)

with boundary conditions

gi(P, xmin)S
i(t, xmin) =

m∑
�=1

pil
∫ xmax

xmin

[β�(P, x)S�(t, x)+ β̃�(P, x)I�(t, x)] dx,

Ii(t, xmin) = 0,

(3)

and initial conditions

Si(0, x) = Si,0(x), Ii(0, x) = Ii,0(x), Ba(0) = B0
a, Bu(0) = B0

u, M (0) = M 0, (4)

for 0 ≤ t ≤ T , x ∈ [xmin, xmax], and i = 1, . . . , m.
For simplicity of notation, we let the function

Li(Ba, Bu, M , x) = ν1δ1Bu + ν2δ2Ba + ν3ζci
2(x)M + ν4ci

1(x)Bu, (5)

throughout the paper.

3. Weak solutions and a second-order high-resolution scheme

Throughout the discussion we let c > 1 be a sufficiently large positive constant. We assume that
the parameters in Equations (2)–(4) satisfy the following assumptions:

(A1) The functions gi(P, x) and g̃i(P, x) are twice continuously differentiable with respect to x
and P. Also, 0 < gi(P, x) ≤ c, 0 < g̃i(P, x) ≤ c and gi(P, xmax) = g̃i(P, xmax) = 0 for P ∈
[0, ∞).

(A2) The functions μi(P, x) and μ̃i(P, x) are continuously differentiable with respect to x and P.
Also, 0 ≤ μi(P, x) ≤ c, 0 ≤ μ̃i(P, x) ≤ c for (P, x) ∈ [0, ∞)× [xmin, xmax].
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Journal of Biological Dynamics 5

(A3) The functions β i(P, x) and β̃ i(P, x) are continuously differentiable with respect to x and P.
Also, 0 ≤ β i(P, x) ≤ c, 0 ≤ β̃ i(P, x) ≤ c for (P, x) ∈ [0, ∞)× [xmin, xmax].

(A4) The functions ci
1(x), ci

2(x), c̃i
1(x), and c̃i

2(x) are continuously differentiable and 0 ≤
ci

1(x) ≤ c, 0 ≤ ci
2(x) ≤ c, 0 ≤ c̃i

1(x) ≤ c, and 0 ≤ c̃i
2(x) ≤ c for x ∈ [xmin, xmax].

(A5) The functions Si,0(x) and Ii,0(x) are nonnegative functions having total variation bounded
by c, and Ba(0), Bu(0), and M (0) are nonnegative constants less than c.

(A6) The function H(t) is a nonnegative function bounded above by c for 0 ≤ t ≤ T .
(A7) ν1, ν2, ν3, ν4, δ1, δ2, ζ , cM , λ, ρ̄ i, ε, M ∗, and μM are nonnegative constants less than c.

We let the vectors �S = (S1, . . . , Sm)T and �I = (I1, . . . , Im)T denote the susceptible and infected
fish densities, respectively, for all m physiological groups. Multiplying the first and second equa-
tions of Equation (2) by φ(t, x) and ψ(t, x), respectively, and formally integrating by parts, we
define a weak solution of our system (2)–(4) as a tuple (�S, �I, Ba, Bu, M ) ∈ ∏m

i=1 BV([0, T] ×
[xmin, xmax])×∏m

i=1 BV([0, T] × [xmin, xmax])× C[0, T] × C[0, T] × C[0, T] satisfying the fol-
lowing equations:

∫ xmax

xmin

Si(t, x)φ(t, x) dx −
∫ xmax

xmin

Si,0(x)φ(0, x) dx

=
∫ t

0

(
m∑
�=1

pi�
∫ xmax

xmin

[β�(P(τ ), x)S�(τ , x)+ β̃(P(τ ), x)I�(τ , x)] dx

)
φ(τ , xmin) dτ

+
∫ t

0

∫ xmax

xmin

Si(τ , x)(φτ (τ , x)+ gi(P(τ ), x)φx(τ , x)− μi(P(τ ), x)φ(τ , x)) dx dτ

−
∫ t

0

∫ xmax

xmin

Si(τ , x)Li(Ba(τ ), Bu(τ ), M (τ ), x)φ(τ , x) dx dτ ,

∫ xmax

xmin

Ii(t, x)ψ(t, x) dx −
∫ xmax

xmin

Ii,0(x)ψ(0, x) dx

=
∫ t

0

∫ xmax

xmin

Ii(τ , x)(ψτ (τ , x)+ g̃i(P(τ ), x)ψx(τ , x)− μ̃i(P(τ ), x)ψ(τ , x)) dx dτ

+
∫ t

0

∫ xmax

xmin

Si(τ , x)Li(Ba(τ ), Bu(τ ), M (τ ), x)ψ(x, τ) dx dτ ,

Ba(t) = Ba(0)+
∫ t

0
[I(τ ; ρ)− δ2Ba(τ )P(τ )− λBa(τ )] dτ ,

Bu(t) = Bu(0)+
∫ t

0
[H(τ )+ λBa(τ )− cM M ∗Bu(τ )− δ1Bu(τ )P(τ )

− S(τ ; c1)Bu(τ )− I(τ ; c̃1)Bu(τ )] dτ ,

M (t) = M (0)+
∫ t

0
[εcM (M

∗ − M (τ ))Bu(τ )− μM M (τ )− S(τ ; c2)M (τ )− I(τ ; c̃2)M (τ )] dτ ,

(6)

for each t ∈ (0, T), every φ ∈ C1([0, T] × [xmin, xmax]) and every ψ ∈ C1([0, T] × [xmin, xmax]).
As was presented in [8], we assume that there is a smallest size xmin (average birth size) and

a largest size xmax (we may assume xmax ≤ c) for the fish population(s) being considered. We
divide this interval into N subintervals of equal length so the size of the mesh length is given by
�x = (xmax − xmin)/N and the mesh points are given by xj = xmin + j�x, with j = 0, 1, . . . , N
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6 A.S. Ackleh et al.

(x0 = xmin, xN = xmax). We denote by K the number of time steps taken over the finite interval
[0, T] so the time points are tk = k�t, for k = 0, 1, . . . , K and �t = T/K.

We denote by Si,k
j and Ii,k

j the numerical approximations of the densities of susceptible
and infected fish, Si(tk , xj) and Ii(tk , xj), respectively. We use M k , Bk

a, and Bk
u to denote

the approximations of M (tk), Ba(tk), and Bu(tk). We let B0
a, B0

u, M 0, Si,0
j , and Ii,0

j repre-
sent the initial conditions for the variables Ba, Bu, M, Si, and Ii, respectively. We denote
by gi,k

j , g̃i,k
j , μi,k

j , μ̃i,k
j , β i,k

j , β̃ i,k
j , ci

1,j, c̃i
1,j, ci

2,j, c̃i
2,j, and ρ i

j the values of gi(Pk , xj), g̃i(Pk , xj),

μi(Pk , xj), μ̃i(Pk , xj), β i(Pk , xj), β̃ i(Pk , xj), ci
1(xj), c̃i

1(xj), ci
2(xj), c̃i

2(xj), and ρ i(xj), respectively.
We define the finite difference operators

�+ui,k
j = ui,k

j+1 − ui,k
j , 0 ≤ j ≤ N − 1, �−ui,k

j = ui,k
j − ui,k

j−1, 1 ≤ j ≤ N .

We define total variation, the �1 norm, and the �∞ norm by

TV(ui,k) =
N−1∑
j=0

|ui,k
j+1 − ui,k

j |,

‖ui,k‖1 =
N∑

j=1

|ui,k
j |�x, ‖ui,k‖∞ = max

0≤j≤N
|ui,k

j |.

A special summation notation will be used throughout the paper and is defined by

j2∑
j=j1

�

ai,k
j = 3

2
ai,k

j1 + 1

2
ai,k

j2 +
j2−1∑

j=j1+1

ai,k
j . (7)

We develop the discretization of Equation (2) by using the discretization of Equation (5),
which is given by

Li,k
j = ν1δ1Bk

u + ν2δ2Bk
a + ν3ζci

2,jM
k + ν4ci

1,jB
k
u, (8)

and the result is

Si,k+1
j − Si,k

j

�t
+ hi,k

j+1/2 − hi,k
j−1/2

�x
+ μ

i,k
j Si,k+1

j + Li,k
j Si,k+1

j = 0,

Ii,k+1
j − Ii,k

j

�t
+ ĥi,k

j+1/2 − ĥi,k
j−1/2

�x
+ μ̃

i,k
j I i,k+1

j − Li,k
j Si,k+1

j = 0,

Bk+1
a − Bk

a

�t
=

m∑
i=1

⎡
⎣ N∑

j=1

�

ρ i
j I

i,k+1
j �x

⎤
⎦− δ2Bk+1

a Pk+1 − λBk+1
a ,

Bk+1
u − Bk

u

�t
=Hk + λBk+1

a − cM M ∗Bk+1
u −δ1Bk+1

u Pk+1 − Bk+1
u

m∑
i=1

N∑
j=1

� [
ci

1,jS
i,k+1
j + c̃i

1,jI
i,k+1
j

]
�x,

M k+1 − M k

�t
= εcM (M

∗ − M k+1)Bk+1
u − μM M k+1 − M k+1

m∑
i=1

N∑
j=1

� [
ci

2,jS
i,k+1
j + c̃i

2,jI
i,k+1
j

]
�x,

(9)

where 0 ≤ k ≤ K − 1 and 1 ≤ j ≤ N .
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Journal of Biological Dynamics 7

The numerical fluxes, hi,k
j+1/2 and ĥi,k

j+1/2, are given by

hi,k
j+1/2 =

⎧⎨
⎩gi,k

j Si,k
j + gi,k

j+1 − gi,k
j

2
Si,k

j + gi,k
j

2
mm(�+Si,k

j ,�−Si,k
j ), j = 2, . . . , N − 2,

gi,k
j Si,k

j , j = 0, 1, N − 1, N ,

ĥi,k
j+1/2 =

⎧⎨
⎩g̃i,k

j I i,k
j + g̃i,k

j+1 − g̃i,k
j

2
Ii,k
j + g̃i,k

j

2
mm(�+Ii,k

j ,�−Ii,k
j ), j = 2, . . . , N − 2,

g̃i,k
j I i,k

j , j = 0, 1, N − 1, N ,

(10)

where mm(a, b) = ((sign(a)+ sign(b))/2) min(|a|, |b|). We would like the reader to note that

0 ≤ mm(a, b)

a
≤ 1, 0 ≤ mm(a, b)

b
≤ 1, ∀a, b 
= 0. (11)

Clearly, the scheme (9) is second-order accurate in space except at the boundary, where it is
first-order accurate. This guarantees second-order accuracy in space in the L1 norm. In order to
calculate the values at the boundary for susceptible fish, and the total population at each time
step, tk , we use a right-hand rectangular rule on the first interval and the trapezoid rule on the
remaining intervals. This gives the following quadrature rules:

gi,k
0 Si,k

0 =
m∑
�=1

pi�
N∑

j=1

�

(β
�,k
j S�,kj + β̃

�,k
j I�,kj )�x, (12)

Pk =
m∑

i=1

N∑
j=1

�

(Si,k
j + Ii,k

j )�x. (13)

We note that the approximations (12) and (13) are second-order accurate in space. Addition-
ally, as previously mentioned, there is no vertical transmission of the disease and therefore the
boundary condition for infected fish is given as

