Aysegul Gunduz

Aysegul Gunduz
University of Florida | UF · Department of Biomedical Engineering

PhD

About

112
Publications
24,855
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
2,669
Citations
Additional affiliations
February 2012 - present
University of Florida
Position
  • Professor (Assistant)
January 2009 - November 2011
Albany Medical College
Position
  • PostDoc Position
January 2009 - November 2011
Wadsworth Center, NYS Department of Health
Position
  • Visiting Research Scientist

Publications

Publications (112)
Article
Full-text available
Abstract The proceedings of the 2(nd) Annual Deep Brain Stimulation Think Tank summarize the most contemporary clinical, electrophysiological, and computational work on DBS for the treatment of neurological and neuropsychiatric disease and represent the insights of a unique multidisciplinary ensemble of expert neurologists, neurosurgeons, neuropsyc...
Article
Full-text available
Objective: Real-time monitoring of the brain is potentially valuable for performance monitoring, communication, training or rehabilitation. In natural situations, the brain performs a complex mix of various sensory, motor or cognitive functions. Thus, real-time brain monitoring would be most valuable if (a) it could decode information from multipl...
Article
Neuroimaging approaches have implicated multiple brain sites in musical perception, including the posterior part of the superior temporal gyrus and adjacent perisylvian areas. However, the detailed spatial and temporal relationship of neural signals that support auditory processing is largely unknown. In this study, we applied a novel inter-subject...
Article
Full-text available
The Fifth International Brain-Computer Interface (BCI) Meeting met on 3–7 June 2013 at the Asilomar Conference Grounds, Pacific Grove, California, USA. The conference included 19 workshops covering topics in brain-computer interface and brain-machine interface research. Topics included translation of BCIs into clinical use, standardization and cert...
Article
Background Clinical trial participants who benefit from experimental neural devices for the treatment of debilitating and otherwise treatment-resistant conditions are generally not ensured continued access to effective therapy or maintenance of devices at the conclusion of trials. Objective/Hypothesis: Post-trial obligations have been extensively e...
Article
Objective: To provide a design analysis and guidance framework for the implementation of concurrent stimulation and sensing during adaptive deep brain stimulation (aDBS) with particular emphasis on artifact mitigations. Approach: We defined a general architecture of feedback-enabled devices, identified key components in the signal chain which mi...
Article
Objective Current rating scales for Tourette syndrome (TS) are limited by recollection bias or brief assessment periods. This proof-of-concept study aimed to develop a sensor-based paradigm that would detect and classify tics. Methods We recorded both electromyogram and acceleration data from seventeen TS patients, either when voluntarily moving o...
Article
Full-text available
This research study provides patient and caregiver perspectives as to whether or not to undergo adaptive deep brain stimulation (aDBS) research. A total of 51 interviews were conducted in a multi-site study including patients undergoing aDBS and their respective caregivers along with persons declining aDBS. Reasons highlighted for undergoing aDBS i...
Article
Full-text available
Background: Deep brain stimulation (DBS) is an effective surgical therapy for individuals with essential tremor (ET). However, DBS operates continuously, resulting in adverse effects such as postural instability or dysarthria. Continuous DBS (cDBS) also presents important practical issues including limited battery life of the implantable neurostim...
Article
Full-text available
Deep brain stimulation (DBS) is an effective neuromodulatory therapy for Parkinson’s disease (PD). Early studies using globus pallidus internus (GPi) DBS for PD profiled the nucleus as having two functional zones. This concept disseminated throughout the neuromodulation community as the “GPi triangle”. Although our understanding of the pallidum has...
Article
Full-text available
We estimate that 208,000 deep brain stimulation (DBS) devices have been implanted to address neurological and neuropsychiatric disorders worldwide. DBS Think Tank presenters pooled data and determined that DBS expanded in its scope and has been applied to multiple brain disorders in an effort to modulate neural circuitry. The DBS Think Tank was fou...
Article
Full-text available
Background: Treating medication-refractory freezing of gait (FoG) in Parkinson’s disease (PD) remains challenging despite several trials reporting improvements in motor symptoms using subthalamic nucleus or globus pallidus internus (GPi) deep brain stimulation (DBS). Pedunculopontine nucleus (PPN) region DBS has been used for medication-refractory...
Article
Background Impulsivity and impulse control disorders (ICDs) are common in Parkinson’s disease (PD) and lead to increased morbidity and reduced quality of life. Impulsivity is thought to arise from aberrant reward processing and inhibitory control, but it is unclear why deep brain stimulation (DBS) of either the subthalamic nucleus (STN) or globus p...
