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[1] The European Ice Sheet Modelling Initiative (EISMINT) intercomparison
experiments with thermomechanical coupling are repeated with an ice sheet model that
applies the first-order approximation for computing the flow field. The experiments
impose radially symmetric boundary conditions. Most of the previous results have shown
the loss of implied radial symmetry, i.e., the formation of distinct, regularly spaced spokes
of cold ice in the simulated basal temperatures. A similar result is also observed in the
presented first-order model results. The computed velocity components scatter widely
along the marginal grid points. This indicates that the spokes may be triggered by the poor
representation of the margin with a regular grid, where the steep gradients in the surface
enhance the numerical errors. Additionally, the generally applied second-order
discretization scheme tends to decouple even and odd numbered grid points, thus leading
to wavy solutions with a wavelength of two grid cells. These patterns strongly suggest that
the loss in radial symmetry is a numerical artifact.

Citation: Saito, F., A. Abe-Ouchi, and H. Blatter (2006), European Ice Sheet Modelling Initiative (EISMINT) model intercomparison
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1. Introduction

[2] The European Ice Sheet Modeling Initiative (EIS-
MINT) intercomparison study addressed the effects of
thermomechanical coupling with a series of experiments
modeling an ice sheet with radially symmetric boundary
conditions [Payne et al., 2000]. A striking result is the loss
of radial symmetry in a range of low temperatures, which
was further discussed by Payne and Baldwin [2000].
Similar results were presented by Payne and Dongelmans
[1997] for rectangular ice sheets, which they called
the phenomenon ‘‘self-organization,’’ and by Hulton and
Mineter [2000] for circular ice sheets, who even called it
‘‘self-organization in ice streams.’’
[3] Some features in the broken symmetry indicate nu-

merical origin. The patterns are best visible in the distribu-
tion of basal temperature, where spokes of cold ice clearly
follow the grid lines and reflect grid symmetries. In this
paper, we collect arguments indicating a numerical origin of
the broken symmetry and the consequent spoke fields of
velocity components and temperature. Although this paper
cannot present a rigorous proof that the patterns are numer-
ical artifacts, it seems timely to present strong arguments

against physical interpretations of the spokes put forward so
far in the four papers mentioned above, which presented
little considerations of the numerical evidence. This paper
collects evidence from numerical experiments that strongly
support the assumption of a numerical origin of the ob-
served patterns. A deeper mathematical analysis of the
given set of equations and the applied numerical methods,
and a possible solution to avoid the instabilities lie beyond
the scope of this paper.
[4] All of the models used in the four previous studies

cited above applied the zeroth-order shallow ice approxi-
mation [Huybrechts, 1992; Greve, 1997; Saito and Abe-
Ouchi, 2004], where the velocity field is treated as a locally
defined shear flow, and normal stress gradients are
neglected. For some of the experiments presented in this
paper, we used an ice sheet model that includes the effects
of normal stress gradients [Blatter, 1995], sometimes called
an incomplete second-order approximation [Baral et al.,
2001], which is hereafter referred to as first-order approx-
imation (FOA). However, similar spokes appear in both
types of approximations, indicating an origin from more
basic conditions inherent in the numerical approach to be
solved.
[5] In section 2, an account of the differences between the

shallow ice and the first-order approximation and the
applied boundary conditions is given. In section 3, we
present results for different grid resolutions and different
basal temperatures resulting from different surface and basal
conditions, and for model experiments with and without
thermomechanical coupling and with fixed surface geome-
tries. An analysis of possible errors and error propagation
presented in section 4 indicates a possible source for the
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spokes at the boundary of the domain, which is poorly
represented by the regular quadratic grid. Section 5 summa-
rizes and discusses the various arguments supporting the
hypothesis of a numerical origin of the spoke patterns in
circular thermomechanically coupled ice sheet models using
finite differences on regular grids.