Ii,k
0 = 0. (14)

The five equations of Equation (9) can be written as follows:

Si,k+1
j (1 +�tμi,k

j +�tLi,k
j ) = Si,k

j − �t

�x
(hi,k

j+1/2 − hi,k
j−1/2),

Ii,k+1
j (1 +�tμ̃i,k

j ) = Ii,k
j − �t

�x
(ĥi,k

j+1/2 − ĥi,k
j−1/2)+�tLi,k

j Si,k+1
j ,

Bk+1
a (1 +�tδ2Pk+1 +�tλ) = Bk

a +�t
m∑

i=1

N∑
j=1

�

ρ i
j I

i,k+1
j �x,

Bk+1
u

⎛
⎝1 +�tcM M ∗ +�tδ1Pk+1 +�t

m∑
i=1

N∑
j=1

�

(ci
1,jS

i,k+1
j + c̃i

1,jI
i,k+1
j )�x

⎞
⎠

= Bk
u +�tHk +�tλBk+1

a ,

M k+1

⎛
⎝1 +�tεcM Bk+1

u +�tμM +�t
m∑

i=1

N∑
j=1

�

(ci
2,jS

i,k+1
j + c̃i

2,jI
i,k+1
j )�x

⎞
⎠

= M k +�tεcM M ∗Bk+1
u ,

(15)
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8 A.S. Ackleh et al.

for i = 1, . . . , m, k = 1, . . . , K − 1. We shall denote by

Fi,k
j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

gi,k
j , j = 1, N ,

1

2

(
gi,k

j+1 + gi,k
j + gi,k

j

mm(�+Si,k
j ,�−Si,k

j )

�−Si,k
j

)
, j = 2,

1

2

(
gi,k

j+1 + gi,k
j + gi,k

j

mm(�+Si,k
j ,�−Si,k

j )

�−Si,k
j

,

−gi,k
j−1

mm(�−Si,k
j ,�−Si,k

j−1)

�−Si,k
j

)
, j = 3, . . . , N − 2,

1

2

(
2gi,k

j − gi,k
j−1

mm(�−Si,k
j ,�−Si,k

j−1)

�−Si,k
j

)
, j = N − 1,

and

Gi,k
j =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

�−gi,k
j , j = 1, N ,

1
2�+gi,k

j +�−gi,k
j , j = 2,

1
2 (�+gi,k

j +�−gi,k
j ), j = 3, . . . , N − 2,

1
2�−gi,k

j , j = N − 1.

We use similar definitions for F̃i,k
j and G̃i,k

j . Simple calculations show that

0 ≤ Fi,k
j , F̃i,k

j ≤ 3
2 c, (16)

and

2(Fi,k
j − Gi,k

j ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2gi,k
j−1, j = 1, N ,

gi,k
j + gi,k

j−1

(
1 − mm(�−Si,k

j ,�−Sj−1)

�−Si,k
j

)
, j = N − 1,

2gi,k
j−1 + gi,k

j
mm(�+Si,k

j ,�−Si,k
j )

�−Si,k
j

, j = 2,

gi,k
j

(
1 + mm(�+Si,k

j ,�−Si,k
j )

�−Si,k
j

)
, j = 3, . . . , N − 2.

A similar expression can be derived for 2(F̃i,k
j − G̃i,k

j ). Thus,

Fi,k
j − Gi,k

j ≥ 0 and F̃i,k
j − G̃i,k

j ≥ 0. (17)

Introducing the above into Equation (15), one can compute the approximate solution explicitly
in the order specified below. Beginning with Equation (15), then computing the approximations
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Journal of Biological Dynamics 9

in Equation (12) and finally the boundary condition for infected fish, we have

Si,k+1
j = (1 − (�t/�x)Fi,k

j )S
i,k
j + (�t/�x)(Fi,k

j − Gi,k
j )S

i,k
j−1

1 +�tμi,k
j +�tLi,k

j

,

Ii,k+1
j = (1 − (�t/�x)F̃i,k

j )I
i,k
j + (�t/�x)(F̃i,k

j − G̃i,k
j )I

i,k
j−1 +�tLi,k

j Si,k+1
j

1 +�tμ̃i,k
j

,

Bk+1
a = Bk

a +�t
∑m

i=1

∑N
j=1

�
ρ i

j I
i,k+1
j �x

1 +�tδ2Pk+1 +�tλ
,

Bk+1
u = Bk

u +�tHk +�tλBk+1
a

1 +�tcM M ∗ +�tδ1Pk+1 +�t
∑m

i=1

∑N
j=1

�
(ci

1,jS
i,k+1
j + c̃i

1,jI
i,k+1
j )�x

,

M k+1 = M k +�tεcM M ∗Bk+1
u

1 +�tεcM Bk+1
u +�tμM +�t

∑m
i=1

∑N
j=1

�
(ci

2,jS
i,k+1
j + c̃i

2,jI
i,k+1
j )�x

,

Si,k+1
0 = 1

gi,k+1
0

m∑
�=1

pi�
N∑

j=1

�

(β
�,k+1
j S�,k+1

j + β̃
�,k+1
j I�,k+1

j )�x,

Ii,k+1
0 = 0.

(18)

Within this paper, we will use the following CFL-type condition concerning �t and �x:

(A8)
1

c
≥ �t

�x

3

2
.

4. Estimates for the finite difference approximations

We begin this section by showing that the system has a unique nonnegative solution and that the
difference approximations are bounded in the �1 norm.

Lemma 1 The system (9)–(12) has a unique nonnegative solution.

Proof Uniqueness is obvious from Equation (18). From (A5), we have that Si,0
j , Ii,0

j , B0
a, B0

u, M 0

are nonnegative. Assume, for some k > 0, that Si,k
j , Ii,k

j ≥ 0 for i = 1, . . . , m, j = 1, . . . , N and
Bk

a, Bk
u, M k ≥ 0. By (A1), (A8), and Equation (16), we have

1 − �t

�x
Fi,k

j ≥ 1 − �t

�x
c

3

2
≥ 0,

1 − �t

�x
F̃i,k

j ≥ 1 − �t

�x
c

3

2
≥ 0.

Hence, from Equations (17), (18), and Assumptions (A1)–(A7), Si,k+1
j , Ii,k+1

j , Bk+1
a , Bk+1

u , M k+1

≥ 0 for j = 1, . . . , N . From (A1) and (A3) and the last two equations of Equation (18), it follows
that Si,k+1

0 ≥ 0 and Ii,k+1
0 = 0. This establishes the result. �

The next lemma shows that Si and Ii are bounded in the �1 norm for i = 1, . . . , m and that the
model variables, Ba(t), Bu(t), and M (t) are also bounded.
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10 A.S. Ackleh et al.

Lemma 2 There is a positive constant C1 such that

m∑
i=1

(‖Si,k‖1 + ‖Ii,k‖1)+ |Bk
a| + |Bk

u| + |M k| ≤ C1.

Proof We begin by multiplying the first equation of Equation (9) by �x�t and collect like
terms. Summing over j = 1, . . . , N and i = 1, . . . , m gives

m∑
i=1

N∑
j=1

Si,k+1
j (1 +�tμi,k

j )�x =
m∑

i=1

N∑
j=1

Si,k
j �x −�t

m∑
i=1

N∑
j=1

(hi,k
j+1/2 − hi,k

j−1/2)

−�t
m∑

i=1

N∑
j=1

Li,k
j Si,k+1

j �x.

Using (A1), (A2), Equation (12), the fact that 1 +�tμi,k
j ≥ 1, and collapsing the telescoping

sum, we have

m∑
i=1

‖Si,k+1‖1 ≤
m∑

i=1

‖Si,k‖1 +�t
m∑

i=1

m∑
�=1

pi�
N∑

j=1

�

(β
�,k
j S�,kj + β̃

�,k
j I�,kj )�x

−�t
m∑

i=1

N∑
j=1

Li,k
j Si,k+1

j �x.

By (A3), the definition in Equation (7), and since
∑m

i=1 pi� = 1, we have

m∑
i=1

‖Si,k+1‖1 ≤
(

1 + 3

2
c�t

) m∑
i=1

‖Si,k‖1 + 3

2
c�t

m∑
i=1

‖Ii,k‖1 −�t
m∑

i=1

N∑
j=1

Li,k
j Si,k+1

j �x. (19)

Using similar techniques on the second equation of Equation (9), we have

m∑
i=1

‖Ii,k+1‖1 ≤
m∑

i=1

‖Ii,k‖1 +�t
m∑

i=1

N∑
j=1

Li,k
j Si,k+1

j �x. (20)

Adding Equations (19) and (20), we obtain by Assumption (A5),

m∑
i=1

(‖Si,k+1‖1 + ‖Ii,k+1‖1) ≤
(

1 + 3

2
c�t

) m∑
i=1

(‖Si,k‖1 + ‖Ii,k‖1)

≤ e(3/2)cT
m∑

i=1

(‖Si,0‖1 + ‖Ii,0‖1) ≡ CSI . (21)

Focusing on the third equation of Equation (18), we use Assumption (A7) and the definition
in Equation (7) to determine

|Bk+1
a | ≤

∣∣∣∣∣∣Bk
a +�t

m∑
i=1

N∑
j=1

�

ρ i
j I

i,k+1
j �x

∣∣∣∣∣∣
≤ |Bk

a| +�t
3

2
c

m∑
i=1

‖Ii,k+1‖1.
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Journal of Biological Dynamics 11

Thus,

|Bk
a| ≤ |B0

1| + T 3
2 cCSI .

The bounds for Bu and M are established similarly. Hence, the result follows. �

As a consequence of the above lemma, we now have that 0 ≤ Pk ≤ C1 for k = 1, . . . , K.
Hence, gi(P, x) is defined on a compact set and attains its minimum here. We let 0 < α ≤
min gi(P, x0) for P ∈ [0, C1] and i = 1, . . . , m. We denote D = [0, C1] × [xmin, xmax] and we will
use this throughout the remainder of the paper. Now, we establish the bound on the infinity norms
of the approximations Si,k

j and Ii,k
j .

Lemma 3 There exists a constant C2 such that

‖Si,k‖∞ + ‖Ii,k‖∞ ≤ C2.

Proof If Si,k+1
0 = ‖Si,k+1‖∞, then from the sixth equation of Equation (18), (A3), and using the

fact that pi� ≤ 1, we have

Si,k+1
0 = 1

gi,k+1
0

m∑
�=1

pi�
N∑

j=1

�

(β
�,k+1
j S�,k+1

j + β̃
�,k+1
j I�,k+1

j )�x

≤ 3c

2α

m∑
�=1

N∑
j=1

(S�,k+1
j + I�,k+1

j )�x,

≤ 3c

2α

m∑
�=1

(‖S�,k+1‖1 + ‖I�,k+1‖1).

By Lemma 2

‖Si,k+1‖∞ ≤ 3c

2α
C1.

If ‖Si,k+1‖∞ is not obtained from the boundary, there exists an integer j0, 1 ≤ j0 ≤ N , such
that

Si,k+1
j0 = ‖Si,k+1‖∞.

Beginning with the first equation in Equation (18), using (A2), and Lemma 4, we have

Si,k+1
j0 ≤

(
1 − �t

�x
Fi,k

j0

)
Si,k

j0 + �t

�x
(Fi,k

j0 − Gi,k
j0 )S

i,k
j0−1.

