Axel Ullrich

Axel Ullrich
Wolf Prize Laureate
  • Prof.Dr.mult.
  • Max Planck Institute of Biochemistry

About

471
Publications
36,987
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
87,068
Citations
Current institution
Max Planck Institute of Biochemistry

Publications

Publications (471)
Article
The overexpression of AXL kinase has been described in many types of cancer. Due to its role in proliferation, survival, migration and resistance AXL represents a promising target in the treatment of the disease. In this study we present a novel compound family which successfully targets the AXL kinase. Through optimization and detailed SAR studies...
Data
Fig. S8 Western blotting quantification. Relative protein quantification level of Figure 7 H292 and MDA‐MB231 cell line.
Data
Fig. S10 Western blotting quantification. Relative protein quantification level of Figure 8.
Data
Fig. S7 Western blotting quantification. Relative protein quantification level of Figure 5G.
Data
Fig. S9 Western blotting quantification. Relative protein quantification level of Figure 7 Hs578T cell line.
Data
Fig. S1 Cross‐activated AXL Y779 phosphorylation by HGF.
Data
Fig. S2 Western blotting quantification. Relative protein quantification level of Figure 1.
Data
Fig. S3 Western blotting quantification. Relative protein quantification level of Figure 2 MDA‐MB231 and Caliper cell line.
Data
Fig. S4 Western blotting quantification. Relative protein quantification level of Figure 2 Hs578T and H292 cell line.
Data
Fig. S5 Western blotting quantification. Relative protein quantification level of Figure 4.
Data
Fig. S6 Western blotting quantification. Relative protein quantification level of Figure 5C and 5D.
Article
Full-text available
AXL Receptor Tyrosine Kinase (RTK) inhibition presents a promising therapeutic strategy for aggressive tumor subtypes, as AXL signaling is upregulated in many cancers resistant to first line treatments. Furthermore, the AXL ligand Growth Arrest-Specific gene 6 (GAS6) has recently been linked to cancer drug resistance. Here, we established that chal...
Article
Full-text available
Luminal A breast cancer is the most common breast cancer subtype which is usually treated with selective estrogen receptor modulators (SERMS) like tamoxifen. Nevertheless, one third of estrogen receptor positive breast cancer patients initially do not respond to endocrine therapy and about 40% of luminal A breast tumors recur in five years. In this...
Article
Full-text available
Purpose: Receptor tyrosine kinase AXL (RTK-AXL) is regarded as suitable target in glioma therapy. Here we evaluate the anti-tumoral effect of small molecule inhibitor BMS-777607 targeting RTK-AXL in a preclinical glioma model and provide evidence that RTK-AXL is expressed and phosphorylated in primary and recurrent glioblastoma multiforme (GBM)....
Article
Full-text available
Activation of various interacting stress kinases, particularly the c-Jun N-terminal kinases (JNK), and a concomitant phosphorylation of insulin receptor substrate 1 (IRS-1) at serine 307 play a central role both in insulin resistance and in β-cell dysfunction. IRS-1 phosphorylation is stimulated by elevated free fatty acid levels through different...
Article
Full-text available
Abstract Blocking the migration of metastatic cancer cells is a major goal in the therapy of cancer. The receptor tyrosine kinase AXL is one of the main triggers for cancer cell migration in neoplasia of breast, colon, skin, thyroid and prostate. In our study we analyzed the effect of AXL inhibition on cell motility and viability in triple negative...
Article
Activating mutations in the epidermal growth factor receptor (EGFR) have been identified in a subset of non-small cell lung cancer (NSCLC), which is one of the leading cancer types worldwide. Application of EGFR tyrosine kinase inhibitors leads to acquired resistance by secondary EGFR mutations or by amplification of the hepatocyte growth factor re...
Patent
Full-text available
The present invention relates to diagnostic and therapeutic methods in the field of malignant disorders. Most particularly, the invention provides methods of determining the invasivity of malignant disorders and methods for reducing the invasivity of malignant disorders including the prevention or treatment of cancer cell invasion.