2. Model Experiment Setup

[6] The zeroth-order shallow ice approximation (SIA) ice
sheet model used in this study corresponds to the models
described in detail by Payne et al. [2000]. A comprehensive
description of the SIA is given by Greve [1997]. The model
in the FOA deviates from these models mainly in the
computation of the flow field and the strain heating.
The FOA velocity and stress fields are computed with the
method presented by Blatter [1995] and consider the
gradients of normal stress components and horizontal shear
stress. A detailed description of the coupled model used
here is given by Saito et al. [2003]. The models contain two
prognostic equations for the temperature and the surface,
which depend on time t, and steady state equations for stress
and flow fields. The horizontal spatial variables are x and y,
and the vertical variable is z, the ice thickness H = H(x, y) =
S(x, y) - B(x, y), where S and B are the ice surface and base,
respectively.
[7] The evolution of the local ice thickness H is deter-

mined by the local mass balance M = M(x, y, t) and the local
horizontal mass flux divergence, rH � f,

@S

@t
¼ M �rH � f � M � @ H�uð Þ

@x
� @ H�vð Þ

@y
; ð1Þ

where �u and �v are the vertically averaged horizontal velocity
components. In the SIA, the terms �u and �v can be reduced to
quadratures, whereas in the FOA, they must be computed
directly by averaging velocity components obtained from
the integration of the FOA equations for the horizontal
velocity components.
[8] The horizontal velocity vector in the shallow ice

approximation can be calculated by
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where g = 9.81 m s�1 is the acceleration of gravity, rI =
910 kg m�3 the density of ice. The basal sliding velocity is
neglected in the present paper.
[9] The first-order force balance [Blatter, 1995] is
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where sii denotes the normal deviatoric stress components
in the corresponding directions, tij denotes the correspond-

ing shear stress components, rI and g are the density of ice
and the acceleration of gravity, respectively. The FOA force
balance contains not only the gradients of vertical shear
stress components txz and tyz, but also the normal deviatoric
stress and horizontal shear stress components sxx, syy and
txy.
[10] The first-order constitutive equations (Glen’s flow

law) are
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where u, v are the horizontal velocity components in the x
and y directions, respectively,
[11] The second invariant of the deviatoric stress tensor,

t, in the first-order approximation is

t2 ¼ 1

2
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[12] Velocity fields are calculated for given surface and
bottom topographies by the method of Blatter [1995] with
equations (4), (9) and (10). Then, the local horizontal mass
flux is obtained by vertical integration of the velocity fields,
from which the evolution of the local ice thickness is
determined.
[13] Velocity and temperature fields are coupled through

the rate factor A(T). An Arrhenius relation is used for
calculation of A(T):

A T 0ð Þ ¼ a exp
�Q

RT 0

� �
; ð11Þ

where T0 = T � Tpm + T0 is absolute temperature corrected
for the dependence of melting temperature Tpm on pressure
and T0 = 273.15 K is the triple point of water. Parameters a
and Q follow the relations used by Payne et al. [2000].
[14] Temperature distribution is calculated from the ther-

modynamic equation under prescribed surface temperature
and geothermal heat flux as boundary conditions:
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where kI = 2.1 W m�1 K�1 and cp = 2009 J kg�1 K�1 are
thermal conductivity and specific heat capacity of ice,
respectively, and F is the strain heating, which in the first-
order approximation is
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In the SIA, only the first two terms on the right hand side of
equation (13) are included. At the surface of the ice,
prescribed temperatures are employed. At the bottom of ice,
the mixed boundary conditions are employed as follows:
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B

¼ � G
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ð14aÞ

if no melting and

TB ¼ Tpm ð14bÞ

if melting, where G is the prescribed geothermal heat flux.

3. Results

[15] The experiments, called experiments A0 and F0 with
the SIA, and experiments A1 and F1 with the FOA, were
performed using the same boundary conditions as the
corresponding experiments A and F in the EISMINT model
intercomparison experiments [Payne et al., 2000]. The
experimental design is as follows: The boundary conditions
at the base of the ice sheet are no-slip condition and match
the geothermal heat flux. However, temperature is con-
strained such that it does not exceed the local pressure
melting temperature. The surface temperature Ts and mass
balance M are given as functions of the horizontal distance
R to the summit,

