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Abstract: The record-breaking rainfall produced by Hurricane Harvey resulted in catastrophic 6 

and prolonged impacts on Houston’s transportation infrastructure, inundating entire 7 

neighborhoods and rendering them inaccessible to emergency response services. Harvey 8 

highlighted the vulnerability of the roadway network to severe inundation during extreme fluvial 9 

flood events and emphasized the need for detailed roadway network accessibility 10 

characterization in order to determine which areas of the city are most vulnerable and sensitive to 11 

transportation disruption. This study poses an integrated framework to evaluate fluvial flood 12 

impacts on roadway accessibility to emergency services experienced by potentially socially 13 

vulnerable populations.  This framework is applied to assess the time evolution of road network 14 

accessibility during Hurricane Harvey through coupling of observed road closures, flood 15 

modeling, and network analysis. Furthermore, by analyzing network disruptions at the census 16 

block group level, the correlation between impact severity and social demographics of the 17 
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affected areas is investigated. This analysis is conducted for two highly populated watersheds 18 

within the city of Houston, which have contrasting flood management infrastructure and 19 

represent a broad range of demographic groups. This analysis advances understanding of the 20 

interactions between flood extent and duration, infrastructure impacts, and community 21 

vulnerability by (i) assessing the evolution of network accessibility between emergency service 22 

locations and flood-impacted areas, (ii) estimating the flood-induced increase of the emergency 23 

response travel times of the aforementioned origin-destination pairs, and (iii) highlighting 24 

potential correlations between physical and social vulnerability.   25 

Author keywords: road network; accessibility analysis; fluvial flood modeling; urban flooding; 26 

social vulnerability; hurricane Harvey; recovery; emergency response; 27 

Introduction   28 

Harvey made landfall as a category 4 hurricane along the southern Texas coast on the evening of 29 

August 25, 2017. The storm moved slowly inland, stalling for nearly four days before moving 30 

back into the Gulf of Mexico and ultimately making a second landfall as a tropical storm in 31 

Louisiana. As Harvey stalled over central Texas from August 25th-30th, it unleashed an 32 

unprecedented amount of rainfall over the greater Houston region, which caused catastrophic 33 

flooding. In particular, all 22 of the major bayous in the Houston region overtopped their banks 34 

during Harvey (Lindner and Fitzgerald 2018), and this extreme riverine flooding caused 35 

widespread and prolonged impacts to the entire region.  36 

Harvey’s extreme rainfall resulted in cascading impacts (Pescaroli and Alexander 2015) 37 

to the Houston region, since widespread flooding resulted in severe transportation disruption, and 38 

ultimately caused thousands of people to become stranded without access to emergency response 39 

services or medical facilities. In total, over 60,000 residents had to be rescued across the county, 40 

according to the Harris County Flood Control District (Lindner and Fitzgerald 2018). Hurricane 41 



Harvey was a notable extreme event because it demonstrated that secondary impacts of flooding 42 

[i.e., those that occur due to the presence of flooding (e.g., transportation network disruption) but 43 

not due to direct contact with flood waters (Arkell and Darch 2006)] can be as important as 44 

direct flood impacts (e.g., physical damage to structures). In addition to highlighting the 45 

vulnerability of the roadway network to severe disruption, this event also demonstrated the 46 

vulnerability of communities to becoming stranded or isolated during extreme events. Given that 47 

many climate scientists believe the frequency of extreme precipitation events like Hurricane 48 

Harvey is increasing (Emanuel 2017; van Oldenborgh et al. 2017), it is necessary to understand 49 

how this storm event impacted transportation infrastructure across the Houston region. 50 

Furthermore, posing a viable framework to integrate and synthesize data from various sources to 51 

uncover fluvial flood impacts on roadway networks and their dependent citizens can have far 52 

reaching benefits in supporting risk mitigation, climate adaptation and resilience planning across 53 

many hazard susceptible regions. 54 

Specifically, there is a need to thoroughly investigate the time evolution of Harvey’s 55 

impacts on the roadway network and subsequent impacts on emergency response accessibility of 56 

different Houston neighborhoods in order to identify physically vulnerable regions of the city 57 

during extreme precipitation events. Additionally, it is crucial to understand the characteristics of 58 

the communities most heavily impacted by transportation disruption in order to determine the 59 

relationship between extreme flooding, infrastructure performance, and societal impacts. 60 

Although real-time road condition data is available for major highways through the Texas 61 

Department of Transportation (TxDOT), there is little information about the status of local roads 62 

during flood events. To understand flood impacts on local transportation networks, hydrologic 63 

and hydraulic models can simulate flood evolution and identify flooded roads. 64 



Previous studies have demonstrated the usefulness of hydrologic and hydraulic models 65 

for predicting roadway inundation/inaccessibility during flood events. Yin et al. (2017) 66 

developed future 100-yr and 500-yr coastal flooding scenarios and conducted road network 67 

analysis to determine the impact to emergency response services. Coles et al. (2017) coupled 68 

hydrodynamic flood modeling with network analysis to evaluate the impacts of two historical 69 

flood events on emergency response services in the city of York, UK. Findings from this study 70 

highlight the vulnerability of the transportation system to widespread disruption due to flood 71 

events. Green et al. (2017) compared the impacts to transportation accessibility from fluvial 72 

flooding vs pluvial events. These studies focused on road network accessibility assessment in a 73 

“static” way considering only the maximum inundation depths of the flood scenarios examined, 74 

rather than capturing the network disruption evolution and the subsequent recovery throughout 75 

the duration of an extreme flood event. Additionally, previous studies have not thoroughly 76 

investigated the demographics of impacted areas, which can be crucial in understanding how 77 

transportation disruption interacts with social vulnerability.  78 

The objective of this paper is to quantify the evolving level of flood-induced road 79 

network disruption, with a particular focus on emergency response routes of two case study areas 80 

within Houston’s transportation system, throughout the duration of Hurricane Harvey’s rainfall. 81 

Specifically, this paper investigates how extreme fluvial flooding can result in spatially varied 82 

road network disruptions that evolve in time, which ultimately impacts access to neighborhoods 83 

across the city. This is achieved through development of a methodology that integrates observed 84 

road closure data, floodplain simulation-based estimation of road operability using advanced 85 

hydrologic/hydraulic modeling, and network accessibility analysis. The proposed methodology 86 

supports the network performance assessment of emergency response routes through evaluation 87 



of appropriate metrics developed in this study that quantify the transportation disruption between 88 

fire stations/hospitals and different neighborhoods across the city. Furthermore, indicators of 89 

social vulnerability of the communities located in the two case study areas are collected and the 90 

results of the transportation infrastructure and social vulnerability assessments are combined to 91 

explore potential correlations between areas of high physical vulnerability and high social 92 

vulnerability, and ultimately provide insights about the populations that were most severely 93 

impacted during the storm.  94 

In the next section the two case study areas are introduced and described. The paper then 95 

continues with a detailed description of the network accessibility assessment methodology and 96 

its coupling with social vulnerability analysis, as well as the various methods, models and 97 

datasets used. Results are presented and accompanied by corresponding discussions in the 98 

subsequent section. Finally, the last section provides the conclusions and recommendations for 99 

future work within the context of transportation infrastructure resilience and emergency response 100 

planning during extreme rain events. 101 

Case study area(s) 102 

The two case study watersheds examined in this study are Brays Bayou and Greens Bayou, 103 

chosen because they are both highly urbanized and flood prone. Additionally, they feature 104 

contrasting riverine management infrastructure since one is concrete-lined (highly engineered) 105 

while the other is more natural, incorporating natural meanders in the channel and vegetation 106 

along/within the stream. Finally, these watersheds represent a range of demographic groups with 107 

respect to race, income, and age distribution. Two drainage basins within the city are chosen as 108 

the case study areas because this study focuses on simulating riverine-based flooding, and the 109 

boundaries of the watersheds delineate the areas that could be impacted by river flooding.  110 