Using the facts that Si,k
j0−1 ≤ Si,k

j0 and Fi,k
j0 − Gi,k

j0 ≥ 0, we reach

Si,k+1
j0 ≤ Si,k

j0 − �t

�x
Gi,k

j0 Si,k
j0 .

Note that for 1 ≤ j ≤ N ,

−Gi,k
j ≤ 3

2
max

1≤j≤N
(gi,k

j−1 − gi,k
j ).
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12 A.S. Ackleh et al.

Hence,

‖Si,k+1‖∞ ≤ ‖Si,k‖∞ + �t

�x

(
3

2
max

1≤j≤N
(gi,k

j−1 − gi,k
j )

)
‖Si,k‖∞,

≤ ‖Si,k‖∞ + 3

2
�t max

(P,x)∈D

|gi
x(P, x)|‖Si,k‖∞,

≤
(

1 + 3

2
c�t

)
‖Si,k‖∞.

Thus,

‖Si,k‖∞ ≤ max

{
3c

2α
C1

(
1 + 3

2
c�t

)k−1

,

(
1 + 3

2
c�t

)k

‖Si,0‖∞

}
< C2,S . (22)

We similarly consider ‖Ii,k+1‖∞. Since Ii,k
0 = 0 for k = 1, . . . , K, ‖Ii,k‖∞ cannot be obtained

at the left boundary. Using (A1), Equations (16), (17), (22), Lemma 4, and methods similar to
the above, we have

‖Ii,k+1‖∞ ≤
(

1 + 3

2
c�t

)
‖Ii,k‖∞ +�t4c3C1C2,S .

Therefore, we have

‖Ii,k‖∞ ≤
(

1 + 3

2
c�t

)k

‖Ii,0‖∞ +
k−1∑
�=0

(
1 + 3

2
c�t

)k−1−�
�t4c3C1C2,S < C2,I . (23)

Combining Equations (22) and (23) and letting C2 > C2,S + C2,I , we obtain the result. �

The results contained in the following lemma are all necessary to show that the approximations
Si,k

j and Ii,k
j have bounded total variation.

Lemma 4 There exists positive constants C3, C4, C5, and C6 such that the following bounds
hold:

0 ≤ Li,k
j ≤ C3, TV(Li,k) ≤ C4,∣∣∣∣Pk+1 − Pk

�t

∣∣∣∣ ≤ C5,

∣∣∣∣∣
m∑

i=1

(Si,k+1
0 − Si,k

0 )

∣∣∣∣∣ ≤ C6.

Proof It is easy to verify that Li,k
j ≥ 0 from Lemma 1 and Assumptions (A4) and (A7). Then

from Equation (8) and incorporating Lemma 2 we have

Li,k
j ≤ c2C1 + c2C1 + c3C1 + c2C1 ≡ C3.

From Equation (8), we have

Li,k
j+1 − Li,k

j = ν3ζM k(ci
2,j+1 − ci

2,j)+ ν4Bk
u(c

i
1,j+1 − ci

1,j).

Applying absolute value and summing from j = 0, . . . , N − 1, we have

N−1∑
j=0

|Li,k
j+1 − Li,k

j | ≤ ν3ζM k
N−1∑
j=0

|ci
2,j+1 − ci

2,j| + ν4Bk
u

N−1∑
j=0

|ci
1,j+1 − ci

1,j|.
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Journal of Biological Dynamics 13

Thus, from (A4), (A7), and Lemma 2

TV(Li,k) ≤ c2C1 TV(ci
2)+ cC1 TV(ci

1)

≤ c3C1 + c2C1 ≡ C4.

By Equation (13)

Pk+1 − Pk =
m∑

i=1

N∑
j=1

�

(Si,k+1
j − Si,k

j )�x +
m∑

i=1

N∑
j=1

�

(Ii,k+1
j − Ii,k)�x.

Incorporating the first two equations of Equation (9), applying absolute value to both sides, then
collecting like terms, we have

|Pk+1 − Pk| ≤ 3

2

m∑
i=1

⎧⎨
⎩

N∑
j=1

[
�t

�x
|hi,k

j+1/2 − hi,k
j−1/2| +�tμi,k

j Si,k+1
j

]

+
N∑

j=1

[
�t

�x
|ĥi,k

j+1/2 − ĥi,k
j−1/2| +�tμ̃i,k

j I i,k+1
j

]⎫⎬
⎭�x.

Collapsing the telescoping sums, acknowledging gi,k
N , g̃i,k

N , Ii,k+1
0 = 0, and incorporating the

boundary condition from Equation (12) result in

|Pk+1 − Pk| ≤ 3

2

m∑
i=1

⎧⎨
⎩

m∑
�=1

pi�
N∑

j=1

�

(β
�,k
j S�,kj + β̃

�,k
j I�,kj )�x�t +

N∑
j=1

μ
i,k
j Si,k+1

j �t�x

+
N∑

j=1

μ̃
i,k
j I i,k+1

j �t�x

⎫⎬
⎭ .

Using (A2), (A3) and the fact that
∑m

i=1 pi� = 1 secures

|Pk+1 − Pk| ≤ 3

2

{
3

2
c

m∑
�=1

(‖S�,k‖1 + ‖I�,k‖1)�t + c
m∑

i=1

(‖Si,k+1‖1 + ‖Ii,k+1‖1)�t

}

≤ 15

4
cC1�t ≡ C5�t.

From the sixth equation of Equation (18), we have

m∑
i=1

(Si,k+1
0 −Si,k

0 ) ≤ 1

α

m∑
i=1

m∑
�=1

pi�

[
3

2
(β

�,k+1
1 S�,k+1

1 − β
�,k
1 S�,k1 )�x + 3

2
(β̃

�,k+1
1 I�,k+1

1 − β̃
�,k
1 I�,k1 )�x

+ 1

2
(β

�,k+1
N S�,k+1

N − β
�,k
N S�,kN )�x + 1

2
(β̃

�,k+1
N I�,k+1

N − β̃
�,k
N I�,kN )�x

+
N−1∑
j=2

(β
�,k+1
j S�,k+1

j − β
�,k
j S�,kj )�x)+

N−1∑
j=2

(β̃
�,k+1
j I�,k+1

j − β̃
�,k
j I�,kj )�x

⎤
⎦ .

(24)
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14 A.S. Ackleh et al.

By a simple manipulation, we have

m∑
i=1

(Si,k+1
0 − Si,k

0 ) ≤ 3

2α

m∑
i=1

m∑
�=1

pi�
N∑

j=1

(β
�,k+1
j S�,k+1

j − β
�,k
j S�,kj + β̃

�,k+1
j I�,k+1

j − β̃
�,k
j I�,kj )�x.

Using similar methods from the proof of Lemma 7 in [8], we see that there is a positive constant
ω1 such that ∣∣∣∣∣∣

m∑
i=1

m∑
�=1

pi�
N∑

j=1

(β
�,k+1
j S�,k+1

j − β
�,k
j S�,kj + β̃

�,k+1
j I�,k+1

j − β̃
�,k
j I�,kj )�x

∣∣∣∣∣∣
=
∣∣∣∣∣∣

m∑
�=1

N∑
j=1

(β
�,k+1
j S�,k+1

j − β
�,k
j S�,kj + β̃

�,k+1
j I�,k+1

j − β̃
�,k
j I�,kj )�x

∣∣∣∣∣∣ ,
≤ ω1�t.

Hence, ∣∣∣∣∣
m∑

i=1

(Si,k+1
0 − Si,k

0 )

∣∣∣∣∣ ≤ 3

2α
ω1�t ≡ C6�t.

�

In the next lemma, we show that the approximations Si,k
j and Ii,k

j have bounded total variation.

Lemma 5 There exists a positive constant C7 such that

TV(Si,k)+ TV(Ii,k) ≤ C7.

Proof We begin by rewriting the first equation of Equation (18) as

Si,k+1
j (1 +�tμi,k

j +�tLi,k
j ) = Si,k

j − �t

�x
Fi,k

j (S
i,k
j − Si,k

j−1)− �t

�x
Gi,k

j Si,k
j−1.

Then,

Si,k+1
j+1 (1 +�tμi,k

j+1 +�tLi,k
j+1)− Si,k+1

j (1 +�tμi,k
j +�tLi,k

j )

= Si,k
j+1 − �t

�x
Fi,k

j+1(S
i,k
j+1 − Si,k

j )− �t

�x
Gi,k

j+1Si,k
j

− Si,k
j + �t

�x
Fi,k

j (S
i,k
j − Si,k

j−1)+ �t

�x
Gi,k

j Si,k
j−1.

Grouping terms in an appropriate way, we have

(1 +�tμi,k
j+1 +�tLi,k

j+1)(S
i,k+1
j+1 − Si,k+1

j )+�tSi,k+1
j (μ

i,k
j+1 − μ

i,k
j )+�tSi,k+1

j (Li,k
j+1 − Li,k

j )

= (Si,k
j+1 − Si,k

j )− �t

�x
Fi,k

j+1(S
i,k
j+1 − Si,k

j )− �t

�x
Gi,k

j+1Si,k
j

+ �t

�x
Fi,k

j (S
i,k
j − Si,k

j−1)+ �t

�x
Gi,k

j Si,k
j−1.
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Rearranging the terms in the previous equation yields

(1 +�tμi,k
j+1 +�tLi,k

j+1)(S
i,k+1
j+1 − Si,k+1

j )

= (Si,k
j+1 − Si,k

j )

(
1 − �t

�x
Fi,k

j+1

)
+ �t

�x
(Fi,k

j − Gi,k
j )(S

i,k
j − Si,k

j−1)

− �t

�x
Si,k

j (G
i,k
j+1 − Gi,k

j )−�tSi,k+1
j (μ

i,k
j+1 − μ

i,k
j )−�tSi,k+1

j (Li,k
j+1 − Li,k

j ).

We now apply the absolute value, then sum over j = 1, . . . , N − 1 and use the fact that 1 +
�tμi,k

j+1 +�tLi,k
j+1 ≥ 1 to obtain

TV(Si,k+1) ≤ (1 +�tμi,k
1 +�tLi,k

1 )|Si,k+1
1 − Si,k+1

0 |

+
N−1∑
j=1

∣∣∣∣(Si,k
j+1 − Si,k

j )

(
1 − �t

�x
Fi,k

j+1

)
+ �t

�x
(Fi,k

j − Gi,k
j )(S

i,k
j − Si,k

j−1)

∣∣∣∣
+ �t

�x

N−1∑
j=1

Si,k
j |Gi,k

j+1 − Gi,k
j |

+�t
N−1∑
j=1

Si,k+1
j (|μi,k

j+1 − μ
i,k
j | + |Li,k

j+1 − Li,k
j |). (25)

We now estimate each term separately. Incorporating the first equation from Equation (18), (A1),
(A2), and Lemma 4 into the first term on the right-hand side of Equation (25), we have

(1 +�tμi,k
1 +�tLi,k

1 )|Si,k+1
1 − Si,k+1

0 |

=
∣∣∣∣Si,k

1

(
1 − �t

�x
gi,k

1

)
+ �t

�x
gi,k

0 Si,k
0 − (1 +�tμi,k

1 +�tLi,k
1 )S

i,k+1
0

∣∣∣∣
≤ |Si,k

1 − Si,k
0 |
(

1 − �t

�x
gi,k

1

)
+ |Si,k+1

0 − Si,k
0 |

+ �t

�x
Si,k

0 |gi,k
1 − gi,k

0 | +�tSi,k
0 (μ

i,k
1 + Li,k

1 )

≤ |Si,k
1 − Si,k

0 |
(

1 − �t

�x
gi,k

1

)
+ C6�t + cC2�t + C2(c + C3)�t. (26)

For the second term on the right-hand side of Equation (25), we use (A1) to realize

N−1∑
j=1

∣∣∣∣(Si,k
j+1 − Si,k

j )

(
1 − �t

�x
Fi,k

j+1

)
+ �t

�x
(Fi,k

j − Gi,k
j )(S

i,k
j − Si,k

j−1)

∣∣∣∣
≤

N−1∑
j=1

|Si,k
j+1 − Si,k

j | − �t

�x

N−1∑
j=1

(Fi,k
j+1|Si,k

j+1 − Si,k
j | − Fi,k

j |Si,k
j − Si,k

j−1|)

+�t
N−1∑
j=1

3

2
max
(P,x)∈D

|gi
x(P, x)||Si,k

j − Si,k
j−1|

≤
N−1∑
j=1

|Si,k
j+1 − Si,k

j | + �t

�x
gi,k

1 |Si,k
1 − Si,k

0 | + 3

2
c�t

N−1∑
j=1

|Si,k
j − Si,k

j−1|. (27)
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16 A.S. Ackleh et al.

