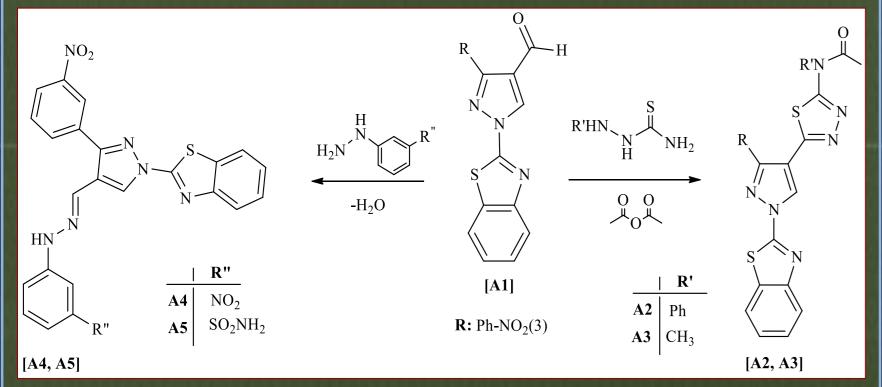


Investigation of the Further Stage Reactions with Various Nucleophiles for the Benzothiazole Substituent Pyrazole-4-Carbaldehyde, Which Has Anticancer Activity Potential

Ayşe Ateş, Rahmi Kasımoğulları


Kütahya Dumlupınar University, Faculty of Arts and Sciences, Department of Chemistry, Kütahya / TURKEY aysem.2534@gmail.com

INTRODUCTION

Two adjacent atoms and comprising five membered ring structure of the molecule, characterized by pyrazole, have become a common center for many pharmaceutically active compounds, because there are significant properties as pharmeutical active ingredient. Many drugs or patented drug candidates have been developed as a result of biological activity studies, using the pyrazole ring in recent years [1,2].

ABSTRACT

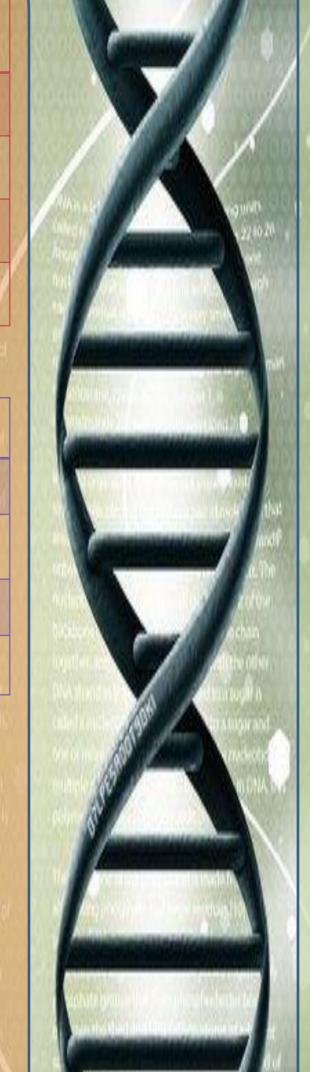

In this study, synthesis of new pyrazole derivatives containing a thiazole group is aimed. For this, fhirstly, 1-(benzo[d]thiazole-2-yl)-3-(3-nitrophenyl)-1H-pyrazole-4-carbaldehyde molecule (A1), which is our starting compound, has been converted to a new thiosemicabazone derivatives, interacting with various thiosemicarbazides [3]. And a new thiadiazole derivatives (A2, A3) have been synthesized by a cyclization reaction of these synthesized thiosemicabazone compounds in an acetic anhydride environment [3]. At the same time a new hydrazone derivatives (A4, A5) one of which is also include sulfonamide group, has been carried out by reaction of advanced step of pyrazole carbaldehyde with various hydrazines [3]. The structures of the synthesized compounds have been characterized with the help of same spectroscopic methods (FT-IR, 1H-NMR, 13C-NMR and Mass).