Study Area 1: Brays Bayou 111 

The Brays Bayou watershed is located in southwest Houston (Fig. 1), featuring over 95% 112 

developed land and a population of 717,198 people. The watershed encompasses a drainage area 113 

of 332 km2, and has over 195 km of open channels (HCFCD 2018a). The majority of the 114 

watershed, especially the central and eastern portions, is occupied by high intensity residential 115 

and commercial land uses, and across the watershed very little green space has been preserved. 116 

Brays Bayou serves as the primary drainage conduit for the watershed, flowing west to east, and 117 

the majority of the stream is channelized and lined with concrete to facilitate faster drainage 118 

during rain events. Although almost $500 million has recently been spent on watershed 119 

improvements to increase conveyance and storage during extreme rain events (HCFCD 2004), 120 

parts of the watershed remain highly vulnerable to riverine flooding (Bass et al. 2016). Flooding 121 

impacts along Brays Bayou are often exacerbated due to development patterns within the 122 

watershed, which have left little buffer space between the banks of the bayou and 123 

roads/structures. 124 

Study Area 2: Greens Bayou 125 

The Greens Bayou watershed is located in northeast Houston (Fig. 1), and is also highly 126 

developed with a population of 528,720 people (HCFCD 2018b). The drainage area of Greens 127 

Bayou watershed is 549 km2, which is substantially larger than Brays Bayou, and the watershed 128 

has 496 km of open streams (HCFCD 2018b). Although the majority of the watershed is 129 

composed of residential and commercial development, there is a significant amount of forest and 130 

wetland areas in the northeast portion of the watershed. Greens Bayou and Halls Bayou are the 131 

two main tributaries within the watershed, flowing northwest to southeast, and ultimately joining 132 

in the southern portion of the watershed before flowing into the Houston Ship Channel. Both 133 

Halls and Greens Bayous are mostly natural channels, featuring large meanders and vegetation 134 



lining the banks, and consequently they drain more slowly than Brays Bayou. Although there 135 

have been a few regional detention projects completed recently in the Greens Bayou watershed 136 

(HCFCD 2018b), it has not benefited from as many flood mitigation projects and investments 137 

compared to the Brays Bayou watershed.  138 

Methods 139 

Overview 140 

This study assesses the evolution of road network accessibility related to emergency response 141 

services, such as access from fire stations and hospitals to different neighborhoods in the two 142 

case study areas during Hurricane Harvey. This is accomplished through a methodology that 143 

couples fluvial flood simulation using hydrologic and hydraulic modeling with network analysis. 144 

At the core of this approach is a proposed hybrid procedure for identifying the network’s road 145 

link closures during various time instants of the storm that integrates observed highway service 146 

operability data (TxDOT 2017) with simulation-based estimation of the operability of local roads 147 

based on the output of hydrologic and hydraulic models. This hybrid procedure is developed here 148 

to overcome the absence of observed data regarding the local road conditions during Hurricane 149 

Harvey. The goal of this study is to quantify the impact of flooding on the performance of the 150 

transportation system, and as such this analysis does not incorporate traffic congestion modeling. 151 

Incorporating a congestion model may provide more accurate representations of the absolute 152 

travel times associated with reaching various neighborhoods, and additional uncertain factors 153 

also deserve attention such as emergency response and driving behavior in hazardous conditions. 154 

Overall, however, this analysis seeks to isolate the impact of flooding and offers relative 155 

measures that shed light on the spatial and temporal evolution of access during flooding.  156 



Fig. 2 presents a flowchart of the methodology developed in this study. According to this 157 

methodology, the floodplains of the case study areas are simulated using hydrologic and 158 

hydraulic analysis for various time instants of the storm. The next step corresponds to identifying 159 

the local roads of the networks that are classified as not operable due to flooding based on the 160 

simulated inundation maps. This classification is performed by establishing an inundation depth 161 

threshold η, and based on intersection of roadways and inundation depths greater than η, road 162 

segments are considered to be closed and are removed from the road network during the network 163 

analysis. Threshold η is set equal to 61 cm (~ 2 ft) (Anarde et al. 2017) following guidelines 164 

from the National Weather Service (NWS 2018) regarding the approximate water depth at which 165 

most vehicles become buoyant during flood conditions. It is noted here that lower roadway 166 

inundation depth thresholds indicating unsafe conditions for vehicles have been proposed in the 167 

literature (Coles et al. 2017; Green et al. 2017; Yin et al. 2016); however since the network 168 

accessibility performance is focused here on emergency response services and emergency 169 

vehicles are in general able to tolerate higher inundation depths (Yin et al. 2017), the higher 170 

threshold of 61 cm was chosen. However, the threshold adopted should reflect the safe traversing 171 

height for the emergency response vehicles used, and a lower threshold may be appropriate 172 

depending on the vehicle type. After the operability conditions of the network links 173 

corresponding to the local (i.e., not highways) roads are determined, this simulation-based data is 174 

integrated with similar roadway closure information that was observed for Houston’s highway 175 

system for the same time instants of the storm that the simulation-based data was captured. The 176 

latter observed data was obtained by digitizing closures reported during the course of the storm 177 

by the Texas Department of Transportation (TxDOT) through their online highway condition 178 

website (TxDOT 2017). It is noted here that although the TxDOT online highway condition 179 



website provides closure data verified by TxDOT employees as well as crowd sourced data, only 180 

the former type of data was used in this study. The next step of the proposed methodology entails 181 

coupling of the hybrid simulation and observed road closure data with network accessibility 182 

analysis for the road networks of the two case study areas to ultimately (i) assess the evolution of 183 

road network accessibility between emergency response service locations and flood-impacted 184 

areas, and (ii) estimate the emergency response travel times of the aforementioned origin-185 

destination pairs. Finally, sociodemographic data of the communities of the two case study areas 186 

are collected and processed to identify and assess social vulnerability factors of these locations, 187 

and combine them with the network accessibility performance to investigate potential 188 

correlations between social vulnerability and the storm’s impact on the physical transportation 189 

infrastructure of the affected areas. More detailed discussion regarding data collection as well as 190 

description of the flood modeling, road network accessibility and social vulnerability factors 191 

involved in the methodology presented above are provided in the following subsections. 192 

 193 

Data collection 194 

The 2016 Southeast Texas Addressing and Referencing Map (STAR*Map) version of Houston’s 195 

street centerline GIS data was obtained from the Houston-Galveston Area Council (H-GAC 196 

2018). The locations of fire stations and hospitals corresponding to the critical emergency 197 

response facilities examined in this study were obtained from the City of Houston GIS 198 