Article
Full-text available
Background The centromedian-parafascicular (Cm-Pf) complex of the thalamus is a common deep brain stimulation (DBS) target for treatment of Tourette Syndrome (TS). Currently, there are no standardized functional intraoperative neurosurgical targeting approaches. Collectively, these issues have led to variability in DBS lead placement. Therefore, mo...
Article
Full-text available
Deep brain stimulation (DBS) is an approved therapy for the treatment of medically refractory and severe movement disorders. However, most existing neurostimulators can only apply continuous stimulation [open-loop DBS (OL-DBS)], ignoring patient behavior and environmental factors, which consequently leads to an inefficient therapy, thus limiting th...
Article
Full-text available
Deep brain stimulation (DBS) for Parkinson’s disease (PD) improves quality of life (QoL), but longitudinal follow-up data are scarce. We sought to quantify long-term benefits of subthalamic nucleus (STN) vs globus pallidus internus (GPi), and unilateral vs staged bilateral PD-DBS on postoperative QoL. This is a retrospective, longitudinal, non-rand...
Article
Full-text available
Background Deep brain stimulation (DBS) targeting the globus pallidus internus (GPi) can improve tics and comorbid obsessive-compulsive behavior (OCB) in patients with treatment-refractory Tourette syndrome (TS). However, some patients’ symptoms remain unresponsive, the stimulation applied across patients is variable, and the mechanisms underlying...
Article
Objective: To empirically test if apathy and impulse control disorders (ICDs) represent independent, opposite ends of a motivational spectrum. Methods: In this single-center, cross-sectional study, we obtained retrospective demographics and clinical data for 887 patients with idiopathic Parkinson's disease (PD) seen at a tertiary care center. Mo...
Article
Full-text available
Impulsivity is a common symptom in Parkinson’s disease (PD). Adaptive behavior is influenced by prepotent action-reward and inaction-avoid loss Pavlovian biases. We aimed to assess the hypothesis that impulsivity in PD is associated with Pavlovian bias, and to assess whether dopaminergic medications and deep brain stimulation (DBS) influence Pavlov...
Article
Deep brain stimulation may be an effective therapy for select cases of severe, treatment-refractory Tourette syndrome; however, patient responses are variable, and there are no reliable methods to predict clinical outcomes. The objectives of this retrospective study were to identify the stimulation-dependent structural networks associated with impr...
Article
Full-text available
Background: The centromedian (CM) region of the thalamus is a common target for deep brain stimulation (DBS) treatment for Tourette Syndrome (TS). However, there are currently no standard microelectrode recording or macrostimulation methods to differentiate CM thalamus from other nearby structures and nuclei. Case report: Here we present a case...
Article
Full-text available
This study aimed to characterize the neurophysiological correlates of gait in the human pedunculopontine nucleus (PPN) region and the globus pallidus internus (GPi) in Parkinson’s disease (PD) cohort. Though much is known about the PPN region through animal studies, there are limited physiological recordings from ambulatory humans. The PPN has rece...
Article
Background Accurate interpretation of electrophysiological data in cognitive and behavioral experiments requires the acquisition of time labels, such as marking the exact start of a condition or moment a stimulus is presented to a research subject. New Method Here we present an inexpensive (∼30 USD) device used as a central relay for multiple peri...
Article
Full-text available
The Seventh Annual Deep Brain Stimulation (DBS) Think Tank held on September 8th of 2019 addressed the most current: (1) use and utility of complex neurophysiological signals for development of adaptive neurostimulation to improve clinical outcomes; (2) Advancements in recent neuromodulation techniques to treat neuropsychiatric disorders; (3) New d...
Article
Objectives Tourette syndrome is a neurodevelopmental disorder commonly associated with involuntary movements, or tics. We currently lack an ideal animal model for Tourette syndrome. In humans, clinical manifestation of tics cannot be captured via functional imaging due to motion artefacts and limited temporal resolution, and electrophysiological st...
Article
In Parkinson’s disease (PD), pathologically high levels of beta activity (12–30 Hz) reflect specific symptomatology and normalize with pharmacological or surgical intervention. Although beta characterization in the subthalamic nucleus (STN) of PD patients undergoing deep brain stimulation (DBS) has now been translated into adaptive DBS paradigms, a...
Article
Deep Brain Stimulation (DBS) typically results in the formation of large signal artifacts in electrophysiological recordings in the surrounding regions of the stimulated area. This can prove to be problematic, as it makes the study of physiological responses in Local Field Potentials (LFPs), and consequently Event Related Potentials (ERPs) quite ch...
