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Abstract

Akt, an essential component of the insulin pathway, is a potent inducer of tissue growth. One of Akt’s phosphorylation
targets is Tsc2, an inhibitor of the anabolic kinase TOR. This could account for part of Akt’s growth promoting activity.
Although phosphorylation of Tsc2 by Akt does occur in vivo, and under certain circumstances can lead to reduced Tsc2
activity, the functional significance of this event is unclear since flies lacking Akt phosphorylation sites on Tsc2 are viable
and normal in size and growth rate. Since Drosophila Tsc1, the obligate partner of Tsc2, has an Akt phosphorylation motif
that is not conserved in mammals, we investigate here whether Akt redundantly phosphorylates the Tsc complex on Tsc1
and Tsc2. We provide evidence that Akt phosphorylates Tsc1 at Ser533. We show that flies lacking Akt phosphorylation sites
on Tsc1 alone, or on both Tsc1 and Tsc2 concurrently, are viable and normal in size. This shows that phosphorylation of the
Tsc1/2 complex by Akt is not required for Akt to activate TORC1 and to promote tissue growth in Drosophila.
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Introduction

The protein complex consisting of Tsc1 (also known as

hamartin) and Tsc2 (also known as tuberin) has emerged in the

past decade as an important regulator of the potent anabolic

kinase TOR complex 1 (TORC1) (for review see [1]). The Tsc1/2

complex appears to sense a large number of inputs such as the

presence of growth factors, cytokines, energy stress and hypoxia,

and integrates this information to regulate the activity of TORC1

via the GTPase Rheb [1]. TORC1 in turn regulates cellular

translation rates to affect both cell growth (and consequently

organismal size) and metabolism [2–4]. This ‘signaling cassette’ is

highly conserved in evolution, and many of the discoveries piecing

together the molecular connections between components of this

cassette were concurrently performed in multiple model systems

such as Drosophila and mice, leading to equivalent results.

One function of the Tsc1/2 complex appears to be to mediate

the activation of TORC1 in response to Akt. The current model

proposes that in response to insulin/IGF signaling, PI3K and

subsequently Akt become activated. Upon activation, Akt

phosphorylates Tsc2 on numerous sites. This inactivates the

Tsc1/Tsc2 complex, relieving the suppression of TORC1 by

Tsc1/2, leading to TORC1 activation and cell growth. This would

provide a molecular link by which insulin-mediated activation of

Akt leads to TORC1 activation, and hence tissue growth.

However, the in vivo relevance of this function for Tsc1/2 is

unclear due to discordant findings in the literature. This model is

supported by a large body of evidence. In both mammalian

systems and in flies, Tsc2 is indeed phosphorylated by Akt in vivo

and in vitro [5–7]. The model predicts that alanine-substitution

mutants of Tsc2 lacking the Akt phosphorylation sites should be

insensitive to Akt activity. Indeed, overexpression of such mutants

leads to a more powerful suppression of TORC1 activity

compared to overexpression of wildtype Tsc2 [5–8], and this

overexpression is able to dominantly block Akt-mediated activa-

tion of TORC1 [5–8]. This is the case in mammalian cell culture,

Drosophila cell culture as well as in Drosophila tissues, and

indicates that at least when Tsc2 is overexpressed, the ability of

Akt to phosphorylate it is functionally relevant. The most rigorous

test, however, to check whether the phosphorylation of Tsc2 by

Akt is functionally important for an animal is to generate mutant

animals in which endogenous Tsc2 is replaced by a non-

phosphorylatable alanine-substitution mutant. This experiment,

asking what happens when Tsc2 cannot be phosphorylated by Akt

in vivo, was performed by Dong and Pan in 2004 [9]. They

generated flies in which they mutated the endogenous Tsc2 gene

and simultaneously expressed either a wildtype Tsc2 or a mutant

Tsc2 in which all four Akt phosphorylation sites were mutated to

alanine or to a phosphomimetic residue. Surprisingly, although

Tsc2 null flies, like mice, die early in development, flies containing

either alanine-substitution or phosphomimicking mutants of Tsc2

were viable, fertile, normally patterned and normal in size and

growth rate [9]. This suggests that at least in Drosophila, although

Akt can and does phosphorylate Tsc2 on multiple sites, this

phosphorylation is functionally not very important.