(COHGIS) Open Data Portal (COHGIS 2018) and are shown in Fig. 1. For estimating the travel 199 

times that emergency vehicles needed to access the flood-impacted areas during Hurricane 200 

Harvey, speed limits for the highway road links of the network were collected from H-GAC 201 

(2018) and an average value of 88.5 km/h (55 mph) was used, whereas for the local road links a 202 



value of 48.2 km/h (30 mph) was assumed. To account for adverse road conditions during the 203 

storm, since it is likely that emergency vehicles could not travel at full speed, a reduction of 16 204 

km/h (10 mph) was taken relative to the pre-storm speed limits. The latter reduced speed limits 205 

were then used as the estimated flood event speeds.  Traffic signals and other driving regulations 206 

(e.g., one way streets) are not considered in the network analysis, since emergency vehicles 207 

would generally be exempt from them during a storm with the severity of Harvey. In order to 208 

assess the level of accessibility of emergency vehicles at the neighborhood scale, census block 209 

groups (BGs) were used to delineate the boundaries of each neighborhood in the two case study 210 

areas and are shown as polygons in Fig. 1. The census block groups dataset has been developed 211 

by the US Census Bureau (USCB) and was obtained from H-GAC (2018). More details about the 212 

demographic composition of the census block groups are provided in a subsequent section 213 

discussing the demographic and social vulnerability analysis. 214 

 215 

 216 

Hydrologic and Hydraulic model 217 

This study utilizes the hydrologic model HEC-HMS and hydraulic model HEC-RAS for 218 

modeling riverine flooding during Hurricane Harvey and estimating the inundation of local 219 

roads. Both models were developed by the US Army Corps of Engineers (USACE) and have 220 

been widely applied for flood hazard modeling including studies of the Houston region (Bass et 221 

al. 2016; Bedient et al. 2003; Ray et al. 2011). HEC-HMS simulates the rainfall-runoff process at 222 

the subbasin-scale by utilizing Green & Ampt infiltration and the Clark TC&R method for 223 

subbasin surface runoff (HEC 2010). Next Generation Weather Radar (NEXRAD) rainfall data 224 

was obtained at 4 km2 resolution and 5-min intervals, and was calibrated to local rain gauges. 225 



This radar data was spatially averaged over each HEC-HMS subbasin and input to the model to 226 

simulate the runoff response. HEC-RAS is a hydraulic model that represents riverine systems 227 

through a series of elevation cross sections. Water depth is calculated at each cross section based 228 

on discharge data from HEC-HMS and water surface profiles are computed through linear 229 

interpolation between cross sections. Unsteady HEC-RAS simulations utilize the dynamic wave 230 

equation to route inflow hydrographs from HEC-HMS through the river system and produce 231 

time-varying water surface profiles (HEC 2016). By post-processing these profiles in ArcGIS 232 

(2016) and utilizing DEM data obtained from H-GAC (2018), floodplain maps are generated at 233 

different points in time during the storm.  234 

The basis of the HEC-HMS and HEC-RAS models utilized in this study for both 235 

watersheds were models obtained from the Harris County Flood Control District (HCFCD), 236 

which maintains and periodically re-calibrates these models to generate official FEMA 237 

floodplain maps. The base models for the Brays Bayou watershed were updated to reflect the 238 

substantial flood reduction projects that were recently completed, and the models were 239 

previously validated in Bass et al. (2016). HEC-HMS and HEC-RAS models for both watersheds 240 

were validated against observed streamflow and observed water level hydrographs during 241 

Hurricane Harvey to ensure that they accurately reflect the current hydrologic and hydraulic 242 

response of the areas.  243 

Fig. 3(a) shows a comparison of modeled HEC-HMS peak flow and observed peak 244 

streamflow from each USGS gauge located within the two watersheds. On Greens Bayou, all 245 

gauges agree well with the observed peak flow except the most upstream location (gauge 1). At 246 

this location the observed streamflow is significantly higher than the modeled flow during the 247 

peak of the storm. However, the flow contribution at this location has a small impact on 248 



downstream locations, and the majority of the flood impacts from Harvey did not occur near 249 

gauge 1. The other three comparison locations (gauges 2, 3, and 4) had an absolute average peak 250 

flow difference of 8.2%, indicating good model performance. In the Brays Bayou watershed, the 251 

model performed well at all comparison locations. Although model results slightly under-predict 252 

the peak at gauge 3 and slightly over-predict the peak at gauge 4, the absolute average peak flow 253 

difference across the watershed was 11.2%. Based on visual inspection of modeled and observed 254 

hydrographs, as well as the peak flow performance metrics, the authors concluded satisfactory 255 

validation of the HEC-HMS models for both watersheds.  256 

To validate the performance of the HEC-RAS unsteady models, observed peak stage was 257 

compared to modeled peak stage at several points along the channels. Fig. 3(b) shows the 258 

locations of all the stage gauges in both watersheds and peak stage performance for both 259 

watersheds. Gauge 11 in Greens Bayou and gauge 10 in Brays Bayou were used as downstream 260 

boundary conditions for the HEC-RAS models so no comparison for this location is provided. In 261 

addition to peak stage comparisons, the entire modeled stage hydrographs were compared to 262 

observed stage hydrographs in Brays and Greens, and a subset of the gauge comparisons are 263 

shown in Fig. 4. In the Greens Bayou watershed, the modeled stage hydrographs generally match 264 

well with observed in terms of shape, timing, and peak, as indicated by Nash-Sutcliffe Efficiency 265 

(NSE) values of 0.81 and 0.92 for gauges 4 and 7, respectively. It is noted that NSE values range 266 

from -∞ to 1, with values closer to 1 indicating higher model accuracy (Nash and Sutcliffe 1970).  267 

For validation it is important to consider both the peak and timing since this study evaluates the 268 

evolution of flooding impacts through time. Although the first peak of the hydrograph is over-269 

predicted by the model, the main peak (which caused the majority of flooding impacts) is 270 

captured well. In the Brays Bayou watershed, the modeled hydrographs match closely to the 271 



observed stage at all points during the storm, and this is confirmed by high NSE values of 0.94 272 

and 0.93 at gauges 2 and 6, respectively.  273 

Road network accessibility analysis  274 

Quantification and assessment of emergency response accessibility of the case study areas is 275 

performed through network analysis (Newman 2010). First the road networks with all their links 276 

and nodes are constructed in ArcGIS. The network links represent highway and local road 277 

segments, as shown in Fig. 1. Since it is not possible to represent every road within the case 278 

study area in the network analysis (due to computational costs), the authors select main 279 

thoroughfares, based on their designation by TXDOT. The limitation of this approach is that 280 

smaller residential roads that experienced disruption during the storm are not captured. However, 281 

since emergency vehicles would likely traverse through main thoroughfares, the authors believe 282 

this approach is appropriate. The network nodes are placed at the following locations: road 283 

intersections where two or more road segments meet, the locations of fire stations and hospitals 284 

(depicted in Fig. 1), and the centroids of census block groups (which represent neighborhood-285 

scale accessibility). Table 1 reports the road network details for the two case study areas. It 286 

should be noted that hospitals or fire stations located outside but close to each of the study areas 287 

are still included in the network analysis, since these facilities could still service neighborhoods 288 

within the study areas.  289 

After the road network is mapped in ArcGIS, its edge list (Newman 2010) corresponding 290 

to a list of the all the network’s links as well as the nodes that are connected is extracted such 291 

that the network is mathematically represented and appropriate network analysis algorithms are 292 

implemented. This mathematical representation is performed using network theory concepts 293 