Article
Full-text available
Elevated serum or tissue levels of lectin galactoside-binding soluble 3 binding protein (LGALS3BP) have been associated with short survival and development of metastasis in a variety of human cancers. However, the role of LGALS3BP, particularly in the context of tumor-host relationships, is still missing. Here, we show that LGALS3BP knockdown in MD...
Article
Resistance to chemotherapy is a serious problem for the successful treatment of ovarian cancer patients but signalling pathways that contribute to this chemoinsensitivity are largely unknown. We demonstrate that the chemotherapeutic drug doxorubicin induces activation of the HER3-PI3K-AKT signalling cascade in ovarian cancer cells. We further show...
Article
Abnormal accumulation and dysregulation of the epidermal growth factor receptor family member HER3 is associated with the development of various human cancers including those of the breast, lung, and ovary. We have previously shown that in melanoma HER3 is frequently overexpressed and is associated with poor prognosis. However, the importance of HE...
Chapter
Coordination of complex cell functions is achieved by the regulated information transfer along linear signalling pathways. It has become apparent, however, that these linear pathways are not free-standing entities but parts of larger networks. Transactivation of the epidermal growth factor receptor (EGFR) represents the paradigm for communication b...
Article
Unlabelled: The mitogen-inducible gene-6 (mig-6) is a multi-adaptor protein implicated in the regulation of the HER family of receptor tyrosine kinases. We have reported recently that mig-6 is a negative regulator of epidermal growth factor receptor (EGFR)-dependent skin morphogenesis and tumor formation in vivo. In the liver, ablation of mig-6 le...
Article
Full-text available
Activated Cdc42‐associated Kinase, ACK1, is a non‐receptor tyrosine kinase with numerous interacting partners, including Cdc42 and EGFR. Gene amplification and overexpression of ACK1 were found in many cancer types such as those of the lung and prostate. Previously, we identified both somatic‐ and germ line missense mutations in the ACK1 coding seq...
Article
In the growth factor receptor gene FGFR4 the presence of the common single nucleotide polymorphism Arg388 has been associated with progression of various types of cancer including breast cancer. However, a causative relationship is not readily assigned due to genetic heterogeneity in different patient cohorts. To address this issue, we compared the...
Article
Full-text available
The serine/threonine kinase PKB/Akt plays essential role in various cellular processes including cell growth and proliferation, metabolism and cell survival. The importance of the Akt pathway is highlighted by the mutation of various components of the pathway such as the PTEN and PI3-kinase (P110alpha) in human cancers. In this paper, we employed a...
Article
Mutational analysis of oncogenes is critical for our understanding of cancer development. Oncogenome screening has identified a fibroblast growth factor receptor 4 (FGFR4) Y367C mutation in the human breast cancer cell line MDA-MB453. Here, we investigate the consequence of this missense mutation in cancer cells. We show that MDA-MB453 cells harbou...
Article
Full-text available
We analyzed the G-actin-regulated transcriptome by gene expression analysis using previously characterized actin-binding drugs. We found many known MAL/MRTF-dependent target genes of serum response factor (SRF), as well as additional directly regulated genes. Surprisingly, several putative antiproliferative target genes were identified, including m...
Article
Signal transduction therapy is a leading area of modern drug research aiming to inhibit the pathomechanism based validated target molecules in cellular signaling. Selective inhibition of these false proliferative signals via targeting receptor tyrosine kinases and other signaling enzymes, resulting in the induction of apoptosis by depletion of the...
Article
Current clinical protocols favor a combination of antiangiogenic/antivascular compounds with classical chemotherapy. However, it remains unclear to what extent an antiangiogenic/antivascular therapy influences the delivery of chemotherapy. Therefore, the aim of the present study was to characterize the effects of the antiangiogenic tyrosine kinase...
Article
Full-text available
Establishment of antiapoptotic signaling pathways in tumor cells is a major cause for the failure of chemotherapy against cancer. To investigate the underlying mechanisms, we developed an experimental approach that is based on the genetic plasticity of cancer cells and the selection for cell survival on treatment with chemotherapeutic agents. Gene...