Tsurface ¼ Tmin þ ST R; ð15Þ

M ¼ min Mmax; Sb Rel � Rð Þ½ �; ð16Þ

where Tmin and ST are the surface temperature at the summit
and the radial surface temperature gradient,Mmax, Sb and Rel

are upper limits for the accumulation rate, the radial mass
balance gradient and the radial distance of the equilibrium
line from the summit, respectively. The parameters in
equations (15) and (16) are set as Sb = 10�2 m yr�1km�1,
Rel = 450 km in both experiment A and F. The climatic
boundary conditions for experiments A and F are listed in
Table 1 and the geothermal heat flux is set at 42 mW m�2 in

all model experiments. The grid resolution is 25 km in both
horizontal coordinate directions and the time step is 5 years
for the surface evolution and the velocity field, and 25 years
for the temperature field.
[16] Experiment A1 started with the steady state result of

experiment A0 of the shallow ice approximation of the
model (Figure 1a). The four initial spokes in the basal
temperature distribution disappeared within about 50 kyr,
and the circular symmetry was restored (Figure 1b). This
seems to be not unexpected, since four out of 10 shallow ice
models produced results of experiment Awhich are close to
circular symmetry [Payne et al., 2000].
[17] Several experiments with the first-order model were

carried out using the boundary conditions of experiment F,
however, with different initial conditions. The first experi-
ment F10 started with the steady state solution of experi-
ment F0 in the shallow ice approximation (Figure 1c). The
first-order steady state shows similar spokes, which are
aligned along the grid lines (Figure 1d). A second experi-
ment F1A started with the circularly symmetric steady state
of experiment A1 (Figure 1e). As soon as the temperature
began to decrease, the spokes started to develop again. The
pattern of steady state spokes in experiment F1A, however,
is different from the pattern of experiment F10. This
demonstrates the possibility of multiple steady states for
the same boundary conditions depending on the initial
conditions.
[18] In one experiment C (Table 1), the surface boundary

conditions for temperature are chosen such that the entire
bed becomes cold. In this case the spokes disappear (Figure
1f), and circular symmetry is restored except for some
irregularities along the ice margin, which are related to
the coarse grid.
[19] Two experiments F started with the steady state of

experiment F1A, but this steady state was rotated by 45� and
30� around the origin. The spoke pattern disappeared after
about 10 kyr and after a short transient state of relatively
smooth temperature distributions, the spokes reappeared
and developed into a steady state, which is close to the
steady state of experiment F1A.
[20] Experiments A0 and F0 were repeated with higher

grid resolution, both with 12.5 km and 5 km (Figure 2). In
the case of A0, the spokes along the coordinate axes become
smaller with higher grid resolution (Figures 1a, 2a and 2b).
The opposite occurs in experiment F0, where the spokes
become more pronounced at higher resolutions (Figures 1c,
2c, and 2d). Because of extremely slow convergence of the
iteration scheme, the higher-resolution experiments could
not be performed with the first-order model.

4. Error Analysis

[21] In ice sheet models, surface evolution and velocity
fields are computed in routines called in a cycle for each
time step. For a given geometry, first the horizontal com-
ponent of the velocity field and mass flux, secondly the
vertical component of the velocity field and the consequent
mass flux divergence, and thirdly, the surface evolution are
computed. In thermomechanically coupled models, the
temperature field is updated after a given number of time
steps. In this section, the sensitivities of the single steps to
perturbations are estimated.

Table 1. Values of Climatic Boundary Conditions Used in the

Different Numerical Experiments

Experiment
Mmax,
m yr�1

Tmin,
K

ST,
K km�1

A 0.5 238.15 1.67 � 10�2

F 0.5 223.15 1.67 � 10�2

C 0.05 223.15 4.175 � 10�3
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4.1. Mass Flux

[22] The mass flux �u in the parallel sided slab is

�u ¼
ZS
B

u z0ð Þdz0 / rg sinað Þ3 S � Bð Þ5: ð17Þ

Relative errors (perturbations) in the thickness, H, and in the
inclination, sin a, are transformed to a relative error d�u/�u in
the mass flux,

d�u
�u
¼ 5

dH
H

þ 3
d sinað Þ
sina

: ð18Þ

Figure 1. Steady state solutions of basal temperature below pressure melting point obtained by
experiments (a) A0, (b) A1, and (c) F0. (d) Experiment F10 starting with the steady state solution of
experiment F0 and (e) experiment F1A starting with the steady state solution of experiment A1.
(f) Experiment C1. Shaded area indicates that the base is at pressure melting point. Contour interval is 2K
for Figures 1a–1e and 0.5K for Figure 1f.
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[23] The errors are smaller in the first-order approxima-
tion, since the velocity vectors are not defined alone by the
local ice thickness and surface inclination, but by their
values in a neighborhood of about 5 to 10 ice thicknesses
[Paterson, 1981].