(Newman 2010), and in particular by representing the topology of a network as a graph G = 294 



(V,E), where V = {v1, …, vn} and E = {e1, …, en} are sets of n nodes and m links, respectively. 295 

Any graph G with n nodes can then be represented by its nxn adjacency matrix A, where Aij = 1 296 

if there is a link directly connecting vi to vj (i ≠ j) and Aij = 0 otherwise (Newman 2010; Zuev et 297 

al. 2015). The concept of an adjacency matrix is illustrated in Fig. 5(a) through a simple graph as 298 

an example representing a network under normal conditions that has not sustained any 299 

disruptions yet. Fig. 5(b) presents how the adjacency matrix is modified for a network that is 300 

disrupted because various road links are not operable due to flooding conditions. It is noted that 301 

identification of these non-operable road links is performed through the hybrid methodology 302 

described in the previous section.  303 

The previous mathematical representation of a network is binary, i.e., the links form 304 

simple on/off connections between the nodes. However, in some cases it is useful to represent 305 

links as having a weight to them. Such weighted networks can be represented by giving the 306 

elements of the adjacency matrix values equal to the weights of the corresponding connections 307 

(Newman 2010). In road transportation networks it is common to use the road link length and 308 

road link travel time as weights such that quantities like shortest (i.e., minimum distance 309 

covered) and quickest (i.e., minimum travel time required) paths between two nodes of interest 310 

can be evaluated through networks analysis (Coles et al. 2017; Green et al. 2017; Yin et al. 311 

2017). Here, these two choices are adopted as link weights wij, with the link length lij calculated 312 

in ArcGIS and the travel time tij estimated as tij = lij/sij, where sij denotes the estimated flood event 313 

speed for each network link ij connecting nodes vi and vj. Flood event speeds sij are estimated 314 

through the approach discussed in a previous section. 315 

Finally, after the network is mathematically represented through A and wij, the network 316 

accessibility performance is quantified through analysis that calculates the shortest and quickest 317 



paths for a vehicle traversing from any origin node O to any destination node D of interest.  318 

These quantities are calculated by solving the shortest-path problem (Pollack and Wiebenson 319 

1960) using Dijkstra’s algorithm (Dijkstra 1959) with weights wij equal to lij and tij for the 320 

determination shortest and quickest path, respectively. Then, the network’s accessibility 321 

performance is assessed by evaluating the following two metrics:  322 

(i) Travel time increase 
incr

O DT   corresponding to the increase in travel time for traversing along 323 

the OD pair on the disrupted road network. In particular 
incr

O DT  is calculated as 324 

 
incr flood undisrupted

O D O D O DT T T     (1) 325 

where 
undisrupted

O DT   and 
flood

O DT   denote the minimum travel time needed for traversing along OD 326 

pair for the undisrupted and the flood-induced disrupted road network, respectively. The 327 

minimum travel time is calculated by summing the weights wij = tij of the road links comprising 328 

the quickest path between O and D.  329 

(ii) Connectivity loss 
O DCL 

 corresponds to a measure of the efficiency reduction when 330 

traversing along an OD pair on the disrupted road network. In particular, 
O DCL   is 331 

mathematically expressed as 332 

 1 ; 0 1
undisrupted

O D
O D O Dflood

O D

L
CL CL

L


 



     (2) 333 

where 
undisrupted

O DL  and 
flood

O DL   
denote the lengths of the shortest OD path for the undisrupted and 334 

the flood induced disrupted road network, respectively. The metric 
O DCL 

 is a continuous 335 

variable that takes values between 0 and 1, with 
O DCL 

 = 0 corresponding to the case that there 336 

is no connectivity loss between the OD pair of interest (i.e., the accessibility of the OD pair is not 337 



affected at all by the flooding conditions in the area), whereas 
O DCL 

= 1 corresponds to 338 

complete connectivity loss for this OD pair (i.e., the flooding conditions in the area do not allow 339 

vehicles to travel from O to D). 340 

Demographic and Social Vulnerability Analysis 341 

For the present study, social vulnerability is conceptualized as a function of two broad dynamics: 342 

production and distribution (Tierney 2014). The social production of vulnerability is 343 

operationalized as the construction of residences in places with greater exposure to transportation 344 

disruption during extreme urban flooding. Such exposure can derive from pre-existing 345 

conditions, such as location in a floodplain, from nearby development that increases runoff into 346 

the area, from increased rainfall, or from a combination of all three. The social distribution of 347 

vulnerability is operationalized as the unequal spread of transportation disruption across different 348 

residential subpopulations, especially those who have less social privilege or need additional 349 

assistance in times of emergency.  Because housing in the United States is allocated through a 350 

market system, the burdens of such inequality often fall disproportionately on lower income 351 

residents; and because this market system is embedded within a highly racialized society, people 352 

of color tend to be hit especially hard. These conditions are salient in Houston, with its long 353 

history of Jim Crow segregation and current status as one of the most economically unequal and 354 

racially segregated metropolitan areas in the United States (Emerson et al. 2012), in addition to 355 

having well documented types of environmental injustice (Bullard 1990; Elliott and Smiley 356 

2017; Hernandez et al. 2015). 357 

To measure both the social production and distribution of vulnerability, block-group level 358 

data are drawn from the 2016 American Community Survey (5-Year Sample). Block groups 359 

(BGs) are the smallest unit of geography for most census data due to confidentiality restrictions 360 



and typically range from 600 to 3,000 residents. Measures of the production of vulnerability 361 

focus on the number of existing housing units built in each decade following federal 362 

institutionalization of the National Flood Insurance Program (NFIP) in 1968, which collects and 363 

spends billions of dollars each year to subsidize development in flood-prone areas. For these 364 

variables, aggregate counts rather than proportions are used because areas with more aggregate 365 

housing development have higher absolute risk of disruption.   366 

By contrast, measures of the distribution of vulnerability use averages and proportions 367 

because when it comes to disparate impacts, the social composition of an area is more important 368 

than its aggregate size. In this way, block groups with higher shares of less privileged or 369 

otherwise vulnerable residents, but relatively small populations, can still be more at risk. Here, 370 

primary attention focuses on the median household income and racial composition of block 371 

groups because class and race remain overwhelmingly powerful determinants of residential 372 

location in the United States. In addition, indicators are also included for the proportions of 373 

younger residents (under 14), older residents (over 64), those receiving public assistance, and 374 

those living in households with no vehicle with which to evacuate. These additional variables are 375 

common indicators of subpopulations needing more assistance in times of disaster (Cutter et al. 376 

2003).   377 

In analyses below, the correlation of each census variable with road network accessibility 378 

loss is assessed independently and net of one another using standard regression techniques (e.g. 379 

linear least squares regression). This approach maximizes transparency and minimizes concerns 380 

about appropriate weighting among respective indicators, which is a common concern in social 381 

vulnerability research relying on multi-item factor analysis (Rygel et al. 2006). 382 