Article
Exposure to extensive ultraviolet (UV) rays is a major cause of skin cancer, which is thought to be initiated by DNA mutations. Members of the epidermal growth factor receptor (EGFR) family are important in various pathophysiologic processes like cancer and are shown to be phosphorylated upon UV exposure. Here we show that EGFR phosphorylation by m...
Article
FGFR4, a member of the fibroblast growth factor receptor family, has been recently associated with progression of melanoma, breast and head and neck carcinoma. Given its uniquely high expression in the liver, we investigated its contributory role to hepatocellular carcinoma (HCC). We performed a comprehensive sequencing of full-length FGFR4 transcr...
Article
Full-text available
The epidermal growth factor receptor family member HER3 is overexpressed in diverse human cancers and has been associated with poor prognosis in breast, lung, and ovarian cancer. However, the relevance of HER3 with regard to its prognostic significance and function in primary melanoma and metastases remains largely elusive. HER3 protein expression...
Article
The transmembrane glycoprotein signal regulatory protein/SHP2-substrate (SIRP1alpha/SHPS-1) has been implicated in growth factor- and cell adhesion-induced signalling. Here we report on the contribution of SIRP1alpha to IL-6 type cytokine signalling. SIRP1alpha binds the protein tyrosine phosphatase SHP2 upon treatment with interleukin-6 in a stimu...
Article
Full-text available
Because of their antagonistic catalytic functions, protein-tyrosine phosphatases (PTPs) and protein-tyrosine kinases act together to control phosphotyrosine-mediated signaling processes in mammalian cells. However, unlike for protein-tyrosine kinases, little is known about the cellular substrate specificity of many PTPs because of the lack of appro...
Article
Full-text available
Protein kinases play important roles in tumor development and progression. A variety of members of this family of signal transduction enzymes serve as targets for therapeutic intervention in cancer. We have identified the receptor tyrosine kinase (RTK) AXL as a potential mediator of motility and invasivity of breast cancer cells. AXL is expressed i...
Article
Full-text available
The receptor tyrosine kinase Axl has recently been identified as a critical element in the invasive properties of glioma cell lines. However, the effect of Axl and its ligand growth arrest--specific gene 6 (Gas6) in human gliomas is still unknown. Axl and Gas6 expression was studied in 42 fresh-frozen and 79 paraffin-embedded glioma specimens by me...
Article
Full-text available
Protein tyrosine kinases (PTKs) play a critical role in the manifestation of cancer cell properties, and respective signaling mechanisms have been studied extensively on immortalized tumor cells. To characterize and analyze commonly used cancer cell lines with regard to variations in the primary structure of all expressed PTKs, we conducted a cDNA-...
Article
Signal transduction via tyrosine phosphorylation, normally fine-tuned by the concerted action of both protein tyrosine kinases and protein tyrosine phosphatases (PTPs), is a key mechanism in tumorigenesis. PTP-PEST, a ubiquitously expressed cytoplasmic tyrosine phosphatase, is thought to play an important role in cell adhesion and motility, and may...
Article
Proteolytic processing and ectodomain shedding have been described for a broad spectrum of transmembrane proteins under both normal and pathophysiological conditions and has been suggested as one mechanism to regulate a protein's function. It has also been documented for the receptor-like protein tyrosine phosphatase PTP-LAR, induced by treating ce...
Chapter
Receptor tyrosine kinases (RTKs) are membrane-spanning proteins that possess a ligand-controlled intracellular kinase activity. They regulate a wide variety of cellular processess as diverse as cell proliferation, apoptosis or cell migration. Consequently, dysregulation of RTKs due to overexpression, mutation or autocrine stimulation has been causa...
Article
Full-text available
A recent study presented first evidence that a single nucleotide polymorphism (SNP) at codon 388 of fibroblast growth factor receptor 4 (FGFR4) gene, causing a transmembrane domain missense mutation (Gly388Arg), is associated with disease outcome in node-positive breast cancer. This article addresses the clinical relevance of this SNP, FGFR4 genoty...