Article
Introduction: Orthostatic tremor (OT) patients frequently report gait unsteadiness with the advancement of disease; however, there is little understanding of its physiology. We sought to examine in OT, the spatial and temporal characteristics of gait, and the relationship with tremor physiology. Methods: Gait parameters for OT (n = 16) were reco...
Article
Full-text available
The Brain Imaging Data Structure (BIDS) is a community-driven specification for organizing neuroscience data and metadata with the aim to make datasets more transparent, reusable, and reproducible. Intracranial electroencephalography (iEEG) data offer a unique combination of high spatial and temporal resolution measurements of the living human brai...
Article
Full-text available
The annual deep brain stimulation (DBS) Think Tank aims to create an opportunity for a multidisciplinary discussion in the field of neuromodulation to examine developments, opportunities and challenges in the field. The proceedings of the Sixth Annual Think Tank recapitulate progress in applications of neurotechnology, neurophysiology, and emerging...
Article
The amplitude of high broadband activity in human cortical field potentials indicates local processing and has repeatedly been shown to reflect motor control in the primary motor cortex. In a group of male and female subjects affected by essential tremor and undergoing deep brain stimulation surgery, ventral intermediate nucleus low-frequency oscil...
Article
This perspective provides an overview of how risk can be effectively considered in physiological control loops that strive for semi-to-fully automated operation. The perspective first introduces the motivation, user needs and framework for the design of a physiological closed-loop controller. Then, we discuss specific risk areas and use examples fr...
Article
Full-text available
Background Deep brain stimulation (DBS) can be an effective therapy for tics and comorbidities in select cases of severe, treatment-refractory Tourette syndrome (TS). Clinical responses remain variable across patients, which may be attributed to differences in the location of the neuroanatomical regions being stimulated. We evaluated active contact...
Article
Full-text available
Introduction: Although the benefit in motor symptoms for well-selected patients with deep brain stimulation (DBS) has been established, cognitive declines associated with DBS can produce suboptimal clinical responses. Small decrements in cognition can lead to profound effects on quality of life. The growth of indications, the expansion of surgical...
Article
•Tremor dominant, postural instability and gait dominant, and intermediate/indeterminate type categories are objectively reproducible motor subtypes of Parkinson's disease. •Parkinson's disease subtypes continuously vary with disease duration. •Intermediate subtypes require further delineation.
Article
Objective To investigate the effects of unilateral thalamic deep brain stimulation (DBS) on walking in persons with medication-refractory essential tremor (ET). Methods We performed laboratory-based gait analyses on 24 persons with medication-refractory ET before and after unilateral thalamic DBS implantation. Normal and tandem walking parameters...
Article
Full-text available
Impulse control disorders (ICDs) in Parkinson's disease (PD) have a high cumulative incidence and negatively impact quality of life. ICDs are influenced by a complex interaction of multiple factors. Although it is now well-recognized that dopaminergic treatments and especially dopamine agonists underpin many ICDs, medications alone are not the sole...
Article
Introduction: Drawing on the seminal work of DeLong, Albin, and Young, we have now entered an era of basal ganglia neuromodulation. Understanding, re-evaluating, and leveraging the lessons learned from neuromodulation will be crucial to facilitate an increased and improved application of neuromodulation in human disease. Methods: We will focus o...
Preprint
Full-text available
Intracranial electroencephalography (iEEG) data offer a unique combination of high spatial and temporal resolution measures of the living human brain. However, data collection is limited to highly specialized clinical environments. To improve internal (re)use and external sharing of these unique data, we present a structure for storing and sharing...
Article
Developing new tools to better understand disorders of the nervous system, with a goal to more effectively treat them, is an active area of bioelectronic medicine research. Future tools must be flexible and configurable, given the evolving understanding of both neuromodulation mechanisms and how to configure a system for optimal clinical outcomes....
Poster
Full-text available
Tourette syndrome (TS) is a complex neurodevelopment disorder characterized by involuntary movements and vocalizations, or tics. It is commonly associated with obsessive-compulsive behavior (OCB). Deep brain stimulation (DBS) has been explored as a potential therapy for select cases of TS with severe, treatment-refractory symptoms. Several nuclei h...
Article
Full-text available
Although the basal ganglia have been implicated in a growing list of human behaviors, they include some of the least understood nuclei in the brain. For several decades studies have employed numerous methodologies to uncover evidence pointing to the basal ganglia as a hub of both motor and non-motor function. Recently, new electrophysiological char...
Conference Paper
Bi-directional interfaces for peripheral nerve stimulation and recording aim to improve control and acceptance of sensorized prosthetic limbs. The implantable multimodal peripheral recording and stimulation system (IMPRESS) is an intraneural interface technology supporting a high-density transverse intrafascicular multichannel electrode (hd-TIME)....