Results and Discussions 383 



Road network accessibility performance assessment 384 

The road network accessibility performance assessment of the two case study areas is conducted 385 

by solving the shortest-path problem using Dijkstra’s algorithm in MATLAB (MathWorks 2018) 386 

for various origin-destination (OD) paths of interest to ultimately evaluate the accessibility 387 

metrics described previously. To assess the overall accessibility performance of the road 388 

networks of the two study areas during the evolution of Hurricane Harvey, the following ratios 389 

are calculated: (i) 1 1

1 ,OD operable ODr N N and (ii) 2 2

2 ,OD operable ODr N N , where 1

,OD operableN  denotes the 390 

number of all possible OD paths in the entire road network that are operable (i.e., there exists a 391 

set of road links in the network such that a vehicle starting from node O can reach node D) and 392 

1

ODN  denotes the number of all possible OD paths (operable or not) in the road network. The 393 

quantities 2

,OD operableN  and 2

ODN  are defined similarly to 1

,OD operableN  and 1

ODN , with the exception 394 

that they correspond to a subset of the road network in the vicinity (~ 1 mile from each bayou 395 

bank) of the bayou streams. Fig. 6 compares the evolution during the Harvey of the ratios r1 [part 396 

(a)] and r2 [part (b)] between the two case study areas. 397 

The recovery curves shown in Fig. 6 facilitate visualization of how the entire 398 

transportation network is impacted throughout the duration of Harvey. Across the watershed 399 

[Fig. 6(a)], Greens Bayou experiences more severe impacts in terms of reduction in number of 400 

operable routes compared to Brays Bayou. In addition, the road network in Brays Bayou 401 

recovers more quickly than in Greens Bayou, and the network reaches 95% operability by the 402 

evening of August 27th. In contrast, it takes two more days (until August 29th) before the network 403 

in Greens Bayou watershed reaches comparable operability. For neighborhoods within 1 mile of 404 

the bayou banks [Fig. 6(b)], both Greens and Brays experience similar magnitudes of operability 405 

loss. This is because during the peak of the storm there was substantial riverine flooding in both 406 



watersheds, which inundated the majority of roads near the bayous. However, the impacts in 407 

Greens Bayou last much longer than in Brays Bayou, demonstrating that while the magnitude of 408 

impact is comparable between watersheds, the duration of impact is much more severe in Greens 409 

Bayou. The latter behavior in the recovery pattern of the two watersheds is attributed to the 410 

different channel characteristics between the two watersheds. In particular, Brays Bayou is a 411 

concrete-lined channel that drains relatively quickly, which allows floodwaters to subside and 412 

drain from the streets more quickly. On the other hand, Greens is a natural channel that drains 413 

much more slowly than Brays, resulting in prolonged impacts to the transportation network 414 

during Harvey. Although natural channels are often able to better attenuate a flood wave during 415 

storm events compared to concrete-lined channels due to higher friction with the channel bed 416 

(Jacobson et al. 2015; Sholtes and Doyle 2010), these higher frictional forces also result in 417 

slower drainage.   418 

Fig. 7 illustrates the average connectivity loss between all fire stations in the watershed 419 

and each census block group for three different points in the storm: August 27 5:00 am, August 420 

27 5:00pm, and August 28 6:00pm. Blue represents areas of low connectivity loss (high 421 

accessibility), while yellow represents moderate loss, and red represents complete connectivity 422 

loss (no accessibility). The average connectivity loss at each block group for each point in time 423 

considers the connectivity loss between each fire station in the area and the specific block group. 424 

This value is calculated using Eq. (3):  425 

  
 1

1 Fn

F BG F i BG

iF

CL CL
n

 



   (3) 426 



where F BGCL   is the average connectivity loss across all Fn  fire stations for a specific block 427 

group, and 
 

 
F i BG

CL


 is the connectivity loss between the ith fire station and a specific census 428 

block group.  Although constraints could be imposed that restrict the allocation of the fire 429 

stations’ resources (i.e., rescue crews, emergency response vehicles, etc.) only to the census 430 

block groups within each fire station’s district jurisdiction, for the purpose of this study it is 431 

assumed that in broad scale emergency situations, like Hurricane Harvey, cross-jurisdictional 432 

sharing of resources is taking place. Therefore, the idealized composite metric F BGCL   is used 433 

such that the overall level of emergency response accessibility performance across all fire 434 

stations and each census block group is captured.  435 

During the first two time instants there is significant connectivity loss in both Brays 436 

Bayou and Greens Bayou, with numerous areas completely inaccessible from any fire station. In 437 

general, high connectivity loss areas are clustered along the bayous in both watersheds, since this 438 

is where flooding is the most severe. Connectivity loss decreases, and accessibility increases, 439 

moving away from the bayou. However, in the Brays watershed there are a few high loss areas 440 

that are located far from the bayou. These areas became inaccessible because of flooding of 441 

major highways adjacent to the neighborhoods. At each point in time during the storm, areas of 442 

high connectivity loss correlate with the location of the flood wave within the bayou. For 443 

example, Greens and Halls Bayous drain from northwest to southeast, so areas of high 444 

connectivity loss are also seen to shift from northwest to southeast as time progresses. Similarly, 445 

Brays bayou drains from west to east, so areas of high connectivity loss are more prevalent on 446 

the western side of the watershed during the beginning of the storm, and areas of high loss are 447 

prevalent on the east side of the watershed later in the storm. By August 28th 6:00pm, the 448 

majority of census block groups in Brays Bayou have restored accessibility. In contrast, Greens 449 



Bayou still experiences high connectivity loss in some parts of the watershed on August 28th 450 

6:00pm. This behavior is a result of the different channel characteristics between the two bayous 451 

that lead to different watershed responses and consequently to different recovery patterns as 452 

indicated in Fig. 6. 453 

Similarly to Eq. (3) the average connectivity loss between hospitals and census block 454 

groups is expressed as:  455 
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where H BGCL   is the average connectivity loss across all Hn  hospitals for a specific block 457 

group, and 
 

 
H Bk G

CL


 is the connectivity loss between the kth hospital and a specific census block 458 

group.  459 

 Fig. 8 depicts similar results as Fig. 7 for H BGCL  . The patterns of high connectivity 460 

loss areas are similar between Fig. 7 and Fig. 8, and the accessibility evolution through time is 461 

also similar. However, Fig. 8 demonstrates that the location of emergency services relative to 462 

different areas of the watershed can also have a substantial impact on block group connectivity 463 

loss. For example, in the Greens Bayou watershed, the locations of hospitals are clustered in the 464 

southwest region. In order for medical teams to reach block groups on the northeast side of the 465 

watershed, they must cross over the bayou. Since many roads near the bayou are inaccessible, 466 

this results in overall higher connectivity loss for block groups on the northeast side. Fig. 8(d) 467 

and Fig. 8(e) show more yellow and orange block groups compared to Fig. 7(d) and Fig. 7(e), 468 

indicating that these areas are more difficult to access from hospitals compared to fire stations. In 469 

Brays Bayou, there are a greater number of hospitals and they are more evenly distributed across 470 

the watershed, so this impact is not observed.  471 



Fig. 9 illustrates the time increase (in minutes) for traversing between fire stations in the 472 

watershed and each census block group compared to undisrupted  network conditions calculated 473 

using Eq. (1) for three different points in the storm: August 27 5:00 am, August 27 5:00pm, and 474 