Adding Equations (26) and (27), we determine

(1 +�tμi,k
1 +�tLi,k

1 )|Si,k+1
1 − Si,k+1

0 |

+
N−1∑
j=1

∣∣∣∣(Si,k
j+1 − Si,k

j )

(
1 − �t

�x
Fi,k

j+1

)
+ �t

�x
(Fi,k

j − Gi,k
j )(S

i,k
j − Si,k

j−1)

∣∣∣∣
≤ TV(Si,k)

(
1 + 3

2
c�t

)
+ C6�t + cC2�t + C2(c + C3)�t.

Incorporating (A1), and Lemmas 2 and 3 into the third term on the right-hand side of
Equation (25), we have

�t

�x

N−1∑
j=1

Si,k
j |Gi,k

j+1 − Gi,k
j | = �t

�x

N−3∑
j=3

Si,k
j |Gi,k

j+1 − Gi,k
j | + �t

�x

∑
j=1,2,N−1,N−2

Si,k
j |Gi,k

j+1 − Gi,k
j |

≤ �t

�x

N−3∑
j=3

Si,k
j

1

2
|(gi,k

j+2 − 2gi,k
j+1 + gi,k

j )+ (gi,k
j+1 − 2gi,k

j + gi,k
j−1)|

+ 8
�t

�x

3

2

∑
j=1,2,N−1,N−2

Si,k max
0≤j≤N−1

|gi,k
j+1 − gi,k

j |

≤ �t‖Si,k‖1 max
(P,x)∈D

|gi
xx(P, x)| + 8�t

3

2
‖Si,k‖∞ max

(P,x)∈D

|gi
x(P, x)|

≤ cC1�t + 12cC2�t.

For the last term on the right-hand side of Equation (25), we use (A2), and Lemmas 4 and 3 to
obtain

�t
N−1∑
j=1

Si,k+1
j

(∣∣∣∣∣μ
i,k
j+1 − μ

i,k
j

�x

∣∣∣∣∣�x + |Li,k
j+1 − Li,k

j |
)

≤ �t‖Si,k+1‖1 max
(P,x)∈D

|μi
x(P, x)| +�t‖Si,k+1‖∞TV(Li,k)

≤ cC1�t + C2C3�t.

We let

C7,S = C6 + cC2 + C2(c + C3)+ cC1 + 12cC2 + cC1 + C2C3,

and therefore have

TV(Si,k+1) ≤ TV(Si,k)

(
1 + 3

2
c�t

)
+ C7,S�t

≤ TV(Si,0)

(
1 + 3

2
c�t

)k+1

+
k+1∑
l=1

C7,S

(
1 + 3

2
c�t

)k+1−l

�t. (28)

Using similar methods beginning with the fourth equation of Equation (18), then using (A1),
(A2), Lemmas 2 and 4, and letting

C7,I = C3C2 + cC1 + 12cC2 + C2C4 + TV(Si,k+1)C3 + cC4,
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we find that

TV(Ii,k+1) ≤ TV(Ii,k)

(
1 + 3

2
c

)
+ C7,I�t

≤ TV(Ii,0)

(
1 + 3

2
c�t

)
+

k+1∑
l=1

C7,I

(
1 + 3

2
c�t

)k+1−l

�t. (29)

Combining Equations (28) and (29), we have established the result. �

The next lemma shows that the numerical approximations satisfy a Lipschitz-type condition
in t.

Lemma 6 There is a positive constant C8 such that for any integers q1 > q2 ≥ 0

N∑
j=1

∣∣∣∣∣S
i,q1
j − Si,q2

j

�t

∣∣∣∣∣�x ≤ C8(q1 − q2),
N∑

j=1

∣∣∣∣∣ I
i,q1
j − Ii,q2

j

�t

∣∣∣∣∣�x ≤ C8(q1 − q2),

∣∣∣∣B
q1
a − Bq2

a

�t

∣∣∣∣ ≤ C8(q1 − q2),

∣∣∣∣B
q1
u − Bq2

u

�t

∣∣∣∣ ≤ C8(q1 − q2),

∣∣∣∣M q1 − M q2

�t

∣∣∣∣ ≤ C8(q1 − q2).

Proof From the first equation of Equation (18), applying (A1), (16), and Lemmas 2–5, we have

N∑
j=1

∣∣∣∣∣S
i,k+1
j − Si,k

j

�t

∣∣∣∣∣�x =
N∑

j=1

∣∣∣∣∣F
i,k
j (S

i,k
j − Si,k

j−1)+ Gi,k
j Si,k

j−1 + Si,k
j (μ

i,k
j + Li,k

j )�x

1 +�tμi,k
j +�tLi,k

j

∣∣∣∣∣ ,

≤
N∑

j=1

(Fi,k
j |Si,k

j − Si,k
j−1| + |Gi,k

j |Si,k
j−1 + Si,k

j (μ
i,k
j + Li,k

j )�x),

≤ 3

2
c TV(Si,k)+ 3

2
max
(P,x)∈D

|gi
x(P, x)|‖Si,k‖1 + ‖Si,k‖1(c + C2),

≤ 3

2
cC7 +

(
5

2
c + C3

)
C1 ≡ C8,S .

Therefore,

N∑
j=1

∣∣∣∣∣S
i,q1
j − Si,q2

j

�t

∣∣∣∣∣�x ≤
q1∑

k=q2

N∑
j=1

∣∣∣∣∣S
i,k+1
j − Si,k

j

�t

∣∣∣∣∣�x,

≤ C8,S(q1 − q2). (30)

Turning our attention to the second equation of Equation (18), and following similar arguments
as above, we obtain

N∑
j=1

∣∣∣∣∣ I
i,k+1
j − Ii,k

j

�t

∣∣∣∣∣�x ≤
N∑

j=1

∣∣∣∣∣ F̃
i,k
j (I

i,k
j − Ii,k

j−1)+ G̃i,k
j I i,k

j−1 +�tμ̃i,k
j I i,k

j +�tLi,k
j Si,k

j

1 +�tμ̃i,k
j

∣∣∣∣∣ ,

≤
N∑

j=1

(F̃i,k
j |Ii,k

j − Ii,k
j−1| + |G̃i,k

j |Ii,k
j−1 +�tμ̃i,k

j I i,k
j +�tLi,k

j Si,k
j ),
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18 A.S. Ackleh et al.

≤ 3

2
c TV(Ii,k)+ 3

2
max
(P,x)∈D

|g̃i
x(P, x)|‖Ii,k‖1 + c‖Ii,k‖1 + C2‖Si,k+1‖1,

≤ 3

2
cC7 +

(
5

2
c + C3

)
C1 ≡ C8,I .

Thus,

N∑
j=1

∣∣∣∣∣ I
i,q1
j − Ii,q2

j

�t

∣∣∣∣∣�x ≤
q1∑

k=q2

N∑
j=1

∣∣∣∣∣ I
i,k+1
j − Ii,k

j

�t

∣∣∣∣∣�x

≤ C8,I(q1 − q2). (31)

The bounds for the third, fourth, and fifth equations of Equation (18) are established in a very
similar manner as was used in [8] and are

∣∣∣∣B
q1
a − Bq2

a

�t

∣∣∣∣ =
q1∑

k=q2

∣∣∣∣Bk+1
a − Bk

a

�t

∣∣∣∣ ≤ cC1

(
5

2
+ C1

)
(q1 − q2),

∣∣∣∣B
q1
u − Bq2

u

�t

∣∣∣∣ =
q1∑

k=q2

∣∣∣∣Bk+1
u − Bk

u

�t

∣∣∣∣ ≤ (c + cC1 + c2C1 + 2cC2
1)(q1 − q2),

∣∣∣∣M q1 − M q2

�t

∣∣∣∣ =
q1∑

k=q2

∣∣∣∣M k+1 − M k

�t

∣∣∣∣ ≤ cC1(c
2 + cC1 + C1 + 1)(q1 − q2).

(32)

Hence, the result follows. �

5. Convergence of the difference approximations to the unique weak solution

Following [37], we define a family of functions {Si
�t,�x}, {Ii

�t,�x}, {Ba�t}, {Bu�t}, and {M�t} by

S
i
�t,�x(t, x) = Si,k

j ,

I
i
�t,�x(t, x) = Ii,k

j ,

Ba�t(t) = Bk
a + Bk+1

a − Bk
a

�t
(t − tk),

Bu�t(t) = Bk
u + Bk+1

u − Bk
u

�t
(t − tk),

M�t(t) = M k + M k+1 − M k

�t
(t − tk),

for x ∈ [xj, xj+1), t ∈ [tk , tk+1), where j = 0, . . . , N − 1 and k = 0, . . . , K − 1. Then, the sets of
functions {Si

�t,�x} and {Ii
�t,�x} are compact in the topology of L1((0, T)× (xmin, xmax)) for each

i = 1, . . . , m. Also, {Ba�t}, {Bu�t}, and {M�t} are compact in the topology of C(0, T).

Theorem 7 There exist sequences {Si
�tl ,�xl

} ⊂ {Si
�t,�x} and {Ii

�tl ,�xl
} ⊂ {Ii

�t,�x} that converge
to BV([0, T] × [xmin, xmax]) functions Si(t, x) and Ii(t, x), respectively, for each i = i, . . . , m.
There are also sequences {Ba�tl

} ⊂ {Ba�t}, {Bu�tl
} ⊂ {Bu�t}, and {M�tl } ⊂ {M�t} that converge,
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respectively, to functions Ba(t), Bu(t), and M (t) ∈ C[0, T]. This happens in the sense that for all
t > 0 ∫ xmax

xmin

|Si
�tl ,�xl

(t, x)− Si(t, x)| dx → 0,

∫ xmax

xmin

|Ii
�tl ,�xl

(t, x)− Ii(t, x)| dx → 0,

∫ T

0

∫ xmax

xmin

|Si
�tl ,�xl

(t, x)− Si(t, x)| dx dt → 0,

∫ T

0

∫ xmax

xmin

|Ii
�tl ,�xl

(t, x)− Ii(t, x)| dx dt → 0,

and

max
t∈[0,T]

|Ba�tl
(t)− Ba(t)| → 0, max

t∈[0,T]
|Bu�tl

(t)− Bu(t)| → 0, max
t∈[0,T]

|M�tl (t)− M (t)| → 0,

for each i and as l → ∞. Furthermore, there exists a positive constant C8 such that the limit
functions satisfy

‖S‖BV([0,T]×[xmin,xmax]) + ‖I‖BV([0,T]×[xmin,xmax]) + ‖Ba‖C[0,T] + ‖Bu‖C[0,T] + ‖M‖C[0,T] ≤ C8.