Article
Full-text available
Background Impedance is an integral property of neuromodulation devices that determines the current delivered to brain tissue. Long-term variability in therapeutic impedance following deep brain stimulation (DBS) has not been extensively investigated across different brain targets. The aim was to evaluate DBS impedance drift and variability over an...
Article
Full-text available
The annual Deep Brain Stimulation (DBS) Think Tank provides a focal opportunity for a multidisciplinary ensemble of experts in the field of neuromodulation to discuss advancements and forthcoming opportunities and challenges in the field. The proceedings of the fifth Think Tank summarize progress in neuromodulation neurotechnology and techniques fo...
Article
Full-text available
Importance Collective evidence has strongly suggested that deep brain stimulation (DBS) is a promising therapy for Tourette syndrome. Objective To assess the efficacy and safety of DBS in a multinational cohort of patients with Tourette syndrome. Design, Setting, and Participants The prospective International Deep Brain Stimulation Database and R...
Article
Background: The ventral intermediate nucleus (VIM) is the target of choice for Essential Tremor (ET) deep brain stimulation (DBS). Renewed interest in caudal zona incerta (cZI) stimulation for tremor control has recently emerged and some groups believe this approach may address long-term reduction of benefit seen with VIM-DBS. Objectives: To com...
Article
Full-text available
Deep brain stimulation (DBS) has emerged as a promising intervention for the treatment of select movement and neuropsychiatric disorders. Current DBS therapies deliver electrical stimulation continuously and are not designed to adapt to a patient's symptoms. Continuous DBS can lead to rapid battery depletion, which necessitates frequent surgery for...
Article
Full-text available
Clinical Vignette A 64-year-old male with a history of essential tremor with bilateral thalamic ventralis intermedius deep brain stimulation implants had elevated therapeutic impedance values despite normal lead integrity impedances and good response to stimulation. Clinical Dilemma Do elevated therapeutic impedance values indicate a sign of hardw...
Article
Deep brain stimulation (DBS) is a neurosurgical technique, which consists of continuous delivery of an electrical pulse through chronically implanted electrodes connected to a neurostimulator, programmable in amplitude, pulse width, frequency, and stimulation channel. DBS is a promising treatment option for addressing severe and drug-resistant move...
Article
Full-text available
Background: A significant subset of patients with Parkinson's disease (PD) suffer from impulse control disorders (ICDs). A hallmark feature of many ICDs is the pursuit of rewarding behaviours despite negative consequences. Recent evidence implicates the subthalamic nucleus (STN) and globus pallidus internus (GPi) in reward and punishment processin...
Article
Full-text available
Introduction: Recent evidence suggests deep brain stimulation can alter impulse control. Our objective was to prospectively evaluate the effects of subthalamic nucleus (STN) and globus pallidus internus (GPi) deep brain stimulation on impulse control disorders (ICDs) in the setting of a conservative dopamine reduction strategy. Methods: Patients...
Article
Full-text available
Introduction: Distinct motor subtypes of Parkinson's disease (PD) have been described through both clinical observation and through data-driven approaches. However, the extent to which motor subtypes change during disease progression remains unknown. Our objective was to determine motor subtypes of PD using an unsupervised clustering methodology a...
Conference Paper
Full-text available
We propose a novel interpretation of local field potentials (LFP) based on a marked point process (MPP) framework that models relevant neuromodulations as shifted weighted versions of prototypical temporal patterns. Particularly, the MPP samples are categorized according to the well known oscillatory rhythms of the brain in an effort to elucidate s...
Conference Paper
Freezing-of-Gait (FoG) is a syndrome of Parkinson's disease defined by episodes when patients show a complete inability to take a step or continue with their locomotion. In order to develop closed-loop therapeutic strategies, including deep brain stimulation, a reliable means of detecting freezing episodes is required. By using wearable acceleromet...
Article
Buy Article Permissions and Reprints Abstract Deep brain stimulation (DBS) is an effective therapy for Parkinson's disease patients experiencing motor fluctuations, medication-resistant tremor, and/or dyskinesia. Currently, the subthalamic nucleus and the globus pallidus internus are the two most widely used targets, with individual advantages and...
Article
Full-text available
The subthalamic nucleus (STN) and globus pallidus internus (GPi) have recently been shown to encode reward, but few studies have been performed in humans. We investigated STN and GPi encoding of reward and loss (i.e., valence) in humans with Parkinson's disease. To test the hypothesis that STN and GPi neurons would change their firing rate in respo...