August 28 6:00pm. Blue represents areas of low time increase (high accessibility), yellow 475 

represents moderate time increase, red represents high time increase (low accessibility), and the 476 

gray hatched areas represent census block groups that they are not accessible at all (
F BGCL 

477 

=1.0). It should be noted that the minimum travel time undisrupted

F BGT 
 between fire stations and census 478 

block groups corresponding to undisrupted network conditions is calculated using the reduced 479 

speed limits (discussed in Methods section). Such selection aims to isolate and highlight the 480 

impact of network disruption due to flood-induced road link closures on the travel time increase, 481 

while in reality higher travel time increases are likely to be exhibited because the speed limits for 482 

the pre-storm conditions would be higher. Given that the speed of emergency vehicles in non-483 

storm conditions may also be affected by other factors, like congestion, this comparison offers a 484 

consistent basis for inferring flood related impacts. In general, a similar pattern as with the 485 

connectivity loss maps in Fig. 7 is observed in terms of the concentration of severely disrupted 486 

areas of the network along the bayous and the evolution of these areas during the storm. 487 

However, a few differences with respect to the magnitude of time increase between the two 488 

watersheds can be seen by comparing the results of the left (Brays) and right (Greens) columns 489 

of the figure. In particular, longer delays in reaching various census block groups from fire 490 

stations are exhibited in Greens Bayou compared to Brays. The reason for this result is the larger 491 

spatial extent of network disruption due to flooding conditions experienced in Greens Bayou and 492 

also demonstrated in Fig. 6(a) and Fig. 7. Similarly to Fig. 9, the time increase (in minutes) for 493 

traversing between hospitals in the watershed and each census block group compared to 494 



undisrupted network conditions is presented in Fig. 10 for the same three characteristic points in 495 

time. Comparing Fig. 9 and Fig. 10 it can be seen that although the pattern of concertation of 496 

heavily disrupted areas along the bayous and its evolution is preserved, it is interesting to 497 

observe that significantly longer delays are observed in the northern part of the Greens watershed 498 

for the entire storm evolution. The latter behavior is the result of unequal distribution of the 499 

hospital locations in the Greens watershed and it further confirms the results of Fig. 8. 500 

In order to understand the overall accessibility loss incurred by each census block group, 501 

it is important to consider both the magnitude of loss and the duration. Since some BGs may 502 

experience high loss for a short duration while others may experience moderate loss over a 503 

prolonged period of time, it is necessary to develop a standardized connectivity loss metric that 504 

weighs the magnitude of loss by the length of time that loss is experienced. The time-weighted 505 

connectivity loss metric for hospitals tw

H BGCL 
 is defined as follows: 506 
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where jt   is the time duration in hours between the jth and jth+1 point in the storm, tn  is the 508 

total number of time instants, H BG

j

CL  and 
1

H B

j

GCL 



 is the average connectivity loss between 509 

hospitals and census BGs at time j and j+1, respectively. The time-weighted connectivity loss 510 

metric for fire stations tw

F BGCL 
 is defined in a similar manner by substituting H BG

j

CL  , 
1

H B

j

GCL 



 511 

with F BG

j

CL  , 
1

F B

j

GCL 



. 512 

 Fig. 11 shows a map of tw

F BGCL 
 between census BGs and hospitals for the Greens Bayou 513 

watershed. The map ranges from zero (no loss at any point in time), to one (complete loss at 514 



every point in time). Fig. 11 also shows a graph of the connectivity loss through time for three 515 

different census BGs that represent a range of impacts. Census BG #1 has low connectivity loss 516 

throughout the duration of the storm, indicating less severe disruption. BG #2, which is shown in 517 

green, displays moderate loss through time since it experiences high connectivity loss for a short 518 

duration. Finally, BG #3 (shown in orange) displays high loss through time since it experiences 519 

complete connectivity loss for almost an entire day during the storm. Although similar analyses 520 

were conducted for fire stations in the Greens Bayou watershed and for both hospitals and fire 521 

stations in Brays Bayou, the authors have focused on the results presented in Fig. 11 because 522 

they best highlight that the distribution of impacts across the watershed can be uneven. With the 523 

exception of a few census BGs on the southwestern side of Halls Bayou, the time-weighted 524 

connectivity loss increases with increasing distance from hospitals. This is likely because to 525 

reach census BGs in the middle of the watershed, emergency responders must cross over Halls 526 

Bayou, where a significant number of roads are inaccessible. Reaching the northwest portion of 527 

the watershed is even more difficult, since responders must cross over both Halls and Greens 528 

Bayous. Fig. 11 illustrates how the location of emergency services relative to the location of the 529 

bayous (or areas of major flooding) can combine to exacerbate transportation disruption for some 530 

areas of the watershed.  531 

Social production and distribution of vulnerabilities to transportation disruptions 532 

Analysis of social vulnerability starts with aggregate differences between the two areas under 533 

investigation. Model results in Table 2 indicate that during Hurricane Harvey, Greens Bayou 534 

suffered more transportation disruption than Brays Bayou, regardless of how that disruption is 535 

measured (e.g. maximum over time or time averaged connectivity loss to fire stations or 536 

hospitals). Table 2 also indicates that Greens Bayou is less socially privileged than Brays Bayou 537 



across a number of common demographic indicators. Its nonwhite population, for example, is 538 

93% compared with 49% in Brays Bayou, and its median household income is approximately 539 

$35,000 per year compared with $82,000 per year. In addition, the relative presence of children 540 

and households receiving public assistance are also higher in Greens Bayou than in Brays Bayou. 541 

Thus, overall, findings indicate that demographically, at least, the more socially vulnerable of the 542 

two study areas experienced greater transportation disruption. 543 

In addition, Table 2 also indicates that these differences are not monolithic; instead, 544 

substantial variation exists within each area, as well. In Brays Bayou, for example, the proportion 545 

of black residents ranges from 0% to 97% in constituent block groups. The median household 546 

income ranges from less than $15,000 to $250,000, and the proportion of households with no 547 

vehicle ranges from 0% to 43%. In Greens Bayou, even greater variation exists along these same 548 

variables. Consequently, ample opportunity exists for disparate transportation disruption within 549 

as well as across the two study areas. 550 

To test for these more localized disparities, least squares regression equations of the 551 

following general form were estimated at the block group level to assess correlations between 552 

respective census variables and measures of transportation disruption: 553 

      0 1 2 3Bayou Area Social Distribution Social Productioni ji j
PIV           (6) 554 

where all variables are measured at the block group level: PIV is the respective measure of 555 

physical infrastructure vulnerability (PIV) in the block group corresponding to maximum over 556 

time average connectivity loss for fire stations/hospitals ( F BGCL   or H BGCL  ) or the time-557 

weighted connectivity loss for fire stations/hospitals ( tw

F BGCL 
 or tw

H BGCL 
), 0 is the intercept 558 

coefficient, is the coefficient for the mean difference in the respective PIV in Greens Bayou 559 

versus Brays Bayou (the reference category), which accounts for aggregate differences at the 560 



watershed-scale, i is the vector of coefficients for the change in the respective PIV given a one-561 

unit change in the ith measure of social distribution (e.g., racial composition, household income, 562 

etc.), j is the vector of coefficients for the change in the respective PIV given a one-unit change 563 

in jth measure of social production (e.g., the number of residential units built before 1970, during 564 

the 1970s, etc.) and  is the error term. In the multiple linear regression framework used here, all 565 

coefficients for all variables are estimated net of other variables in the model and thus indicate 566 

the marginal, or partial, contribution of that variable while statistically controlling for all other 567 

variables in the model. 568 

Table 3 presents regression coefficients for all demographic variables considered in Eq. 569 