Proof The results for Si(t, x) and Ii(t, x) follow from Lemmas 2 to 6 and the proof of Lemma
16.7 in [37, p. 276]. The results for Ba(t), Bu(t), and M (t) follow from the Ascoli-Arzela theorem
[42, p. 74]. �

In the next theorem, we show that the set of limit functions Si(t, x), Ii(t, x), Ba(t), Bu(t), and
M (t) constructed from our difference scheme is a weak solution of Equations (2)–(4).

Theorem 8 The set of limit functions Si(t, x), Ii(t, x), Ba(t), Bu(t), and M(t) defined in
Theorem 7 is a weak solution of Equations (2)–(4) and satisfies

‖Si(t, ·)‖1 + ‖Ii(t, ·)‖1 + |Ba(t)| + |Bu(t)| + |M (t)| ≤ C9

and

‖Si‖L∞((0,T)×(xmin,xmax)) + ‖Li‖L∞((0,T)×(xmin,xmax)) + ‖Ba‖C[0,T] + ‖Bu‖C[0,T] + ‖M‖C[0,T] ≤ C10,

for some positive constants C9 and C10.

Proof Let ϕi, ς i ∈ C1([0, T] × [xmin, xmax]) for i = 1, . . . , m and denote the finite difference
approximations of ϕi(tk , xj), ς i(tk , xj) by ϕi,k

j and ς i,k
j , respectively. Multiplying the first equation

of (9) by ϕi,k+1
j and rearranging terms, we arrive at

Si,k+1
j ϕ

i,k+1
j − Si,k

j ϕ
i,k
j = Si,k

j (ϕ
i,k+1
j − ϕ

i,k
j )−�tϕi,k+1

j Si,k+1
j (μ

i,k
j + Li,k

j )

+ �t

�x
(hi,k

j−1/2(ϕ
i,k+1
j − ϕ

i,k+1
j−1 )+ ϕ

i,k+1
j−1 hi,k

j−1/2 − ϕ
i,k+1
j hi,k

j+1/2).
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20 A.S. Ackleh et al.

Multiplying the above by�x then summing over j = 1, . . . , N , summing over k = 0, . . . , K − 1,
then using (A1) and incorporating the boundary condition from Equation (12), we have

N∑
j=1

(Si,K
j ϕ

i,k
j − Si,0

j ϕ
i,0
j )�x =

K−1∑
k=0

N∑
j=1

[Si,k
j (ϕ

i,k+1
j − ϕ

i,k
j )− ϕ

i,k+1
j Si,k+1

j (μ
i,k
j + Li,k

j )�t]�x

+
K−1∑
k=0

N−1∑
j=0

hi,k
j+1/2

ϕ
i,k+1
j+1 − ϕ

i,k
j

�x
�x�t

+
K−1∑
k=0

ϕ
i,k+1
0

m∑
�=1

pi�
N∑

j=1

�

(β
�,k
j S�,kj + β̃

�,k
j I�,kj )�x�x. (33)

Note that by Equation (10), we have

K−1∑
k=0

N−1∑
j=0

hi,k
j+1/2

ϕ
i,k+1
j+1 − ϕ

i,k
j

�x
�t�x =

K−1∑
k=0

⎡
⎣gi,k

0 Si,k
0 + gi,k

1 Si,k
1 + gi,k

N−1Si,k
N−1 +

∑
j∈J1

1

2
(gi,k

j+1 + gi,k
j )S

i,k
j

+
∑
j∈J2

1

2
(gi,k

j+1Si,k
j + gi,k

j Si,k
j+1)

+
∑
j∈J3

1

2
(gi,k

j+1Si,k
j + 2gi,k

j Si,k
j − gi,k

j Si,k
j−1)

⎤
⎦ ϕi,k+1

j+1 − ϕ
i,k
j

�x
�t�x,

(34)

where J1 = {2 ≤ j ≤ N − 2 : sign(�+Si,k
j )sign(�−Si,k

j ) = −1, or sign(�+Si,k
j )sign(�−Si,k

j ) =
0}, J2 = {2 ≤ j ≤ N − 2 : �−Si,k

j ≥ �+Si,k
j > 0, or �−Si,k

j ≤ �+Si,k
j < 0}, and J3 = {2 ≤

j ≤ N − 2 : �+Si,k
j > �−Si,k

j > 0, or �+Si,k
j < �−Si,k

j < 0}. Therefore, we can rewrite
Equation (33) as

N∑
j=1

(Si,K
j ϕ

i,k
j − Si,0

j ϕ
i,0
j )�x =

K−1∑
k=0

N∑
j=1

[Si,k
j (ϕ

i,k+1
j − ϕ

i,k
j )−�tϕi,k+1

j Si,k+1
j (μ

i,k
j + Li,k

j )]�x

+
K−1∑
k=0

⎡
⎣gi,k

0 Si,k
0 + gi,k

1 Si,k
1 + gi,k

N−1Si,k
N−1 +

∑
j∈J1

1

2
(gi,k

j+1 + gi,k
j )S

i,k
j

+
∑
j∈J2

1

2
(gi,k

j+1Si,k
j + gi,k

j Si,k
j+1)

+
∑
j∈J3

1

2
(gi,k

j+1Si,k
j + 2gi,k

j Si,k
j − gi,k

j Si,k
j−1)

⎤
⎦ ϕi,k+1

j+1 − ϕ
i,k
j

�x
�x�t

+
K−1∑
k=0

ϕ
i,k+1
0

m∑
�=1

pi�
N∑

j=1

�

(β
�,k
j S�,kj + β̃

�,k
j I�,kj )�x�x. (35)
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Similarly, we multiply the second equation of Equation (9) by ς i,k+1
j and rearrange terms to

acquire

Ii,k+1
j ς

i,k+1
j − Ii,k

j ς
i,k
j = Ii,k

j (ς
i,k+1
j − ς

i,k
j )−�tς i,k+1

j (μ̃
i,k
j I i,k+1

j − Li,k
j Si,k+1

j )

+ �t

�x
(ĥi,k

j−1/2(ς
i,k+1
j − ς

i,k+1
j−1 )+ ς

i,k+1
j−1 ĥi,k

j−1/2 − ς
i,k+1
j ĥi,k

j+1/2).

We multiply the above by�x then sum over j = 1, . . . , N , sum over k = 0, . . . , K − 1, then using
(A1) and incorporating the boundary condition for infected fish (14) we have

N∑
j=1

(Ii,K
j ς

i,K
j − Ii,0

j ς
i,0
j )�x =

K−1∑
k=0

N∑
j=1

[Ii,k
j (ς

i,k+1
j − ς

i,k
j )− ς

i,k+1
j (μ̃

i,k
j I i,k+1

j − Li,k+1
j Si,k+1

j )�t]�x

+
K−1∑
k=0

N−1∑
j=0

ĥi,k
j+1/2

ς
i,k+1
j+1 − ς

i,k+1
j

�x
�x�t. (36)

Note that by Equations (10) and (14), we have

K−1∑
k=0

N−1∑
j=0

ĥi,k
j+1/2

ς
i,k+1
j+1 − ϕ

i,k
j

�x
�t�x =

K−1∑
k=0

⎡
⎣ĝi,k

1 Ii,k
1 + ĝi,k

N−1Ii,k
N−1 +

∑
j∈J̃1

1

2
(ĝi,k

j+1 + ĝi,k
j )I

i,k
j

+
∑
j∈J̃2

1

2
(ĝi,k

j+1Ii,k
j + ĝi,k

j I i,k
j+1)

+
∑
j∈J̃3

1

2
(ĝi,k

j+1Ii,k
j + 2ĝi,k

j I i,k
j − ĝi,k

j I i,k
j−1)

⎤
⎦ ς i,k+1

j+1 − ς
i,k
j

�x
�t�x,

(37)

where J̃1, J̃2, and J̃3 are defined in a similar manner as was done for Si,k
j . Therefore, we can

rewrite Equation (36) as

N∑
j=1

(Ii,K
j ς

i,K
j − Ii,0

j ς
i,0
j )�x =

K−1∑
k=0

N∑
j=1

[Ii,k
j (ς

i,k+1
j − ς

i,k
j )− ς

i,k+1
j (μ̃

i,k
j I i,k+1

j − Li,k+1
j Si,k+1

j )�t]�x

+
K−1∑
k=0

⎡
⎣ĝi,k

1 Ii,k
1 + ĝi,k

N−1Ii,k
N−1 +

∑
j∈J1

1

2
(ĝi,k

j+1 + ĝi,k
j )I

i,k
j

+
∑
j∈J2

1

2
(ĝi,k

j+1Ii,k
j + ĝi,k

j I i,k
j+1)

+
∑
j∈J3

1

2
(ĝi,k

j+1Ii,k
j + 2ĝi,k

j I i,k
j − ĝi,k

j I i,k
j−1)

⎤
⎦ ς i,k+1

j+1 − ς
i,k
j

�x
�t�x. (38)

Using Equations (35) and (38) and then following a similar argument to those in the proof
of Lemma 16.9 (p. 279) in [37], it can be shown that the limit of the difference approxima-
tions defined in Theorem 7 is a weak solution to Equations (2)–(4) by allowing N , K → ∞. The
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22 A.S. Ackleh et al.

bounds on ‖Si‖L∞ and ‖Ii‖L∞ are obtained by taking the limit in the bounds of the difference
approximations in Lemmas 2 and 3. �

Remark 1 Using arguments similar to those in [8], it follows that the weak solution to the model
(2)–(4) is unique. From Theorems 7, 8 and the uniqueness of the weak solution, we determine
that the finite difference approximation (18) converges to the unique weak solution of the system
(2)–(4).

Note that the scheme (18) is of second-order accuracy in space but only first-order in time. In
order to develop second-order accuracy in time, we apply a second-order Richardson extrapola-
tion. We indicate the time step in parentheses, for example, Si,k

j (�t) is the approximated model
solution for susceptible fish using a given �t. A similar notation will be used for all variables.
To this end, let the vectors

uk(�t) = [S1,k
0 (�t), . . . , Sm,k

N (�t), I1,k
0 (�t), . . . , Im,k

N (�t), Bk
a(�t), Bk

u(�t), M k(�t)]T

denote the solution of the system (18) at time tk when the time mesh is �t. We denote the
second-order Richardson extrapolation iteration, ũk , at time tk for k = 1, . . . , K as

ũk = 2u2k

(
�t

2

)
− uk(�t). (39)

From Theorems 7 and 8, it follows that the Richardson extrapolation iteration, ũk in
Equation (39), converges to the unique weak solution of the system (2)–(4) in the sense given in
Theorem 7.