Table 2. ¹³C NMR datas for the synthesized compounds (A2-A5)

Com-	Acet-	Benzo-	Thia-	Thia-	Benzo-	Nintro-	10000	Other
pound	amide	thiazole	diazole	diazole	thiazole	phenyl	- <u>C</u> H ₃	Ar- <u>C</u>
	0= <u>0</u>	<u>C</u> 2	<u>C</u> 5	<u>C</u> 2	<u>C</u> 9	- <u>C</u> -NO ₂	80.557	Neer State
A2	169.75	160.68	159.02	155.04	150.96	150.69	23.19	148.17-
							29. I I I	114.36
A3	177.87	159.96	169.71	167.68	159.06	150.95	35.81,	148.22-
					$\sim R$	hos	22.47	109.99
A4	-	159.70	-	-	150.83	149.16,	and We could	150.77-
						148.13	"Bediveling	105.69
A5	-	159.69	1015-0339	000-000	150.91	150.65	Politicano ano	148.14-
						Ricmatico ru	"Schercher jester	111.47

Table 3. ¹H NMR datas for the synthesized compounds (A2-A5) Hydrazyne $-NH/NH_2$ Other -CH₃ -C<u>H</u>=N Ar-<u>H</u> 8.95 (1H, s) 8.59 (1H, s) 2.09 (3H, s) 8.33-7.37 (12H) 8.97 (1H, s) 8.77 (1H, s) 3.83 (3H, s) 8.29-7.53 2.45 (3H, s) (9H) 9.11 (1H, s) 8.04 (1H, s) 10.84 (1H, s) 8.63 (1H, s) 8.38-7.19 (10H) 7.50 (1H, s) 10.75 (1H, s) 8.58 (1H, s) 9.01 (1H, s) 8.00 (1H, s) 8.35- 6.87 (11H) 7.05 (2H, s) 1,254 1,225 1,225 1,225 1,225 1,225 1,225 1,225 1,225 1,225 1,225 1,255 1,255 1,255 1,557

Experimental Procedure for the Synthesis of Compounds (A2, A3)

A mixture of the synthesized thiosemicarbazone derivatives (1mmol) and 15ml of acetic anhydride was refluxed for 24h. The precipitated product was hot filtered, poured onto mixture of ethanole- H_2O , dried and crystallized.

(A2): Yield 63%; mp. 222-223°C
Mass: 539,59 g/mol
(A3): Yield 76%; mp. 286-287°C
Mass: 477,52 g/mol

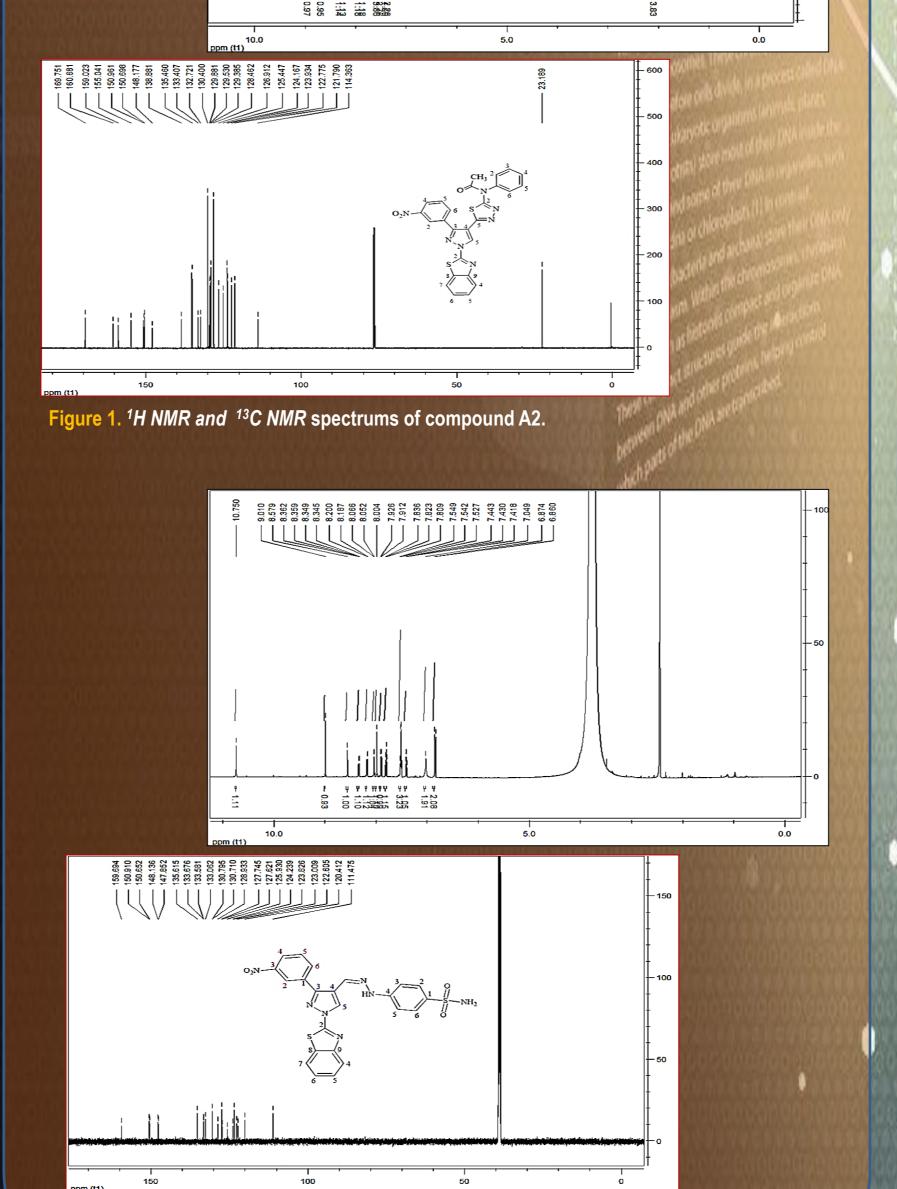
Experimental Procedure for the Synthesis of Compounds (A4, A5)