Article
Full-text available
A single nucleotide polymorphism in the gene for FGFR4 (-Arg388) has been associated with progression in various types of human cancer. Although fibroblast growth factors (FGFs) belong to the most important growth factors in melanoma, expression of FGF receptor subtype 4 has not been investigated yet. In this study, the protein expression of this r...
Article
Clinical investigations of an FGFR4 germline polymorphism, resulting in substitution of glycine by arginine at codon 388 (G388 to R388), have shown a correlation between FGFR4 R388 and aggressive disease progression in cancer patients. Here, we studied the differential effects of the two FGFR4 isotypes on cellular signalling and motility in the MDA...
Article
625 Background: Bange et al. recently found that a single-nucleotide polymorphism (SNP) at codon 388 of fibroblast growth factor receptor 4 (FGFR4) gene, causing a transmembrane domain missense mutation (Gly388Arg), is associated with outcome in node-positive breast cancer. Methods: This study addresses clinical relevance of this SNP, FGFR4 genotyp...
Article
Full-text available
The growing number of recently identified negative feedback regulators of receptor tyrosine kinases (RTKs) highlights the importance of signal attenuation and modulation for correct signaling outcome. Mitogen-inducible gene 6 (Mig6 also known as RALT or Gene 33) is a multiadaptor protein thought to be involved in the regulation of RTK and stress si...
Article
Full-text available
Several receptor protein tyrosine phosphatases (RPTPs) are cell adhesion molecules involved in homophilic interactions, suggesting that RPTP outside-in signaling is coupled to cell contact formation. However, little is known about the mechanisms by which cell density regulates RPTP function. We show that the MAM family prototype RPTPkappa is cleave...
Article
Full-text available
Malignant gliomas remain incurable brain tumors because of their diffuse-invasive growth. So far, the genetic and molecular events underlying gliomagenesis are poorly understood. In this study, we have identified the receptor tyrosine kinase Axl as a mediator of glioma growth and invasion. We demonstrate that Axl and its ligand Gas6 are overexpress...
Article
Guidance molecules have attracted interest by demonstration that they regulate patterning of the blood vascular system during development. However, their significance during postnatal angiogenesis has remained unknown. Here, we demonstrate that endothelial cells of human malignant brain tumors also express guidance molecules, such as EphB4 and its...
Article
Interreceptor cross-talk has emerged as a general concept in cellular signaling cascades. Therein epidermal growth factor receptor (EGFR) signal transactivation represents the so far best investigated cross-talk mechanism comprising heterogeneous receptor families. In this signaling process G protein-coupled receptor (GPCR) stimulation induces phos...
Article
Full-text available
Epidermal Growth Factor Receptor (EGFR) is a high priority target in anticancer drug research. Thousands of very effective EGFR inhibitors have been developed in the last decade. The known inhibitors are originated from a very diverse chemical space but--without exception--all of them act at the Adenosine TriPhosphate (ATP) binding site of the enzy...
Article
Full-text available
Receptor tyrosine kinases of the Axl family are activated by the vitamin K-dependent protein Gas6. Axl signalling plays important roles in cancer, spermatogenesis, immunity, and platelet function. The crystal structure at 3.3 A resolution of a minimal human Gas6/Axl complex reveals an assembly of 2:2 stoichiometry, in which the two immunoglobulin-l...
Article
Full-text available
Signal transduction therapy has become one of the most important areas of drug research. Signaling disorders represent a major cause for the pathological states and many of the recently identified validated target molecules of drug research are signal transduction related macromolecules, mostly kinases. Rational drug design is aimed to achieve the...
Article
Kinase inhibitors are at the forefront of modern drug research, where mostly three technologies are used for hit-and-lead finding: high throughput screening of random libraries, three-dimensional structure-based drug design based on X-ray data, and focused libraries around limited number of new cores. Our novel Nested Chemical Library (NCL) (Vichem...
Article
Full-text available
We have performed an in vitro selection for an anti-apoptotic phenotype that resembles the selection process that pre-malignant cells undergo in the initial phase of carcinogenesis in vivo. Using the cervical carcinoma cell line HeLa S3 as a model system, the selection procedure yielded cell clones that displayed increased resistance to apoptosis i...