6. Numerical results

In this section, we demonstrate numerically the performance of the second-order scheme (9).
Throughout this discussion, we will use uniform mesh points for x and t. Using the Taylor
expansion, we find that (cf. [35])

hi,k
2+1/2 − hi,k

2−1/2

�x
= 3

2
(gS)x + O(�x),

hi,k
N−1+1/2 − hi,k

N−1−1/2

�x
= 1

2
(gS)x + O(�x),

ĥi,k
2+1/2 − ĥi,k

2−1/2

�x
= 3

2
(g̃I)x + O(�x),

ĥi,k
N−1+1/2 − ĥi,k

N−1−1/2

�x
= 1

2
(g̃I)x + O(�x).

Based on this analysis, it is more accurate to adjust the second interval x2 − x1 from �x to
(3/2)�x, and to adjust the second to the last interval xN−1 − xN−2 from �x to (1/2)�x. This
is done in the scheme only and is done without changing the values of x3 or xN−2. One could
show using the arguments in the previous sections that the stability and convergence of the
scheme would not be affected. Additionally, for all the computations presented here xmin = 0
and xmax = 1.

6.1. Convergence of a simplified linear model

To illustrate that our approximation scheme that is presented in Section 3 is in fact second order,
we calculate the error between the scheme and an exact solution. We cannot obtain a solution to
the full model by analytic means, so we make some simplifications by eliminating the nonlinear
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Table 1. Nonzero parameter values for the simplified
(linear) model.

Parameter Value Parameter Value

δ1 1/2 δ2 1/2
cM 1/4 μM 1
M ∗ 20 B0

a 5
B0

u 3 M 0 10

Table 2. Simple growth, death, and fecundity functions.

Growth Death Fecundity

g(P, x) = 1 − x μ(P, x) = 1 β(P, x) = 1

e − 1
g̃(P, x) = 0.5(1 − x) μ̃(P, x) = 1 β̃(P, x) = 0

terms. We will use this exact solution for comparison with our approximated solution to the
simplified model.

The exact solution to the linear version of the model (2)–(4) was developed in [8] and we will
provide a summary here. Without loss of generality, we take m = 1 (one physiological class)
and we will denote S1(t, x) by S(t,x) (similar notation will be used for the other functions with
dependency on physiological class) for simplicity. We have included the parameter values for the
simplified system in Table 1. Only the parameters needed in the simplified system are included,
as the other parameters were given a value of zero to simplify the model (2)–(4). The values
were chosen purely to demonstrate the achievement of the designed order of accuracy and are
not biologically relevant. Simple growth, death, and fecundity kernels are given in Table 2. We
add the nonhomogeneous terms

f1(t, x) = −x ex−t + S(t, x)(ν1δ1Bu(t)+ ν2δ2Ba(t)+ ν3ζc2M (t)+ ν4c1Bu(t)),

f2(t, x) = − 1
4 x ex−t + 1

4 ex−t − 1
4 x2 ex−t

− S(t, x)(ν1δ1Bu(t)+ ν2δ2Ba(t)+ ν3ζc2M (t)+ ν4c1Bu(t)),

to the right-hand side of the first two equations of Equation (2). This simplifies the pde system
governing fish dynamics to a linear system given by

St + (gS)x + μS = −x ex−t,

It + (g̃I)x + μ̃I = − 1
4 x ex−t + 1

4 ex−t − 1
4 x2 ex−t.

We choose initial conditions S(0, x) = ex, I(0, x) = 1
2 x ex and boundary conditions S(t, 0) =

e−t, I(t, 0) = 0. With these choices, it can easily be verified that

S(t, x) = ex−t, I(t, x) = 1
2 x ex−t, P(t) = e1−t − 1

2 e−t,

Ba(t) = B0
a exp( 1

2δ2 e−t(1 − 2e)(et − 1)),

Bu(t) = B0
u exp( 1

2 (δ1 − 2δ1e + δ1 e−t(2e − 1)− 2cM M ∗t)),

M (t) = M 0 exp(−μM t)

is the solution to Equation (2). Next, we ran five simulations of Equations (15) and (12) with step
sizes being halved with each successive iteration. We then calculated the L1 norms of the errors
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24 A.S. Ackleh et al.

Table 3. Convergence of the second-order method (linear case).

�t �x S(2, x) I(2, x)
×10−3 ×10−2 L1 error ×10−3 Order L1 error ×10−5 Order

2.5000 5.0000 5.7089 2.5140
1.2500 2.5000 1.4105 2.0170 0.6400 1.9738
0.6250 1.2500 0.3505 2.0086 0.1616 1.9858
0.3125 0.6250 0.0873 2.0051 0.0406 1.9927
0.1565 0.3125 0.0218 2.0034 0.0102 1.9963

�t �x Ba(t) Bu(t)
×10−3 ×10−2 Max error ×10−3 Order Max error ×10−18 Order

2.5000 5.0000 7.2172 5.4716
1.2500 2.5000 1.8000 2.0034 1.2665 2.1111
0.6250 1.2500 0.4499 2.0005 0.3047 2.0556
0.3125 0.6250 0.1125 2.0000 0.0747 2.0278
0.1565 0.3125 0.0281 1.9999 0.0185 2.0139

�t �x M (t)
×10−3 ×10−2 Max error ×10−7 Order

2.5000 5.0000 1.0813
1.2500 2.5000 0.2702 2.0005
0.6250 1.2500 0.0675 2.0003
0.3125 0.6250 0.0169 2.0001
0.1565 0.3125 0.0042 2.0006

in S(2, x) and I(2, x) and the maximum error for P(t), Ba(t), Bu(t), and M (t). Finally, we found
log2 of the ratios of consecutive errors to determine the order of accuracy. The results in Table 3
clearly demonstrate that the method achieves second-order accuracy.

6.2. Convergence for the full nonlinear model

To demonstrate that second-order convergence is maintained with the introduction of the model
nonlinearities, we compute the error of the approximated solutions for the full model by using a
solution with a very small time �t = 9.765625 × 10−7 and mesh �x = 1.953125 × 10−4 steps,
and we will refer to this as the ‘reference solution’ in place of an exact solution to calculate
the error. We compute several solutions using the finite difference scheme (15) (with uniform
mesh), successively halving the time and mesh steps. We use the model parameters and auxiliary
functions as in Tables 4 and 5. The parameters and functions used here are not biological in
nature, but were used to show the order of the method. We have continued to consider only one
physiological class, m = 1, here. We note that the initial condition for the susceptible fish does
not satisfy the boundary compatibility condition, and therefore one does not expect solutions to
be smooth (a discontinuity is evident along the characteristic curve starting at the point (0, xmin)).

Table 4. Nonzero parameter values for the full (nonlinear) model.

Parameter Value Parameter Value

ν1 0.125 × 10−6 ν2 0.125 × 10−6

ν3 2.5 × 10−7 ν4 2.5 × 10−7

δ1 1/500 δ2 1/500
ζ 2.4 × 103 ε 0.05
cM 0.5 M ∗ 2 × 1030

μM 7/60 λ 2.0
ρ̄ 3 × 104
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Table 5. Nonzero forms of the rate functions for the full (nonlinear)
model used for convergence and comparison examples. Initial conditions are
S(0, x) = exp(−(5x − 2)2), I(0, x) = 0, Ba(0) = 1 × 104, Bu(0) = 1 × 104,
M (0) = 1 × 104.

Function Form Function Form

g(P, x) (x − 1) ln(0.34)/13 g̃(P, x) (x − 1) ln(0.34)/26
μ(P, x) 1/156 μ̃(P, x) 2/156
β(P, x) 2x β̃(P, x) x
c1(x) 0.5 c̃1(x) 0.5
c2(x) 0.5 c̃2(x) 0.5

In spite of this discontinuity, we still converge to second-order accuracy since the scheme, being
of high resolution, approximates solutions involving discontinuities well.

6.3. Comparison of first-order and second-order methods

Our next example is included to illustrate the computational savings found when using the
second-order high-resolution method (SOHR) instead of the first-order implicit (FOI) scheme
developed in [8]. Using the values and functions in Tables 4 and 5, we obtain the results for the
model solutions shown in Table 6. The error and order of convergence (in the L1 norm) result-
ing from the SOHR scheme and those resulting from the FOI scheme are given in Table 7. We
included the computational time for the approximate solutions using the built-in MATLAB com-
mands tic and toc. It is clear that to obtain a similar accuracy, the SOHR scheme requires less
CPU time. The FOI scheme requires 120.4340 s to compute an approximation solution with the
L1 norm of the error equal to 0.0046647. However, when using the SOHR scheme, we can get a
more accurate approximation (with the L1 norm of the error equal to 0.0018335) in just 32.1365 s.
This clearly shows that the SOHR scheme saves 73.32% CPU time in this case (Figure 1).

Table 6. Convergence of the second-order method (nonlinear case).

�t �x S(2, x) I(2, x)
×10−3 ×10−2 L1 error Order L1 error Order

2.5000 2.5000 2.4761 0.1311
1.2500 1.2500 0.6797 1.8651 0.0392 1.7422
0.6250 0.6250 0.1817 1.9030 0.0122 1.6868
0.3125 0.3125 0.0509 1.8373 0.0036 1.7482
0.1563 0.1563 0.0119 2.1015 0.0009 1.9793

�t �x Ba(t) Bu(t)
×10−3 ×10−2 Max error ×10−3 Order Max error ×10−5 Order

2.5000 5.0000 5.4425 1.2045
1.2500 2.5000 1.3921 1.9670 0.3080 1.9672
0.6250 1.2500 0.3474 2.0026 0.0769 2.0027
0.3125 0.6250 0.0831 2.0631 0.0184 2.0631
0.1563 0.3125 0.0167 2.3182 0.0037 2.3182

�t �x Max error M (t)
×10−3 ×10−2 ×10−3 Order

2.5000 5.0000 4.5586
1.2500 2.5000 1.2366 1.8222
0.6250 1.2500 0.3363 1.8784
0.3125 0.6250 0.0817 2.0412
0.1563 0.3125 0.0165 2.3123
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26 A.S. Ackleh et al.

Table 7. L1 errors, orders of accuracy, and computational time (in seconds) for the FOI and
SOHR schemes.

P(t) FOI P(t) SOHR

�t �x Max error Order Time Max error Order Time

0.01 0.1 0.5591134 0.0896 0.5179306 0.2054
0.005 0.05 0.2470113 1.1786 0.4627 0.1305551 1.9881 0.5808
0.0025 0.025 0.1149870 1.1031 1.0665 0.0266159 2.2943 2.1642
0.00125 0.0125 0.0541536 1.0863 3.0056 0.0071931 1.8876 8.2321
0.000625 0.00625 0.0249398 1.1186 9.4114 0.0018335 1.9720 32.1365
0.0003125 0.003125 0.0106227 1.2313 32.2939 0.0004413 2.0549 127.5357
0.00015625 0.0015625 0.0046647 1.1873 120.4340 0.0000886 2.3158 511.0992

10−5

10−1 100 101 102 103

10−4

10−3

10−2

10−1

100

Time (in seconds)

L1  
no

rm
 o

f t
he

 e
rr

or

FOI

SOHR

Figure 1. The loglog plot of the L1 norm of the errors for the FOI and the SOHR schemes against the computational
time.