An open question is how to interpret this result and to reconcile

it with the remaining body of evidence mentioned above. Is

phosphorylation of Tsc2 by Akt important for Akt to drive tissue
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growth in vivo or not? One option is that the result by Dong and

Pan reflects something specific to Drosophila. Indeed, as was noted

previously [7], Drosophila Tsc1 - the binding partner of Tsc2 -

also contains a consensus Akt phosphorylation site (Ser533) which

is not conserved in mammals. Both Tsc1 and Tsc2 need to be

active to achieve normal activity of the complex, and recently it

has been shown that phosphorylation of Tsc1 (e.g. by IKKb, [10])

can inhibit Tsc1/2 complex activity in cell culture. Thus it is

possible that Akt phosphorylates both partners of the Tsc1/2

complex in Drosophila, and that unless phosphorylation of both

partners is simultaneously abrogated, Akt will be able to disrupt

Tsc1/2 function. This possibility is strengthened by the fact that

Ser533 is reported to be phosphorylated in vivo in Drosophila

KC167 cells, detected by mass spectroscopy (www.phosphopep.

org [11]).

In this study, we examine whether Tsc1 is phosphorylated by

Akt in Drosophila, and the physiological consequences of this

phosphorylation. We provide evidence that Akt phosphorylates

Tsc1 at Ser533 and that this phosphorylation is induced by insulin

signaling. We test genetically the requirement for this phosphor-

ylation by engineering Tsc1 mutants in which the Akt phosphor-

ylation sites are mutated to nonphosphorylatable (Tsc1S533A) or

phosphomimetic (Tsc1S533D) residues, and show that in both cases

the flies are rescued to full viability and size. To ask whether the

phosphorylation of dTsc1 and dTsc2 by Akt are functionally

redundant, we genetically engineer flies in which both Tsc1 and

Tsc2 are simultaneously replaced with mutant versions that cannot

be phosphorylated by Akt (Tsc1S533A, Tsc2T437A/S924A/T1054A/

T1518A). Surprisingly, these animals are also viable and normal in

size and growth rate. This shows that phosphorylation of both

Tsc1 and Tsc2 is not required for Akt to drive tissue growth in

Drosophila, indicating that other targets of Akt must be

responsible for Akt’s growth-promoting activity. We do find,

nonetheless, that these animals have mild metabolic defects,

raising the possibility that the regulation of Tsc1/2 by Akt plays a

fine-tuning role in organismal metabolism. This would be similar

to what is seen with other components of the pathway, such as

Rictor and Melted, which play important yet modulatory

functions during animal development [12,13].

Results

Akt phosphorylates dTsc1 on Ser533
As was previously noted [7], Drosophila Tsc1 contains a perfect

Akt phosphorylation consensus (R-x-R-x-x-S/T) at Ser533 –

RNRMAS – which is not conserved in mammalian Tsc1 proteins.

This raises the possibility that Akt phosphorylates dTsc1 in

addition to dTsc2 in Drosophila. Furthermore, using a proteomic

approach in which phosphopeptides were identified from extracts

of Drosophila Kc167 cells using mass spectroscopy, Aebersold and

colleagues have detected phosphorylation on Ser533 of endoge-

nous Tsc1, indicating that this site is phosphorylated in vivo by an

unknown kinase (www.phosphopep.org [11]). Therefore, we

decided to test if Akt phosphorylates dTsc1 at Ser533. To detect

phosphorylation at this site, we transfected S2 cells with a

construct expressing myc-tagged Tsc1. We then immunoprecip-

itated Tsc1 using the myc tag, and detected phosphorylation using

the Phospho-(Ser/Thr) Akt Substrate antibody from Cell Signal-

ing which recognizes (R-x-R-x-x-phosphoS/T) epitopes. This

antibody should recognize Ser533 on Tsc1 if it is phosphorylated.