4.2. Vertical Velocity and Mass Flux Divergence

[24] The generally used method to compute the vertical
component of the ice velocity at the surface is derived by
integrating the continuity equation of mass conservation,

w x; sð Þ ¼ � @

@x

Z S

B

udz0 � � @ H�uð Þ
@x

: ð19Þ

[25] For a given horizontal component of the velocity
field, u, and the surface geometry, S, the accuracy of the
integration scheme is second order in the discrete element
Dz, assuming numerical quadrature is performed with a
second-order scheme. In a numerical scheme using finite
differences, this yields

ws ¼ � @ H�uð Þ
@x

� �DH

Dx
�u� H

D�u

Dx
: ð20Þ

[26] This computation turns out to be very sensitive
to perturbations or errors in u as well as DH/Dx. The term

DH/Dx is influenced by numerical error due to the marginal
slope singularities. Besides, if we assume that the error
dw only stems from errors d (D�u) in the difference D�u of
horizontal components of the velocity, u,

dw ¼ @w

@ D�uð Þ d D�uð Þ ¼ H

Dx
d D�uð Þ: ð21Þ

[27] To estimate the magnitude of dw, we introduce the
aspect ratio � � Ĥ /L̂, where and L̂ are the typical magni-
tudes of vertical and horizontal extents of the glacier,
respectively. Furthermore, it is assumed that � = Ŵ /Û,
where Û and Ŵ are the typical magnitudes of horizontal
and vertical ice velocity at the ice surface. The length of the
glacier is discretized with N grid cells of length Dx = L̂/N,
and thus from equation (21) we get

dw
Ŵ

/ N
d D�uð Þ
Û

: ð22Þ

[28] Since D�u can be relatively small, the accuracy of this
difference may suffer from digit elimination, especially if
D�u is of the same order of magnitude as the individual
errors d�u of the mean velocities �u. In other words, we need

Figure 2. Steady state solutions of basal temperature below pressure melting point obtained by
experiment A0 with (a) 12.5 km grid resolution and (b) 5 km resolution and by experiment F0 with
(c) 12.5 km grid resolution and (d) 5 km resolution. Shaded area indicates that the base is at pressure
melting point. Contour interval is 2 K.
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to differentiate u numerically in order to compute w, and
numerical differentiation is not well posed in the limit of
taking small divided differences. This result is rather dis-
couraging. Higher accuracy cannot be achieved by using
higher-resolution Dx. The best accuracy lies somewhere
between too high a resolution, where digit elimination
becomes damaging, and too low a resolution, where the
discretization error becomes too large. In any case, the
relative error in the computed vertical velocity component
is a multiple of the relative error in the computed or
modelled horizontal velocity component.

4.3. Surface Evolution

[29] In most glacier and ice sheet models, the surface
evolution is computed by converting equation (1) into a
diffusion equation [Huybrechts, 1992] to achieve better
numerical stability [Hindmarsh and Payne, 1996]. Stable
solutions tend to smooth variations in the surface geometry
if the mass flux distribution is smooth. A local perturbation
thus delivers a wave along the surface with temporally
decreasing amplitude and increasing wavelength. This
smoothing tendency is often used to spin-up ice sheet model
runs if the prescribed starting geometry is a measured
surface topography [Huybrechts, 1992; Calov and Hutter,
1996; Greve, 1997].
[30] Within the described cycle of computation of the

dynamics of an ice mass, the computation of the surface
evolution is the only stabilizing part. It seems that in most

cases the stabilizing effect is strong enough to restrain the
other nonsmoothing effects.

4.4. Source of Errors

[31] If the surface slope is known exactly, the horizontal
velocity field in the shallow ice approximation can be
computed analytically, which will be well posed problem
except where slope singularities occur. However, since the
margin of the ice sheet is poorly represented by the regular
quadratic grid, ill-conditioning appears in calculating the
surface slope due to numerical differentiation[Reist, 2005].
To demonstrate the ill-conditioning of the numerical calcu-
lation of the velocity field near the margin, the surface
velocity components at all grid points are plotted against the
distance from the center of the ice sheet (Figure 3). Three
different experiments for the warm thermal conditions are
shown. The first case corresponds to the steady state of
experiment A0 with thermomechanical coupling and calcu-
lated steady state surface (Figure 3a). In the second case
(Figure 3b), the computed velocity field is not coupled to
the thermal conditions and uses a prescribed flow rate factor
corresponding to the steady state of experiment A0. The
temperature field is computed using the uncoupled advec-
tion, however, strain heating is considered. In the third case,
ice flow and temperature fields are coupled, but a fixed
surface corresponding to the steady state solution of exper-
iment A0 is prescribed (Figure 3c).
[32] In all of the cases, the radial (horizontal) and more-