A mixture of the synthesized pyrazole 4-carbaldehyde (A1) (1mmol) and an equimolar amount of the appropriate hydrazine and/or sulfonamide in ethanol (5ml) and few drops of acetic acid was refluxed for 3h. The precipitated product was hot filtered, dried and crystallized.

(A4): Yield 65%; *mp.* 252-253°C *Mass*: 485,47g/mol

Scheme 1. Proposed molecular formulas for the synthesized compounds (A2-A5)

RESULTS AND DISCUSSION


The synthesis of the desired benzothiazole substituent pyrazoles A2-A5 have been accomplished as described in Scheme 1.

Condensation of the key starting materials 1-(benzo[d]thiazol-2yl)-3-(3-nitrophenyl)-1h-pyrazole-4-carbaldehyde (A1) with the appropriate sulfonamide and hydrazine, gave the corresponding hydrazone derivatives (A4, A5).

Cyclization of thiosemicarbazone derivatives with acetic anhydride yielded the corresponding 1,3,4-thiadiazole derivatives (A2, A3), respectively.

And all spectral datas have been supported the accuracy of the structures which proposed for molecules.

compound	Aromatic C-H	Aliphatic C-H	-C=0	-S0 ₂	-NH / NH ₂	Aromatic C=N/C=C	Ar-NO ₂
A2	3098	-	1676	-	-	1599- 1441	1530-1345
A3	3096	2890	1670	-	-	1600- 1438	1534-1345
A4	3079	-	-	-	3312 / -	1622- 1450	1544-1345
A5	3079	-	-	1147	3309 / 3250	1599- 1451	1526-1349

(A5): Yield 56%; *mp.* 292-293°C *Mass*: 519,56 g/mol

References

[1] Y. Urano, D. Asanuma, Y. Hama, Y. Koyama, T. Barrett, M. Kamiya, T. Nagano, T. Watanabe, A. Hasegawa, P.L. Choyke, H. Kobayashi, Nature Medicine, 15, (2009), 104-109.

[2] L. Yet, "Pyrazoles" In Comprehensive Heterocyclic Chemistry III, A. R. Katritzky, C.A. Ramsden, E.F. V. Scriven, and J.K. Richard, Taylor Eds., Elsevier, 4, (2008), pp. 113.

[3] A.H. Abadi, A.A.H. Eissa, G.S. Hassan, Chem. Pharm. Bull., 51, (2003), 838-844