(6) and represents the partial correlation of each variable with the observed transportation 570 

disruption. These results are meant to highlight potential correlations between demographic 571 

indicators and physical impacts, and do not assume any causal relationship between the indicator 572 

variables and the observed transportation disruption. Overall, results in Table 3 show no sign of 573 

conventional racial inequalities; instead, the opposite appears to be the case. After controlling for 574 

baseline differences between the two study areas, block groups with higher proportions of black 575 

and Hispanic residents generally experienced lower levels of transportation disruption during 576 

Hurricane Harvey, all else equal. The same is true for households with no vehicle; the higher 577 

their proportion in a block group, the lower the transportation disruption. 578 

Evidence of more common inequalities is strongest with respect to income, which is 579 

statistically significant for models predicting maximum disruption to and from nearby hospitals 580 

and fire stations (p < .05). To illustrate, Fig. 12(a) plots estimated levels of maximum over time 581 

transportation disruption from Models (1) and (2) across the full range of observed median 582 

household incomes, holding all other variables constant at their means. Here, the inverse 583 



relationship between income and disruption is easy to see. At the extremes, a block group with a 584 

median income of $30,000 per year had roughly twice the predicted transportation disruption as 585 

a block group with a median income of $250,000 (e.g., 0.43 versus 0.21 for fire stations, all else 586 

equal).   587 

Turning next to the social production of vulnerability, results in Table 3 also show a 588 

consistent pattern. That pattern indicates that block groups heavily developed during the 1970s, 589 

soon after establishment of the National Flood Insurance Program, had the most transportation 590 

disruption during Harvey, followed by block groups with more recent development. The 591 

production of risk, in other words, seems to be taking a U-turn. Instead of new development 592 

continuing to reduce the threat of local transportation disruption, as it seems to have done during 593 

the 1980s and 90s, it has been pushing that threat upward again. To visualize this trend, Models 594 

(1) and (2) in Table 3 are used to simulate different scenarios, which are displayed in Fig. 11(b) 595 

in the form of a timeline. For each scenario, or data point, the number of housing units in the 596 

average block group is set to a constant value of 600 units, with all other variables set to their 597 

respective means. To the left-most of the graph, all 600 housing units in the simulated block 598 

group were built before 1970; for the next data point, they were all built during the 1970s; in the 599 

third, they were all built during the 1980s; and so forth. Results show how the production of 600 

vulnerability increased during the 1970s then receded during the 1980s and 90s, before then 601 

climbing again since 2000. 602 

Overall, then, analyses of social vulnerability here indicate that forces of production and 603 

distribution both matter for local inequalities in transportation disruption. Specifically, they show 604 

that such disruption tends to be higher in lower-income areas and in areas developed more 605 

recently, relative to the 1980s and 90s. To see where these dynamics overlap most intensely, a 606 



composite vulnerability index was computed. For this index a block group’s median household 607 

income, number of housing units constructed since 2000, and maximum estimated transportation 608 

disruption to hospitals during Harvey were each converted to percentile scores, based on the 609 

block group’s rank across the two study areas, with income reverse-coded so that lower incomes 610 

indicate higher vulnerability. These three measures were then summed and mapped in Fig. 13 611 

using the same scale across both areas to facilitate comparison. Here, the maps clearly show a 612 

greater number of (red) high-vulnerability block groups in Greens Bayou than in Brays Bayou, 613 

with high-vulnerability defined as having a composite score of two or higher. (For example, one 614 

way a block group could fall into the high-vulnerability category is if it scored in the 67th 615 

percentile on all three measures 0.67 * 3 = 2.01; or, say, in the 90th percentile on one measure, in 616 

the 60th percentile on another, and in 50th percentile on the third. In all cases, two of the three 617 

measures must be above the median to reach the high-vulnerability category.) 618 

The maps in Fig. 13 also show high-vulnerability block groups tend to make a continuous 619 

band along the length of Greens Bayou, with some additional scattering along Halls Bayou to the 620 

south. In the Brays Bayou area, by contrast, there is a smaller scattering of high vulnerability 621 

block groups along the bayou as well a higher count of low-vulnerability block groups. In other 622 

words, the same factors produce different vulnerability landscapes in the two areas, with Greens 623 

Bayou defined by ongoing concentrations of recently developed low-income housing prone not 624 

only to flooding but related transportation disruption. It is noted here that the missing data values 625 

in the maps result from suppression of median household income data in 12 of the 358 block 626 

groups under study. Beginning in data year 2015, the Census Bureau applied a new methodology 627 

to the 5-year dollar-based medians that suppresses data for a geographic area if the margin of 628 

error exceeds the estimate itself. 629 



Conclusions 630 

This study provided a multidisciplinary, integrated framework to evaluate fluvial flood impacts 631 

on roadway accessibility to emergency services experienced by potentially socially vulnerable 632 

populations. The framework was applied to evaluate the evolution of emergency response 633 

accessibility in two areas of Houston, TX during Hurricane Harvey by integrating observed road 634 

closure data with hydrologic and hydraulic inundation modeling to ultimately conduct network 635 

analysis of Houston’s roadways. Select accessibility metrics between fire stations/hospitals and 636 

neighborhoods (represented by census block groups) were quantified during various points in the 637 

storm to understand the impacts to residential populations. Finally, demographic indicators of the 638 

two study areas were utilized to investigate potential social vulnerability within the impacted 639 

populations. Although this paper has focused on a single case study event within the Houston 640 

region, the integrated approach combining road condition data from multiple sources can be 641 

applied to a variety of other hazard-prone regions. By tracking the evolution of roadway 642 

accessibility through time, this type of analysis could provide emergency responders and city 643 

planners with a valuable disaster-planning tool that goes beyond typical static floodplain maps. 644 

In particular, understanding which roads are likely to be flooded during extreme events, how 645 

inaccessibility of certain roads disrupts the overall transportation network, and the duration of 646 

disruption, can help emergency managers develop emergency routes that prioritize vulnerable 647 

areas. By further considering demographic indicators within this multidisciplinary study, crucial 648 

information about vulnerable groups can be obtained and can potentially aid in efficient 649 

emergency resource distribution both before and after a major flood event.  650 

Results from accessibility analysis demonstrate that regions close to the bayous suffer the 651 

highest transportation disruption, but that unequal distribution of emergency service locations 652 



(such as hospitals) can also exacerbate impacts for some neighborhoods. Additionally, the 653 

hydrologic response of an area also has a significant impact on transportation disruption, since 654 

this affects the magnitude and duration of fluvial flooding. Although the increase in travel time 655 

between emergency response locations and different census block groups was minor for the 656 

majority of census block groups in the study areas, there were some neighborhoods in the Greens 657 

Bayou watershed that suffered travel time increases of 20 minutes or greater.  658 