Article
The epidermal growth factor receptor (EGFR) plays a key role in the regulation of important cellular processes under normal and pathophysiological conditions such as cancer. In human mammary carcinomas the EGFR is involved in regulating cell growth, survival, migration and metastasis and its activation correlates with the lack of response in hormon...
Article
Full-text available
Knowledge about molecular drug action is critical for the development of protein kinase inhibitors for cancer therapy. Here, we establish a chemical proteomic approach to profile the anticancer drug SU6668, which was originally designed as a selective inhibitor of receptor tyrosine kinases involved in tumor vascularization. By employing immobilized...
Article
Mitogen-activated protein kinases (MAPKs) are important regulators of a vast number of biological functions that affect life and death of eukaryotic cells and are tightly regulated by the concerted action of several phosphatases. Among these is the human homologue of vaccinia virus H1 phosphatase gene clone 5 (hVH-5) product, which dephosphorylates...
Article
Two members of the EGF receptor family, HER2 and HER3, act as key oncogenes in breast cancer cells. A MAb against HER2, trastuzumab, interferes with HER2 signaling and istherapeutically effective in humans. Here, we explored the biologic effects of an antibody against HER3 (alpha-HER3ECD) in the invasive breast cancer cell lines MCF-7ADR and MDA-MB...
Article
Tumor progression is characterized by loss of cell adhesion and increase of invasion and metastasis. The cell adhesion molecule E-cadherin is frequently down-regulated or mutated in tumors. In addition to down-regulation of cell adhesion, degradation of the extracellular matrix by matrix metalloproteinases is necessary for tumor cell spread. To inv...
Article
The goal of this study was to determine the effects of SU6668, a polyvalent receptor tyrosine kinase inhibitor against vascular endothelial growth factor receptor-2, platelet-derived growth factor receptor-beta, and fibroblast growth factor-1 on tumor growth, angiogenesis, and microcirculation in an orthotopic malignant glioma model. Fluorescently...
Article
Receptor tyrosine kinases of the EGFR family transmit extracellular signals that control diverse cellular functions such as proliferation, differentiation and survival. Signaling function of a member of this family, HER3, is believed to be impaired due to deviations in its kinase consensus motifs. Here we address the functional role and signaling m...
Article
Full-text available
It is well established that the mitogen-activated protein kinase (MAPK) signal is regulated through phosphorylation-dependent activation by the three-tiered MAPK cascade. However, our studies on the interaction of the MAPK ERK5 with the tyrosine kinase c-Abl and its oncogenic variants v-Abl and Bcr/Abl disclosed an alternative aspect of regulation....
Article
Full-text available
ERK5 is unique among mitogen-activated protein kinases (MAPKs) in that it contains a large C-terminal tail. We addressed the question of how this tail could affect the signaling capacity of ERK5. Gradual deletion of the C-terminal domains resulted in a drastic increase of ERK5 kinase activity, which was dependent on the up-stream MAPK cascade, thus...
Article
Selective inhibition of protein tyrosine kinases is gaining importance as an effective therapeutic approach for the treatment of a wide range of human cancers. However, as extensively documented for the BCR-ABL oncogene in imatinib-treated leukaemia patients, clinical resistance caused by mutations in the targeted oncogene has been observed. Here,...
Article
Signalling through protein tyrosine kinases (PTKs) is critical in the regulation of important cellular processes and its deregulation is associated with pathophysiological disorders such as cancer. We investigated the function of the PTK spleen tyrosine kinase (Syk) in the regulation of growth factor signalling pathways in human mammary epithelial...
Article
Full-text available
Cross-talk between G protein-coupled receptor (GPCR) and epidermal growth factor receptor (EGFR) signaling systems is widely established in a variety of normal and transformed cell types. Here, we demonstrate that the EGFR transactivation signal requires metalloproteinase cleavage of epidermal growth factor-like growth factor precursors in fibrobla...
Article
Full-text available
The interleukin-6 (IL6) family of cytokines signals through the common receptor subunit gp130, and subsequently activates Stat3, MAPK, and PI3K. Stat3 controls cell death and tissue remodeling in the mouse mammary gland during involution, which is partially induced by IL6 and LIF. However, it is not clear whether Stat3 activation is mediated solely...