over, the vertical velocity component show a large scatter

Figure 3. (top) Surface elevation, (middle) radial surface ice velocity component, and (bottom) vertical
surface velocity component as a function of distance to the center of the ice sheet for (a) experiment A0
(basal temperature is shown in Figure 1a), (b) experiment A0 without thermomechanical coupling, and
(c) experiment A0 with prescribed fixed surface geometry corresponding to the steady state solution of
experiment A0 along the diagonal line x = y. The thick lines give the profile along the x and y coordinate
axes, and the thin line along the diagonal is x = y. The crosses show the corresponding values on all other
grid points.
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near the ice margin. This confirms the prediction of
equations (18) and (21), where relative errors in the velocity
are multiples in the relative error of the ice thickness, and
relative errors in the vertical velocity component are multi-
ples of the relative errors in the horizontal velocity
components. The latter is most clearly shown in the
case of uncoupling thermal and mechanical conditions
(Figure 3b). The thermomechanical coupling seems to
enhance the sensitivity to perturbations and, in this case,
already leads to small spokes in the temperature distribu-
tion. The marginal scatter becomes much larger in the case
of prescribed ice surface. Even when the ice sheet geometry
is fixed through time, there is a large scatter in the
horizontal and vertical components of the velocity near
the ice margin (Figure 3c). This outcome reflects the well
known ill-conditioning of the given problem, namely numer-
ically computing the vertical component of the velocity field
for an ice surface prescribed on a grid [Calov, 1994].

5. Discussion

[33] The loss of radial symmetry is most pronounced in
the ice temperature distribution, which is represented in
graphs of the basal temperature (Figures 1 and 2). The loss
of radial symmetry is characterized by some patterns which
are common to all solutions.
[34] First, the solutions reflect the symmetry of the

discretization grid. If the spoke patterns are solutions of
the system of equations, then a rotated state is also a
solution of the equations. Starting an experiment with a
rotated solution does not yield rotated results (not shown
here). The initial state quickly smooths and the solution
returns to the spokes. The convergence toward a spoke
solution aligned with the grid clearly indicates a strong
influence of the numerical discretization scheme.
[35] Second, the poor representation of the margin by the

regular quadratic grid seems to be particularly serious since
surface gradients are steep near the singularity at the margin
[Fowler, 2001]. Thus, they vary strongly due to the variable
distance of the marginal grid points to the circular terminus
expected for the ice sheet. Numerical results for velocities
still scatter for solutions in which the circular symmetry is
not broken (Figure 3). This indicates that the spokes may be
triggered at the margin in cases where the stabilizing effect
of the computation of the surface evolution is not strong
enough to compensate the ill-conditioning of the computa-
tion of the velocity components with the zeroth and first-
order shallow ice approximation. The ill-conditioning may
be supported by the slope singularities at the margins in the
actual underlying partial differential equations of the zeroth-
order shallow ice approximation [Fowler, 2001], which
cannot be handled by finite difference schemes that approx-
imate gradients through polynomial interpolation. In addi-
tion, the coordinate transformation applied in most ice sheet
models, mapping the local ice thickness onto unity, is also
singular at the margin of the modeled domain.
[36] Third, all results have a common pattern as the

spokes mirror the principal symmetries of the grid centered
at the origin of the coordinate axes. Furthermore, the spokes
always follow grid lines, and a section across the bundles of
spokes reflects an oscillation pattern with a wavelength of
exactly two grid cells. Such wavy patterns may be caused

by partial numerical decoupling of solutions on even and
odd numbered grid points. Figure 4 shows graphs of the
basal ice temperatures of the shallow ice experiment F0 and
of the first-order experiment F10, split into two parts. One
part corresponds to the solution on the grid points with even
numbers in both horizontal directions, the other part on the
corresponding odd-numbered grid points. Both partial sol-
utions are much smoother than the overall solution. Some
smoother spokes remain and still reflect the symmetry of the
grid. The solutions of all experiments show a similar pattern
(not shown here), and the solutions on the even numbered
grid points, which contain the coordinate axes, seem to
display more pronounced spokes than the odd numbered
solutions.
[37] This pattern is a clear fingerprint of a partial numer-