Results of the demographic analysis indicate that social vulnerability to flood-induced 659 

transportation disruption is both multi-scalar and multi-dimensional. In terms of scale, the lower-660 

income, higher-minority area of Greens bayou suffered greater connectivity loss, overall, than 661 

the higher-income, lower-minority area of Brays bayou. In addition, and across these two areas, 662 

lower-income block groups experienced greater connectivity loss than higher-income block 663 

groups. Both patterns are consistent with prior research indicating that the impacts of disaster 664 

tend to increase in less socially advantaged areas. The same patterns also demonstrate how such 665 

disparities can operate at multiple, overlapping scales, that is, within as well as across different 666 

areas of the same city. 667 

There are many opportunities for future work related to this study that could focus on 668 

refining both the methodology and applicability of the analysis. For example, future work should 669 

incorporate other sources of road condition data, such as crowd-sourced information or 670 

documented emergency requests, into the integrated analysis framework. Future efforts should 671 

pursue data to support validation of travel times in emergency conditions, like the Harvey flood 672 

situation. In the context of this paper the travel times are intended to offer relative measures of 673 

access and afford correlation analyses with social vulnerability scores. Further applications of 674 

this type of framework could focus on incorporating the accessibility analysis into existing real-675 



time flood warning systems that exist within the Houston region (Fang et al. 2011), acting as a 676 

support tool to predict road network accessibility in advance of a future storm event, and giving 677 

emergency responders information about which communities may be heavily impacted before 678 

the storm hits. 679 
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Table 1. Details for the road networks of the two case study areas 

Case 

Study 

Area 

Road network links Road network nodes 

Highway 

roads 

Non-

highway 

roads 

Total 

m = 

Fire 

Stations 

 

Hospitals 

 

Census 

Block 

Group 

Centroids 

 

Junctions 
Total 

n = 

Brays 118 780 998 13 24 213 388 638 

Greens 105 841 946 11 6 145 560 722 

  

Fn 
Hn 

BGn 

Table Click here to access/download;Table;Tables.docx



Table 2. Descriptive Statistics for Census Indicators at the Block-Group Level for the 

two Case Study Areas. 

 Brays Bayou  
(n=213 block groups) 

Greens Bayou  
(n=145 block groups) 

Between-
Bayou 

Difference 
(* p < .05) 

  
Mean 

 
[Min; Max.] 

 
Mean 

 
[Min; Max.] 

      
Transportation Disruption      
Maximum over time 
connectivity loss  

     

    To fire stations 0.34 [0; 1.0] 0.47 [0.20; 1.0] * 
    To hospitals 0.34 [0; 1.0] 0.51 [0.25; 1.0] * 
Time-averaged connectivity 
loss 

    
 

    To fire stations 0.08 [0.0; 0.63] 0.22 [0.10; 0.71] * 
    To hospitals 0.11 [0.0; 0.62] 0.28 [0.15; 0.73] * 
      
Social Composition      
 Race      
     % black 0.19 [0.0; 0.97] 0.25 [0.0; 1.0]  
     % Hispanic 0.30 [0.0; 0.98] 0.68 [0.0; 1.0] * 
 % Elderly (65 years or older) 0.11 [0.0; 0.42] 0.09 [0.0; 0.47] * 
 % Youth (14 years or 
younger) 

0.20 [0.0; 0.44] 0.26 [0.04; 0.44] 
* 

   Median household income 
($x103) 

82.4 [14.6; 250.0] 35.0 [9.4; 90.2] 
* 

  % on Public assistance 0.01 [0.0; 0.11] 0.02 [0.0; 0.13] * 
  % with No vehicle 0.08 [0.0; 0.43] 0.09 [0.0; 0.53]  
      
Social Production      
Number of housing units      
     Built before 1970 236 [0; 701] 283 [0; 821] * 
     Built during the 1970s 169 [0; 933] 154 [0; 749]  
     Built during 1980s 93 [0; 835] 68 [0; 452] * 
     Built during 1990s 75 [0; 813] 44 [0; 436] * 
     Built since 2000 98 [0; 1134] 110 [0; 377]  
      
Composite Vulnerability Scorea 1.26 [0.44; 2.32] 1.64 [0.72; 2.66] * 

a Construction of this vulnerability score is guided by regression findings from Table 2.  For its 
computation, a block group’s median household income, number of housing units constructed since 
2000, and maximum estimated connectivity loss to hospitals during Hurricane Harvey were all 
converted to percentile scores, based on their rank across the two study areas and with income 
inverted so that lower incomes receive higher percentile scores.  The three percentile measures (e.g. 
0.50 for the median) were then summed.  For example, if a block group scored in the 67th percentile 
on all three measures, its score would be 0.67 * 3 = 2.01. 

 
 
 



Table 3. Regression coefficients (and standard errors) estimating partial correlations 

between socio-demographic variables and transportation disruption at the block-group 

level in the Brays and Greens bayou study areas. 

 Maximum over time 
Connectivity Loss 

Time-weighted  
Connectivity Loss 

 From fire 
stations 

From     
hospitals 

From fire 
stations 

From    
hospitals 

Model number (1) (2) (3) (4) 
 
Bayou Area 

    

  Brays [reference category] --- --- --- --- 
  Greens .225*** 

(.045) 
.281*** 
(.044) 

.174*** 
(.017) 

.219*** 
(.016) 

     
Social Distribution     
 Race     
     % black -.259* 

(.101) 
-.261** 
(.099) 

-.087* 
(.039) 

-.080* 
(.037) 

     % Hispanic -.336** 
(.112) 

-.380** 
(.111) 

-.091* 
(.044) 

-.118** 
(.041) 

 % Elderly (65 years or 
older) 

.119 
(.257) 

.213 
(.253) 

-.050 
(.0998) 

-.026 
(.094) 

 % Youth (0-14 years old) .087 
(.218) 

.117 
(.214) 

-.024 
(.0846) 

-.005 
(.0795) 

  Median household income 
($x1000) 

-.009† 
(.004) 

-.011* 
(.004) 

-.001 
(.002) 

-.002 
(.002) 

  % on Public assistance -.529 
(.707) 

-.481 
(.695) 

-.089 
(.274) 

-.091 
(.258) 

  % with No vehicle -.344† 
(.187) 

-.471* 
(.183) 

-.078 
(.072) 

-.123† 
(.068) 

     
Social Production     
Number of housing units     
     Built before 1970 [ref.] --- --- --- --- 

 
     Built during the 1970s 
(00) 

.033** 
(.010) 

.045*** 
(.010) 

.013** 
(.003) 

.017*** 
(.003) 

     Built during 1980s (00) -.001 
(.015) 

-.0026 
(.015) 

.0055 
(.006) 

.003 
(.005) 

     Built during 1990s -.029† 
(.017) 

-.031† 
(.016) 

-.011† 
(.006) 

-.011† 
(.006) 

     Built since 2000 .012† 
(.006) 

.010† 
(.006) 

.009*** 
(.002) 

.008*** 
(.002) 

     
Constant .302 

(.103) 
.252 

(.101) 
-.052 
(.040) 

-.064 
(.037) 

     
N 346 346 346 346 
R2 .122 .189 .354 .486 



† p < .10; * p <.05; ** p < .01; *** p < .001; two-tailed test  
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