When S2 cells were transfected to express wildtype Tsc1, a weak

phospho-signal could be detected in the myc-Tsc1 immunopre-

cipitate (Figure 1A, Lane 1) which increased progressively in

strength when the cells were treated with insulin for 20, 40 or

60 minutes prior to lysis (Figure 1A, Lanes 2–4), indicating that

this phosphorylation is insulin responsive. We then tested which

site on Tsc1 is responsible for this signal. When S2 cells were

transfected to express wildtype myc-Tsc1, the signal in the anti-

myc immunoprecipitate increased in strength upon insulin

treatment, consistent with the previous result (Figure 1B, lanes 3

and 4). This signal was not detectable if cells were not transfected,

indicating the phospho-specific antibody is specifically detecting

myc-Tsc1 in the myc-IP (Figure 1A, lanes 1 and 2). Furthermore,

no phospho-specific signal was detectable if we transfected a myc-

tagged Tsc1 in which Ser533 was mutated to alanine, indicating

that the phospho-specific antibody is specifically recognizing

phosphorylation on Ser533 (Figure 1, lanes 5 and 6). Together,

these data suggested that Tsc1 is phosphorylated on Ser533 by a

kinase that is activated in response to insulin signaling. Since

Ser533 lies within an Akt phosphorylation motif, and since Akt is

activated upon insulin stimulation, a likely candidate for this kinase

is Akt.

To ask whether the increased phosphorylation of Ser533 on

dTsc1 in response to insulin is due to Akt, we tested whether

knockdown of Akt was able to blunt this response. We transfected

S2 cells with myc-Tsc1(WT), treated the cells with dsRNA against

Akt or a control, and then treated the cells with or without insulin

before detecting phosphorylation on Tsc1. As shown in Figure 1C,

insulin treatment caused an increase in Tsc1 phosphorylation in

control cells (lanes 1 and 2), but not in cells treated with Akt

dsRNA (lanes 3 and 4). As observed also by others [13], the

Phospho-(Ser/Thr) Akt Substrate antibody from Cell Signaling

shows a background signal (both top and bottom panel, Fig. 1C).

This background signal, most clearly visualized when probing total

cell lysates (bottom panel, Figure 1C) is retained when Akt is

completely knocked-down, as controlled with anti-Akt antibody

and by loss of S6K phosphorylation (Fig. 1C). Since the banding

pattern visible when cell lysates are probed with this antibody are

similar in the presence and absence of Akt (bottom panel Fig. 1C),

this likely reflects residual binding of the antibody to non-

phosphorylated R-x-R-x-x-S/T motifs. This has also been

reported by others (Figure 1G in [13]). Despite the background

signal, the fact that the phospho-signal on Tsc1 no longer increases

upon insulin treatment when Akt is removed, indicates Akt is

responsible for the insulin-induced phosphorylation of dTsc1 at

Ser533.

dTsc1 phosphorylation by Akt is dispensable in vivo in
Drosophila

Some groups have reported that binding between dTsc1 and

dTsc2 depends on phosphorylation of Tsc2 [7], whereas others

have reported that it does not [9]. We also could not detect any

changes in dTsc1/dTsc2 binding in the presence or absence of

insulin (not shown), so we could not use a binding assay to probe

the effect of Tsc1 phosphorylation on Tsc1/2 function. Therefore

we decided to move to an in vivo model.

To test the physiological relevance of this phosphorylation event

in vivo, we genetically engineered flies in which endogenous Tsc1

was replaced with various mutant versions. To achieve this, we

generated transgenic flies ubiquitously expressing either wildtype

Tsc1 (Tsc1WT), or Tsc1 variants where Ser533 was mutated to

non-phosphorylatable alanine (Tsc1S533A) or to a phosphomimick-

ing residue (Tsc1S533D). These transgenes were then crossed into a

Tsc129 mutant background, in a manner similar to that done by

Dong and Pan for Tsc2 [9]. The Tsc129 mutation replaces amino

acid 61 with a stop codon, truncating most of the protein, leading

to a predicted null [14]. While Tsc129 mutant animals die very

early around the embryo-larval transition [14], presence of the

dAkt Phosphorylates dTsc1
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Tsc1WT transgene was able to rescue them to adulthood,