To better illustrate the order of accuracy in the SOHR scheme, we plot the L1 norm of the
errors in the FOI and SOHR schemes against the computation time using logarithmic scales on
the horizontal and vertical axes. For less accurate approximations (errors greater than 0.5, in the
L1 norm), the FOI scheme is faster than the SOHR scheme. However, for improved accuracy (L1

errors above 0.5), the SOHR scheme is much faster than the FOI scheme.
In our next example, we compute the solution for the total fish population using the SOHR

scheme given in Equation (18) with �t = 0.005 and �x = 0.05. Then, we compute the solution
for the total fish population using the FOI scheme from [8] using the same step sizes. We then
halve the step sizes five times successively, with the final step sizes �t = 3.125 × 10−4 and
�x = 3.125 × 10−3. In this example, we use five physiological classes, m = 5, the parameter
values in Table 4, the function forms in Table 8, and the permutation-selection matrix given by

p1 =

⎡
⎢⎢⎢⎢⎣

0.35 0.10 0.05 0.00 0.20
0.20 0.35 0.20 0.10 0.05
0.10 0.05 0.35 0.25 0.15
0.20 0.20 0.40 0.35 0.25
0.15 0.30 0.00 0.30 0.35

⎤
⎥⎥⎥⎥⎦ . (40)

D
ow

nl
oa

de
d 

by
 [

U
ni

v 
of

 L
ou

is
ia

na
 a

t L
af

ay
et

te
] 

at
 0

8:
04

 2
2 

O
ct

ob
er

 2
01

4 



Journal of Biological Dynamics 27

Table 8. Forms of the rate functions for the multi-physiological example. Initial conditions are
Si(0, x) = 106 exp(−(5x − 2)2), Ii(0, x) = 0, for i = 1, . . . , 5, and Ba(0) = 104, Bu(0) = 104,
M (0) = 104.

Function Form Function Form

g1(P, x) (x − 1) ln(0.34)/13 g2(P, x) −0.2398(x + 0.01)(x − 1)
g3(P, x) 0.0829/(1 + exp(7(x − 0.5)))− a0 g4(P, x) (x − 1) ln(0.34)/13
g5(P, x) −0.2398(x + 0.01)(x − 1) g̃i(P, x) 0.5gi(P, x), i = 1, . . . , 5
β i(P, x) bix/(1 + νP) β̃ i(p, x) 0.15β i(P, x), i = 1, . . . , 5
μi(P, x) 1/156, i = 1, . . . , 5 μ̃(P, x) 2/156, i = 1, . . . , 5
ci

1(x), ci
2(x) 0.5, i = 1, . . . , 5 c̃i

1(x), c̃i
2(x) 0.5, i = 1, . . . , 5

Parameter Value Parameter Value

b1 5 × 107 b2(P, x) 6.3 × 107

b3 7.6 × 107 b4(P, x) 8.9 × 107

b5 10.2 × 107 ν 5 × 10−5

a0 0.0829/(1 + exp(7/2))
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Figure 2. Comparison of first-order and second-order approximations of the total fish population. (a) Total fish
population from 0 to 1300 weeks. (b) Total fish population from 1000 to 3000 weeks.

Figure 2(a) contains the plot of the second-order approximation over a 1300-week period along
with the plots of the solutions from halving the step size one, three, and five times, so the step
sizes are reduced by a factor of 1/4 in each successive plot. Figure 2(b) contains a zoomed in
portion of Figure 2(a) over the last 300 weeks of the period so the convergence can clearly be
seen.

We see that the step sizes must be approximately 16 times smaller in the first-order method to
achieve a similar accuracy as found in the second-order method. Also, to achieve corresponding
accuracy, the first-order method required over 61 min (3684 s) of run time, while the second-order
method only required 10 min (617 s) of run time. We mention that while our initial conditions are
continuous, we are not forcing compatibility at the boundary for each susceptible fish equation.

6.4. An ecological example

In our final numerical experiment, we explore the possible ecological implications of fish with
different physiological (specifically, metabolic) characteristics, by examining the interplay of
reproductive advantages conferred by growth and birth rates. Unless stated otherwise, the param-
eter values used here can be seen in Table 4, and the function forms in Table 9. In the interest of
employing biologically tenable rate functions, we take a simple size-dependent form μi = x/312
and μ̃i(P, x) = x/156 for i = 1, 2, 3, since it is likely that larger fish die at an increased rate than
smaller fish, and we remind the reader that we are not considering predation here. Additionally,
in previous simulation studies, we observed an exaggerated accumulation of fish at the largest
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Table 9. Rate functions for the ecological examples. Initial conditions are Si(0, x) = 106

exp(−(5x − 2)2), Ii(0, x) = 0, for i = 1, . . . , 3, and Ba(0) = 104, Bu(0) = 104, M (0) = 104.

Function Form Function Form

gi(P, x) γ i(0.0829/(1 + exp(7(x − 0.5)))− a0) g̃i(P, x) 0.5gi(P, x), i = 1, 2, 3
β i(P, x) bix/(1 + νP) β̃ i(P, x) 0.5β i(P, x), i = 1, 2, 3
μ(P, x) x/312 μ̃(P, x) x/156
ci

1(x), ci
2(x) 0.5, i = 1, 2, 3 c̃i

1(x), c̃i
2(x) 0.5, i = 1, 2, 3

a0 0.0829/(1 + exp(7/2))

0 0.25 0.5 0.75 1
0

0.02

0.04

0.06

0.08

x (size)

gi(P,x)

Figure 3. Growth function demonstrating loss of growth as an individual reaches sexual maturity.

sizes as they grew and remained there for long periods of time. Thus, this size-dependent death
rate is incorporated with the intent of improving the biological integrity of the solutions stud-
ied. The growth function gi(P, x) = γ i(0.0829/(1 + exp(7(x − 0.5)))− a0) represents the idea
from ecology that animals have finite energy and resources, and that there is a shift in energy
expenditures from growth to reproduction as animals reach sexual maturity as seen in Figure 3.

We reiterate that the fecundity kernels will have the form β i(P, x) = bix/(1 + νP) to account
for the possible impact of crowding on the ability of a fish of type i to reproduce at high pop-
ulation levels, and to implement the assumption that larger fish reproduce at a faster rate than
smaller (juvenile) fish. The permutation-selection matrix p is taken to be the identity matrix in
all solutions shown here, indicating that all fish beget fish of only the same physiological type.
The growth and fecundity rates of infected fish are half that of their susceptible counterparts.
To study the long-term effects of birth and growth in the context of size-dependent death, we
examine solutions of varying values for parameters γ i and bi which accelerate and decelerate the
speed of growth and birth, respectively.

The effect of varying growth rates is seen in Figure 4(a), with all other rates being the same.
Initially, the fastest growing group has an advantage, and grows in subpopulation size due to
higher reproduction rates of larger sized fish. This continues until all birth rates are substantially
decreased (to less than the death rates) because of the large total population size. After this
occurs, the birth rates for the faster growing class (i = 3) continue to be outweighed by the large
death rates for fish of larger sizes. The slower growing fish (i = 1), on the other hand, enjoy an
advantage after the initial growth and death period, as their population is less adversely affected
by the higher death rates for fish of larger sizes. Therefore, it appears that higher metabolic
activity (faster growth) does not provide an advantage in long term due to the crowding effect
in the birth rate and size-dependent death rate. While this is understood in model terms, it is an
example of a phenomenon that initially seems to disagree with one’s intuition that faster growth
would necessarily be advantageous.

In Figure 4(b), we clearly see that accelerated reproduction does indeed confer an edge in
this model, as all other rates are constant amongst the physiological groups. This example does
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Figure 4. Total populations with death rates dependent on size. (a) Total fish populations with scaling factors γ 1 = 0.8,
γ 2 = 1, γ 3 = 1.2, b1 = b2 = b3 = 5 × 107. (b) Total fish populations with scaling factors γ 1 = γ 2 = γ 3 = 1,
b1 = 5 × 107, b2 = 5.3 × 107, b3 = 5.6 × 107. (c) Total fish populations with scaling factors γ 1 = 0.25, γ 2 = 1,
γ 3 = 2, b1 = 4.5 × 107, b2 = 5.3 × 107, b3 = 5.6 × 107.

agree with what one would expect, and is included primarily for the sake of comparison of
Figure 4(a) and (c). However, it is also interesting to note that the initial growth and decline
period of all subpopulations is again observed, due to the crowding effect in the birth rate, which
results in the populations having a time-dependent net reproductive rate. It also confirms that this
phenomenon is not due to the differences in the growth rate in Figure 4(a). Taken together, this
raises the question: is the long-term benefit due to a slower growth rate sufficient to overcome
the advantage of a faster reproductive rate?

An initial investigation of that question is provided in Figure 4(c), in which group 1 has the
smallest growth and birth rate, group 2 has moderate growth and birth rates, and group 3 has the
largest growth and birth rates. As expected, initially the third group’s population size increases
the fastest. After the initial period of growth and subsequent decline, however, the second group
enjoys an advantage, presumably due to the size-dependent death rate playing a dominant role
during this interval and this group being of a smaller size. Its birth rate, however, is sufficiently
higher than that of the second group, so that the lower death rate of this group is not enough to
give it an edge over the moderately growing and reproducing class.

There are other scenarios possible, of course, depending on the choice of parameters taken,
and there is considerable uncertainty in the parameter values used here. We present this example
as an exploration of the model dynamics and ecological phenomena reproduced by the model.
Also, we note that these are explorations only within the context of pure selection through-
out generations since the identity matrix was used for the permutation-selection matrix. If we
allow genetic spread, the results are potentially more rich; indeed, in studies not shown here
we have observed that both competitive exclusion and coexistence are outcomes when the same
permutation-selection matrix p is used, depending on the choice of birth, growth, and death
rates. This suggests that this model is capable of providing insight into perhaps surprising or
counterintuitive phenomena, that may be observed in populations exhibiting vital characteristics
as represented in this model. Also, these examples further demonstrate the utility of this model
to predict outcomes when several simultaneous processes, perhaps with conflicting effects, are
at play.
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7. Concluding remarks

We have developed a second-order high-resolution finite difference approximation for a mathe-
matical model of Mm. This model is approximated using an implicit scheme. But due to sensible
choices, it can be computed in an explicit fashion, which makes the scheme numerically efficient.
We chose to take a finite difference approach because of the simplicity of implementation and the
ability to prove existence and uniqueness properties of the method. Other possible choices for
solving the model (2)–(4) (i.e. finite element methods, integration along the characteristics, etc.)
do not lend themselves to proofs of convergence, or their complexities outweigh their benefit for
this model.

The discretization of the model in Equation (9) is second-order accurate in space (except at
the left boundary) and not in time. To achieve second-order accuracy in time, we implemented
a Richardson extrapolation. Theorems 7 and 8 support the Richardson extrapolation iteration in
Equation (39) converging to the unique weak solution of the system (2)–(4) in the sense given in
Theorem 7.

We began our numerical results by showing that a simplified version of the method achieves
the desired second-order accuracy when compared to an exact solution. Next, we demonstrated
the fact that the full nonlinear version of our scheme converges with second-order accuracy when
compared against a reference solution. The advantage of using a second-order method is achieve
higher accuracy with faster computational time.

We concluded our investigations with an exploration of the potential long-term outcomes from
using more biologically tenable rate functions. These included a crowding effect (which intro-
duced a dependence on time) in the birth rate, and that the birth, growth, and death rates were
dependent on size. Previous investigations had implemented only a constant death rate. We found
that doing so can lead to outcomes that are not immediately obvious. That is, in some cases a
lower or the lowest growth rate is actually favourable, which may be contrary to one’s intu-
ition. Further preliminary studies have suggested that there are several possible outcomes under
different choices of these parameters and particularly, when genetic spread through generations
is considered. Thus, there appears to be an interesting interplay between these metabolic and
reproductive traits. These results can be understood within the context of the model mecha-
nisms, demonstrating the potential use of the model as a tool to explain surprising ecological
phenomena.