ical decoupling between the even and odd numbered grid
points. In a system of coupled equations, this decoupling
may be amplified. Using a numerical solution of one
equation for parts of the discretization of another equation
may propagate this decoupling through the whole system of
equations and their numerical solutions, and furthermore,
may reduce the order of accuracy of the overall solution
[Colinge and Blatter, 1998]. This may be the case by using
the computed velocity field for the computation of the strain
heating, and conversely, using the computed temperature
field for computing the viscosity (rate factor) of the ice. A
possible partial remedy may be the use of asymmetric
higher-order difference schemes [Colinge and Blatter,
1998] or a multigrid method [Briggs, 1987; Brandt, 1977].
[38] The even-odd decoupling may be especially effective

if large local gradients occur in the solution fields. This may
be the case for polythermal situations where part of the base
is cold and part of it is temperate. The local thickness of a
possible basal layer of temperate ice may be quite sensitive
to the local thermal and dynamical conditions [Hutter et al.,
1988]. The transition between the temperate and cold base
along the spokes thus may become rather abrupt and may
trigger the wavy pattern across the spokes as a result of the
even odd decoupling. The poor representation of the margin
by the regular grid additionally induces large transverse
gradients along the ice edge, thus supporting the growth of
the spoke patterns.
[39] Another question is raised by the fact that simula-

tions of realistic ice sheets with the same thermomechani-
cally coupled models do not result in similar spokes or
wavy patterns. Perhaps the diffusive character of the nu-
merical schemes is more effective in more irregular fields
and helps to suppress the formation of spoke patterns, in
contrast to the highly symmetric fields in the discussed
circular geometry.
[40] It may be a difficult mathematical task to conclu-

sively prove that the spoke patterns of the thermomechani-
cally coupled solutions of the ice sheet equations are solely
a numerical artifact. This argument may be supported by
constructing a model with different discretization, either on
a different coordinate system, e.g. cylindrical coordinates,
or with an unstructured grid using finite elements. On the
other hand, the character of the observed patterns strongly
indicates their numerical origin, and it is premature to
ascribe physical meaning to the spokes [Hulton and
Mineter, 2000; Payne and Dongelmans, 1997]. It is
certainly mandatory to first exclude all possibilities of
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numerically induced errors and patterns before looking for
physical interpretations of exotic patterns in model results.
[41] The question is whether the spokes are a result of ill-

conditioning in the underlying equations, or a bad choice of
discretization schemes and numerical algorithms. In the
former case, no numerical algorithm can produce smooth
solutions of the equations. In the latter case, an appropriate
algorithm is required which can approximate the actual
solutions. Hindmarsh [2004] concludes that there is an
instability in the thermomechanical coupled shallow ice
equations, which is ill posed. On the other hand, Balmforth
and Craster [2000] present a well-posed streaming insta-
bility based on an asymptotic limit of rapid heat diffusion
across a viscous layer for lava domes, however, the math-
ematics is the same as for ice sheets. Hindmarsh [2004]
further discusses the mentioned instabilities of ice sheet
flow and interprets them as instabilities of the physical
system. The presented ‘‘regime B’’ fingering instabilities in
the thermal conditions do not have a strong projection onto
the ice thickness. This resembles to the EISMINT spokes.
On the other hand, these spokes seem to be initiated at high
slopes near the margin and propagate backwards into the ice
sheet, corresponding to ‘‘regime A’’ instabilities
[Hindmarsh, 2004]. If these physical instabilities exist and

are critical for somewavelengths in perturbations, it maywell
be that the EISMINT spokes reflect this physical instability,
but are caused by the wavelength of the grid. In this sense, the
spokes may be both physical and numerical, although their
strong two-grid wavelength is clearly forced by the grid and is
thus numerical. If this is true, our arguments of the numerical
origin of the spokes is both weakened and strengthened. The
two grid wavelength is clearly numerical, but the existence of
the spokes may reflect some physical background.

[42] Acknowledgment. The authors thank Will Sawyer, ETH Zurich,
and the reviewers, Christian Schoof, University of British Columbia, and
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