generating a viable stock with no obvious defects. By picking first

instar larvae and seeding them at fixed density on standard flyfood,

we found that 83% of control w1118 larvae survived to adulthood,

and 69% of Tsc129 mutants were rescued to adulthood with the

Tsc1WT transgene (Figure 2B, ‘‘WT’’). We then chose transgenes

expressing Tsc1S533A or Tsc1S533D at levels similar to Tsc1WT

(Figure 2A, lanes 2, 4 and 5), introduced them into the Tsc129

background, and found that they were also able to rescue the

mutant flies as efficiently as the Tsc1WT construct: 61% and 63%

of Tsc129 mutants were rescued to adulthood with the Tsc1S533A

and Tsc1S533D transgenes respectively (Figure 2B). Furthermore,

flies rescued by the wildtype and two mutant constructs showed

similar developmental timing, gauged by pupation curves

(Figure 2C), and similar final animal size, measured by wing area

(Figure 2D). Although wing size was mildly reduced in both

Tsc1S533A and Tsc1S533D flies compared to Tsc1WT flies, opposite

effects would be expected from the alanine-substitution and

phosphomimicking transgenes, making it unclear if this mild

reduction is of significance. In sum, the ability of all three

transgenes to rescue Tsc129 mutants from early lethality to

adulthood suggests that phosphorylation of Tsc1 by Akt is not

critical for normal development in Drosophila.

Flies simultaneously lacking Akt phosphorylation of Tsc1
and Tsc2 are viable but have mild metabolic defects

The Tsc1 and Tsc2 proteins work together as a complex to

achieve maximal activity, and recent reports indicate that

phosphorylation of either Tsc1 or Tsc2 can lead to regulation of

the complex in cell culture [1,10]. To test whether phosphorylation

by Akt of Tsc1 and Tsc2 might be acting redundantly, we generated

flies in which both endogenous Tsc1 and Tsc2 were simultaneously

replaced with alanine-substitution mutants (tsc129, gig192,

Tsc1S533A, Tsc2T437A/S924A/T1054A/T1518A) (gig192; Tsc2T437A/

S924A/T1054A/T1518A flies kindly provided by D. Pan [9]). To our

surprise, these animals were also viable (Figure 2B, ‘‘double’’), and

had similar growth rates and final size compared to animals

harboring the Tsc1WT transgene (Figures 2C and 2D, ‘‘double’’).

This is in stark contrast to animals lacking Tsc1, Tsc2, Akt, or Rheb,

all of which are lethal early in development [14–18]. This indicates

that even if the ability of Akt to phosphorylate both partners of the

Tsc1/2 complex is abrogated, flies are quite normal in terms of

growth, and that in Drosophila the ability of Akt to drive tissue

growth does not depend strongly on the Tsc1/2 complex.

Both insulin signaling and TORC1 are known to regulate

animal metabolism in addition to growth. Indeed, flies mutant for

a number of components of the pathway, such as rictor or melted,

display very mild growth impairments, but have strong metabolic

defects [12,13,19]. This suggests that animal metabolism is more

sensitive to TOR activity than animal growth. Therefore, in order

Figure 1. Drosophila Tsc1 is phosphorylated by Akt on Ser533.
(A) Phosphorylation of Tsc1 increases with insulin treatment. S2 cells
transfected with constructs to express myc-Tsc1 and His-Tsc2 were
treated without insulin (0 min) or with insulin (10 mg/mL) for indicated
times (20, 40 or 60 min). Cells were then lysed and myc-Tsc1
immunoprecipitated using anti-myc antibody. Immunoprecipitates
were probed with anti-myc antibody as a loading control, and anti-
Phospho-(Ser/Thr) Akt Substrate antibody to detect phosphorylation of
Tsc1. (Ser533 is part of an Akt phosphorylation consensus motif). (B)
Tsc1 is phosphorylated on Ser533 in response to insulin treatment.
Untransfected S2 cells (-) or S2 cells transfected with constructs to
express either myc-Tsc1WT (‘‘WT’’) or myc-Tsc1S533A (‘‘S533A’’) together
with His-Tsc2 were treated with or without insulin (10 mg/mL) for
1 hour prior to lysis and immunoprecipitation with anti-myc antibody.

Immunoprecipitates were probed with anti-myc antibody as a loading
control, and anti-Phospho-(Ser/Thr) Akt Substrate antibody to detect
phosphorylation of Tsc1. (C) Knockdown of Akt abrogates the increase
in phosphorylation of Tsc1 on Ser533 induced by insulin treatment. S2
cells transfected with expression constructs for myc-Tsc1WT and His-
Tsc2 were treated with control dsRNA or Akt dsRNA for 4 days prior to
insulin treatment (10 mg/mL for 1 hour), lysis and anti-myc immuno-
precipitation. Immunoprecipitates were probed with anti-myc as a
control and anti Phospho-(Ser/Thr) Akt Substrate antibody to detect
phosphorylation of Tsc1 Ser533. Despite efficient knockdown of Akt
(seen by lack of Akt protein and S6K phosphorylation in lanes 3 and 4),
anti Phospho-(Ser/Thr) Akt Substrate antibody displays background
binding in total cell lysates, as previously reported also by others.
doi:10.1371/journal.pone.0006305.g001