Funding

Azmy S. Ackleh was partially supported by the National Science Foundation under grant #DMS-1312963. Karyn L.
Sutton was partially supported by the Louisiana Board of Regents under grant #LEQSF(2012-15)-RD-A-30.

References

[1] L.M. Abia and J.C. Lopez-Marcos, Second order schemes for age-structured population equations, J. Biol. Syst. 5
(1997), pp. 1–16.

[2] L.M. Abia, O. Angulo, and J.C. Lopez-Marcos, Size-structured population dynamics models and their numerical
solutions, Discrete Contin. Dyn. Syst. Ser. B 4 (2004), pp. 1203–1222.

[3] A.S. Ackleh and K. Deng, A monotone approximation for a nonlinear non autonomous size-structured population
model, Appl. Math. Comput. 108 (2000), pp. 103–113.

[4] A.S. Ackleh and K. Ito, An implicit finite difference scheme for the nonlinear size-structured population model,
Numer. Funct. Anal. Optim. 18 (1997), pp. 865–884.

[5] A.S. Ackleh and B. Ma, A second-order high-resolution scheme for a juvenile–adult model of Amphibians, Numer.
Funct. Anal. Optim. 34 (4) (2013), pp. 356–403.

[6] A.S. Ackleh, H.T. Banks, and K. Deng, A difference approximation for a coupled system of nonlinear size-structured
populations, Nonlinear Anal. Theory Methods Anal. 50 (2002), pp. 727–748.

D
ow

nl
oa

de
d 

by
 [

U
ni

v 
of

 L
ou

is
ia

na
 a

t L
af

ay
et

te
] 

at
 0

8:
04

 2
2 

O
ct

ob
er

 2
01

4 



Journal of Biological Dynamics 31

[7] A.S. Ackleh, B. Ma, and J.J. Thibodeaux, A second-order high resolution finite difference scheme for a structured
erythropoiesis model subject to malaria infection, Math. Biosci. 245 (2013), pp. 2–11.

[8] A.S. Ackleh, M.L. Delcambre, K.L. Sutton, and D. Ennis, Structured models for the spread of Mycobacterium
marinum: foundations for a numerical approximation scheme, Math. Biosci. Eng. 11 (2014), pp. 679–721.

[9] A.S. Ackleh, K.L. Sutton, K.N. Mutoji, A. Mallick, and D.G. Ennis, A structured model for the transmis-
sion dynamics of Mycobacterium marinum between aquatic animals, J. Biol. Syst. 22 (2014), pp. 29–60.
doi:10.1142/S0218339014500028

[10] O. Angulo and J.C. Lopez-Marcos, Numerical integration of fully nonlinear size-structured population models,
Appl. Numer. Math. 50 (2004), pp. 291–327.

[11] T. Arbogast and F.A. Milner, A finite element method for a two-sex model of population dynamics, SIAM J. Numer.
Anal. 26 (1989), pp. 1474–1486.

[12] H.T. Banks, F. Kappel, and C. Wang, A semigroup formulation of a nonlinear size-structured distributed rate
population model, Int. Ser. Numer. Math. 118 (1994), pp. 1–19.

[13] H.T. Banks, C.E. Cole, P.M. Schlosser, and H.T. Tran, Modeling and optimal regulation of erythropoiesis subject
to benzene intoxication, Math. Biosci. Eng. 1 (2004), pp. 15–48.

[14] H. Bercovier and V. Vincent, Mycobacterial infections in domestic and wild animals due to Mycobacterium mar-
inum, M. fortuitum, M. chelonae, M. porcinum, M. farcinogenes, M. smegmatis, M. scrofulaceum, M. xenopi,
M. kansasii, M. simiae, and M. genavense, Rev. Sci. Tech. Off. Int. Epiz. 20 (2001), pp. 265–290.

[15] G.W. Broussard, Development and application of medaka and Mycobacterium marinum as an infection model for
human tuberculosis, Ph.D. thesis, University of Louisiana at Lafayette, USA, 2007.

[16] G.W. Broussard and D.G. Ennis, Mycobacterium marinum produces long-term chronic infections in medaka: a new
animal model for studying human tuberculosis, Comp. Biochem. Physiol. Pt C 145 (2007), pp. 45–54.

[17] G.W. Broussard, M.B. Norris, R.N. Winn, J. Fournie, A. Schwindt, M.L. Kent, and D.G. Ennis, Chronic mycobac-
terosis acts as a tumor promoter for hepatocarcinomas in Japanese medaka, Compar. Biochem. Physiol. Pt C 149
(2009), pp. 152–160.

[18] C.L. Cosma, D.R. Sherman, and L. Ramakrishnan, The secret lives of the pathogenic mycobacteria, Annu. Rev.
Microbiol. 57 (2003), pp. 641–676.

[19] J.M. Davis, H. Clay, J.L. Lewis, N. Ghori, P. Herbomel, and L. Ramakrishnan, Real-time visualization of
Mycobacterium–macrophage interactions leading of initiation of granuloma formation in zebrafish embryos,
Immunity 17 (2002), pp. 693–702.

[20] A. Decostere, K. Hermans, and F. Haesebrouck, Piscine mycobacteriosis: a literature review covering the agent
and the disease it causes in fish and humans, Vet. Microbiol. 99 (2004), pp. 159–166.

[21] S.H. El-Etr, L. Yan, and J.D. Cirillo, Fish monocytes as a model for mycobacterial host–pathogen interactions,
Infect. Immun. 69 (2001), pp. 7310–7317.

[22] R.E. Gozlan, S. St-Hilaire, S.W. Feist, P. Martin, and M.L. Kent, Disease threat to European fish, Nature 435
(2005), pp. 1046.

[23] A. Harten, High resolution schemes for hyperbolic conservation laws, J. Comput. Phys. 49 (1983), pp. 357–393.
[24] R.P. Hedrick, T. McDowell, and J. Groff, Mycobacteriosis in cultured striped bass from California, J. Wildlife Dis.

23 (1987), pp. 391–395.
[25] W. Huyer, A size-structured population model with dispersion, J. Math. Anal. Appl. 181 (1994),

pp. 716–754.
[26] M. Iannelli, T. Kostova, and F.A. Milner, A fourth-order method for numerical integration of age- and size-

structured population models, Numer. Methods Partial Differ. Equ. 25 (2009), pp. 918–930.
[27] J.M. Jacobs, C.B. Stine, A.M. Baya, and M.L. Kent, A review of mycobacteriosis in marine fish, J. Fish Dis. 32

(2009), pp. 119–130.
[28] C. Lawrence, D.G. Ennis, C. Harper, M.L. Kent, K. Marray, and G.E. Sanders, Challenges of implementing pathogen

control strategies in fishes used in biomedical research, Compar. Biochem. Physiol. Toxicol. Pharmacol. 155
(2012), pp. 160–166.

[29] P.K. Mehta, A.K. Pandey, S. Subbian, S.H. El-Etr, S.L. Cirillo, M.M. Samrakandi, and J.D. Cirillo, Identification
of Mycobacterium marinum macrophage infection mutants, Microb. Pathog. 40 (2006), pp. 139–151.

[30] E. Miltner, K. Daroogheh, P.K. Mehta, S.L. Cirillo, J.D. Cirillo, and L.E. Bermudez, Identification of Mycobac-
terium avium genes that affect invasion of the intestinal epithelium, Infect. Immun. 73 (2005), pp. 4214–4221.

[31] N. Moes, J. Dolbow, and T. Belytschko, A finite element method for crack growth without remeshing, Int. J. Numer.
Methods Eng. 46 (1999), pp. 131–150.

[32] K.N. Mutoji and D.G. Ennis, Expression of common fluorescent reporters may modulate virulence for Mycobac-
terium marinum: dramatic attenuation results from Gfp over-expression, Comp. Biochem. Physiol. C 155 (2012),
pp. 39–48.

[33] A. Oscar and J.C. Lopez-Marcos, Numerical schemes for size-structured population equations, Math. Biosci. 157
(1999), pp. 169–188.

[34] M.G. Prouty, N.E. Correa, L.P. Barker, P. Jagadeeswaran, and K.E. Klose, Zebrafish–Mycobacterium marinum
model for mycobacterial pathogenesis, FEMS Microbiol. Lett. 225 (2003), pp. 177–182.

[35] J. Shen, C. Shu, and M. Zhang, High resolution schemes for a hierarchical size-structured model, SIAM J. Numer.
Anal. 45 (2007), pp. 352–370.

[36] A. Shima and H. Mitani, Medaka as a research organism: past, present and future, Mech. Dev. 121 (2004), pp.
599–604.

[37] J. Smoller, Shock Waves and Reaction–Diffusion Equations, Springer, New York, 1994.

D
ow

nl
oa

de
d 

by
 [

U
ni

v 
of

 L
ou

is
ia

na
 a

t L
af

ay
et

te
] 

at
 0

8:
04

 2
2 

O
ct

ob
er

 2
01

4 



32 A.S. Ackleh et al.

[38] T.P. Stinear, T. Seemann, P.F. Harrison, G.A. Jenkin, J.K. Davies, P.D.R. Johnson, Z. Abdellah, C. Arrowsmith,
T. Chillingworth, C. Churcher, K. Clarke, A. Cronin, P. Davis, I. Goodhead, N. Holroyd, K. Jagels, A. Lord,
S. Moule, K. Mungall, H. Norbertczak, M.A. Quail, E. Rabbinowitsch, D. Walker, B. White, S. Whitehead,
P.L.C. Small, R. Brosch, L. Ramakrishnan, M.A. Fischbach, J. Parkhill, and S.T. Cole, Insights from the com-
plete genome sequence of Mycobacterium marinum on the evolution of Mycobacterium tuberculosis, Genome Res.
18 (2008), pp. 729–741.

[39] A.M. Talaat, R. Reimschuessel, S.S. Wasserman, and M. Trucksis, Goldfish, Carassius auratus, a novel animal
model for the study of Mycobacterium marinum pathogenesis, Inf. Immun. 66 (1998), pp. 2938–2942.

[40] J.J. Thibodeaux, Modeling erythropoiesis subject to malaria infection, Math. Biosci. 225 (2010), pp. 59–67.
[41] D.M. Tobin and L. Ramakrishnan, Comparative pathogenesis of Mycobacterium marinum and Mycobacterium

tuberculosis, Cell. Microbiol. 10 (2008), pp. 1027–1039.
[42] W. Walter, Ordinary Differential Equations, Springer, New York, 1998.

D
ow

nl
oa

de
d 

by
 [

U
ni

v 
of

 L
ou

is
ia

na
 a

t L
af

ay
et

te
] 

at
 0

8:
04

 2
2 

O
ct

ob
er

 2
01

4 


	1. Introduction
	2. The structured model
	3. Weak solutions and a second-order high-resolution scheme
	4. Estimates for the finite difference approximations
	5. Convergence of the difference approximations to the unique weak solution
	6. Numerical results
	6.1. Convergence of a simplified linear model
	6.2. Convergence for the full nonlinear model
	6.3. Comparison of first-order and second-order methods
	6.4. An ecological example

	7. Concluding remarks
	Funding
	References