Article
Fibroblast growth factor receptors (FGFRs) have been implicated in various forms of human hyperproliferative disorders such as cancers of the cervix and bladder. We investigated the expression pattern of FGFR4 and the clinical significance of the recently identified Gly/Arg polymorphism (388) in head and neck squamous cell carcinomas (HNSCCs) of th...
Article
Full-text available
Cross-communication between the Met receptor tyrosine kinase and the epidermal growth factor receptor (EGFR) has been proposed to involve direct association of both receptors and EGFR kinase-dependent phosphorylation. Here, we demonstrate that in human hepatocellular and pancreatic carcinoma cells the Met receptor becomes tyrosine phosphorylated no...
Article
Full-text available
Mammalian cells respond to environmental stress by activating a variety of protein kinases critical for cellular signal transmission, such as the epidermal growth factor receptor (EGFR) tyrosine kinase and different members of the mitogen-activated protein kinase (MAPK) family. EGFR activation by stress stimuli was previously thought to occur indep...
Article
Extract: Molecular communication is essential for the coordinated development and life of multicellular organisms. This process involves sending, receiving and promoting signals by means of elaborate signal transduction networks. Important players for these processes are cell surface receptors which transmit signals across the cell's outer barrier,...
Article
Receptor tyrosine kinases are a subclass of cell-surface growth-factor receptors with an intrinsic, ligand-controlled tyrosine-kinase activity. They regulate diverse functions in normal cells and have a crucial role in oncogenesis. Twenty years ago, the first primary structure of a receptor tyrosine kinase, the epidermal growth factor receptor, was...
Article
Some protein kinases are known to acquire resistance to selective small molecule inhibitors upon mutation of a conserved threonine at the ATP binding site to a larger residue. Here, we performed a comprehensive mutational analysis of this structural element and determined the cellular sensitivities of several disease-relevant tyrosine kinases again...
Article
Full-text available
Signaling by receptor tyrosine kinases (RTK) mediates a variety of complex cellular functions and in case of deregulation can contribute to pathophysiological processes. A tight and finely tuned control of RTK activity is therefore critical for the cell. We investigated the role of the PEST-type protein-tyrosine phosphatase BDP1 in the regulation o...
Article
Full-text available
Cannabinoids, the active components of marijuana and their endogenous counterparts were reported as useful analgetic agents to accompany primary cancer treatment by preventing nausea, vomiting, and pain and by stimulating appetite. Moreover, they have been shown to inhibit cell growth and to induce apoptosis in tumor cells. Here, we demonstrate tha...
Article
Full-text available
PTP20, also known as HSCF/protein-tyrosine phosphatase K1/fetal liver phosphatase 1/brain-derived phosphatase 1, is a cytosolic protein-tyrosine phosphatase with currently unknown biological relevance. We have identified that the nonreceptor protein-tyrosine kinase Tec-phosphorylated PTP20 on tyrosines and co-immunoprecipitated with the phosphatase...
Article
Destruction of existing tumor blood vessels may be achieved by targeting vascular endothelial growth factor (VEGF) signaling, which mediates not only endothelial cell proliferation but also endothelial cell survival. In this study, however, intravital microscopy failed to demonstrate that targeting of VEGFR-2 (by the tyrosine kinase inhibitor SU541...
Article
Full-text available
Signalling through G-protein-coupled receptors (GPCRs) and receptor tyrosine kinases (RTK) is involved in the regulation of essential cellular processes and its deregulation is associated with tumorigenesis in vitro and in vivo. We investigated pathophysiological processes that are regulated by GPCR pathways in human kidney and bladder cancer cell...
Article
Full-text available
Destruction of existing tumor blood vessels may be achieved by targeting vascular endothelial growth factor (VEGF) signaling, which mediates not only endothelial cell proliferation but also endothelial cell survival. In this study, however, intravital microscopy failed to demonstrate that targeting of VEGFR-2 (by the tyrosine kinase inhibitor SU541...

Network

Cited By