dAkt Phosphorylates dTsc1
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to not overlook more mild defects, we tested whether phosphor-

ylation of the Tsc1/2 complex by Akt might affect organismal

metabolism by measuring animal lipid levels. Although animals in

which endogenous Tsc1 was replaced with either Tsc1S533A or

Tsc1S533D did not reproducibly show alterations in lipid levels

(Figure 3), animals in which both Tsc1 and Tsc2 were

simultaneously replaced with alanine-substitution mutants were

mildly leaner than controls (Figure 3, ‘‘double’’ vs ‘‘WT’’,

ttest = 0.01). This suggests that phosphorylation of the Tsc1/2

complex by Akt might possibly be involved in the more subtle

regulation of animal metabolism, as is seen with other modulators

of the pathway such as Rictor or Melted [12,13,19].

Discussion

dAkt phosphorylates dTsc1
We present evidence here that Drosophila Tsc1 is phosphor-

ylated on Ser533 by Akt. Although this serine is conserved in

mouse and human Tsc1, the R-x-R-x-x-S motif is not conserved.

(In human Tsc1 the respective sequence is 519-THSAAS-524).

Since Akt does not absolutely require the full R-x-R-x-x-S motif to

recognize its targets [20], we tested whether human Tsc1 is also

phosphorylated on Ser524, but could not detect any phosphory-

lation by mass spectroscopy with immunopurified hTsc1 from

HEK293 cells (data not shown). Therefore, we believe this is likely

a Drosophila-specific phosphorylation. This phosphorylation site is

in very close proximity to Ser487 and Ser511 of human Tsc1,

which were recently shown to be phosphorylated by IKKb [10],

leading to regulation of Tsc1/2 function in cell culture. Therefore,

it is possible that this clustering of phosphorylation sites in one

region of Tsc1 is of functional significance, in particular since it is

close to the domain that interacts with Tsc2.

Is phosphorylation of the Tsc1/2 complex by Akt
important?

The finding by Dong and Pan, that flies lacking Akt

phosphorylation sites on Tsc2 are viable and normal in size, was

Figure 2. Flies lacking Akt phosphorylation sites on Tsc1 and Tsc2 are viable and normal in size. (A) Expression levels of myc-Tsc1 in fly lines
homozygous for the Tsc129 mutation, rescued by ubiquitous expression of Tsc1WT, Tsc1S533A or Tsc1S533D, or flies homozygous for both the Tsc129 and
Tsc2192 mutations rescued to viability by ubiquitous expression of both Tsc1S533A and Tsc2T437A/S924A/T1054A/T1518A (‘‘Tsc1S533A,Tsc24A’’). (B,C,D) Survival
rates (B), pupation curves (C) and relative adult wing sizes (D) of animals seeded as L1 larvae under controlled growth conditions for genotypes w1118

(‘‘w1118’’), Tsc129 homozygotes rescued by ubiquitous expression of Tsc1WT (‘‘WT’’), Tsc1S533A (‘‘S533A’’) or Tsc1S533D(‘‘S533D’’), or flies homozygous for
both the Tsc129 and Tsc2192 mutations rescued to viability by ubiquitous expression of both Tsc1S533A and Tsc2T437A/S924A/T1054A/T1518A (‘‘double’’).
doi:10.1371/journal.pone.0006305.g002

dAkt Phosphorylates dTsc1
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surprising [9]. Since we found here that Akt also phosphorylates

Tsc1 in Drosophila, this raised the possibility that the phosphor-

ylation of Tsc1 and Tsc2 by Akt are functionally redundant, and

that a phenotype is only revealed when both are abrogated.

However, to our surprise, we found that flies simultaneously

lacking Akt phosphorylation sites on both Tsc1 and Tsc2 are also

viable and almost normal in size, reinforcing the conclusion that

the connection from Akt to TOR via the Tsc1/2 complex is not

critical for normal size and growth. Since Akt strongly activates

TORC1 activity and induces tissue growth, this suggests other

targets of Akt must be responsible for these effects. Recently,

PRAS40 has also been suggested to link Akt to TOR: some groups

have reported that Akt can phosphorylate PRAS40, thereby

relieving the inhibition of TOR by PRAS40 [21,22]. Although

other groups have reported conflicting data, or alternate

interpretations of this data [23–25], it is possible that Akt activates

TOR via both Tsc1/2 and PRAS40 in a redundant manner, or

that other unknown links between Akt and TOR exist. This

redundancy would generate a more ‘robust’ system in which

TORC1 activity is held in check by two independent pathways,

both of which are downstream of Akt. Furthermore, a number of

inputs regulate activity of the Tsc1/2 complex, phosphorylation by

Akt being only one of them.

One interpretation of our data is that abrogation of the ability of

Akt to phosphorylate the Tsc1/2 complex has no functional

consequences whatsoever for the animal. Since we find this hard to

believe, we tested whether there might be more mild defects in the

mutant flies. TOR regulates both tissue growth and organismal

metabolism. Some mutations in the fly with mild effects on TOR

activity cause small or negligible alterations in animal size, but

significant alterations in metabolic parameters such as total body

lipid levels [12,13]. This suggests that metabolic regulation is more

sensitive to TOR activity than animal size. Therefore, we tested

whether flies simultaneously lacking Akt phosphorylation sites on

Tsc1 and Tsc2 are metabolically normal. Indeed, we found that

these flies have a mild reduction in body lipid levels. Therefore it is

possible that the link between Akt and TOR via the Tsc1/2

complex is more important for fine-tuning animal metabolism

than for controlling animal growth.

Materials and Methods

Molecular Biology & Fly stocks
Vectors for expressing myc-tagged dTsc1 and His/V5-tagged

Tsc2 under control of the actin promoter were a kind gift from

Duojia Pan [14]. Point mutations in TSC1 at serine 533 were

introduced by PCR to obtain an alanine mutant (oligo

GAACCATTTCCACTGTAggcTGCCATACGATTGCG), or

an aspartic acid mutant (oligo GAACCATTTCCACTG-

TAgtcTGCCATACGATTGCG) Final constructs were rese-

quenced to confirm presence of the mutations. To generate

transgenic flies, Tsc1-WT, Tsc1-S533A and Tsc1-S533D were

subcloned into a pCasper4-based vector containing a tubulin

promotor and an SV40 polyA. Flies containing the gigas192

mutation, expressing either wildtype Tsc2 or Tsc2T437A/S924A/

T1054A/T1518A were a kind gift from Duojia Pan [9].

Cell culture, Immunoprecipitations and Antibodies
Transfections of Tsc1 and Tsc2 constructs were carried out in S2

cells grown in SFM medium using Cellfectin Reagent (Invitrogen).

Twenty hours after transfection, cells were treated with or without

bovine insulin for one hour (10 mg/mL, Sigma), then lysed in lysis

buffer (50 mM Tris-pH 7.5, 150 mM NaCl2, 1% Triton X-100),

containing protease and phosphatase inhibitors (Roche). Immuno-

precipitations were performed using rabbit anti myc antibody from

Cell Signaling (#71D10), and Protein-A agarose beads (Roche).

dsRNA targeting both AKT isoforms was generated using oligos

containing T7 promoter sequences fused to GAGATT-

GTGTGTGTTTCGT or GTTCCGGAATCGTGTGTA. dsRNA

was added to the medium at 12 mg/mL for 4 days.

Antibodies: anti p-Thr398 dS6k (Cell Signaling, #9209), anti-

AKT (Cell Signaling #9272), anti myc (Dianova MA1-980), anti-

tubulin (DS Hybridoma Bank AA4.3-s), anti dS6K (kind gift from

Mary Stewart).

Fat measurement
Age and nutrient controlled flies were collected three or five

days after hatching and subjected to fat measurement as previously

described [19]. Samples of at least five flies were homogenized in

ice-cold homogenization buffer (0.05% Tween 20 in H2O). A

sample was kept for Bradford protein measurement and assayed

immediately. The remaining homogenate was heat-inactivated at

70uC for 5 min. After addition of lipoprotein lipase (Sigma 62333,

final concentration 0.25 mg/ml, 37 degrees, overnight) glycerol

from the reaction was quantified using Free Glycerol Reagent

(Sigma F6428). Experiments were done in quintuplicate.
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