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Abstract— Unmanned aerial vehicles (UAVs) can provide an
effective solution for improving the coverage, capacity, and
the overall performance of terrestrial wireless cellular net-
works. In particular, UAV-assisted cellular networks can meet
the stringent performance requirements of the fifth generation
new radio (5G NR) applications. In this article, the problem
of energy-efficient resource allocation in UAV-assisted cellular
networks is studied under the reliability and latency constraints
of 5G NR applications. The framework of ruin theory is
employed to allow solar-powered UAVs to capture the dynamics
of harvested and consumed energies. First, the surplus power
of every UAV is modeled, and then it is used to compute the
probability of ruin of the UAVs. The probability of ruin denotes
the vulnerability of draining out the power of a UAV. Next,
the probability of ruin is used for efficient user association
with each UAV. Then, power allocation for 5G NR applica-
tions is performed to maximize the achievable network rate
using the water-filling approach. Simulation results demonstrate
that the proposed ruin-based scheme can enhance the flight
duration up to 61% and the number of served users in a
UAV flight by up to 58%, compared to a baseline SINR-based
scheme.

Index Terms— 5G new radio (5G NR), user association,
energy efficiency, power allocation, ruin theory, surplus process,
unmanned aerial vehicles, URLLC.
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I. INTRODUCTION

THE use of unmanned aerial vehicles (UAVs) can enable a
wide range of smart city applications, ranging from drone

delivery to surveillance and monitoring [1]–[3]. Recently,
the use of UAVs has greatly increased in wireless-networking
applications to provide coverage and capacity enhancement to
the ground wireless networks [4]. The flexibility, autonomy,
and ease of deployment of UAVs render them suitable to be
a part of the future wireless networks. In wireless networking
applications, UAVs can have various roles that range from fly-
ing base stations (BSs) ([3]) to backhaul nodes ([5]) and users
of the cellular network ([3], [6], [7]). Therefore, by leveraging
line-of-sight (LoS) communication at high altitudes as well
as the dynamic placement of UAVs at desired locations and
within a required time [8], the use of UAVs as flying BSs
can play a significant role in boosting the capacity of cellular
networks [9]. For example, in [10], the authors proposed
an UAV-assisted heterogeneous cellular network (HetNet) to
meet the communication demands in emergencies for public
safety. The authors in [11] used optimal transport theory to
enable UAVs to provide communication services to ground
users while optimizing their flight time. Moreover, the authors
of [12] proposed an efficient UAV BSs in coexistence with a
terrestrial network. In particular, when wireless connectivity is
needed in difficult and costly deployment locations, UAVs can
provide low-cost and low-power alternatives and complement
conventional small cell BSs (SBSs). For instance, a joint posi-
tioning and user association problem was introduced in [13],
where UAVs were used as a replacement for terrestrial SBSs.
The authors in [14] used circle packing theory to efficiently
deploy multiple UAVs that provide maximum coverage for
users. The authors in [15] proposed the deployment of UAVs
to power the sensors in an IoT network. The authors in [16]
proposed a 3D point process-based UAV deployment where
the UAVs with multiple antennas provide downlink coverage
to the ground users. The authors in [17] proposed a 3D
deployment scheme for the UAVs while guaranteeing the
safety distance between UAVs in mmWave network. More-
over, UAVs are a very promising solution to the problem of
connectivity in occasionally crowded areas, such as stadiums
or open-air shows. Owing to these benefits of UAVs in
wireless communications, it is envisioned that future wireless
cellular networks [4] will be UAV-assisted because they can
complement their terrestrial infrastructure with flying UAV
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BSs. Meanwhile, to design efficient UAV-assisted cellular
networks, it is necessary to address various challenges that
range from network modeling to optimization and resource
management [3].

The use of UAVs is particularly meaningful for deliver-
ing 5G new radio (NR) applications [18]. Enhanced mobile
broadband (eMBB) users require high data rates for 3D
movies, gaming and AR/VR services. UAVs can promise such
high data rates by exploiting the LoS communication [19].
Since UAVs have already been used for data collection from
Internet of Things (IoT) networks [20], they can perform
well for massive machine type communication (mMTC).
Moreover, to meet the reliability and latency demands of
ultra-reliable and low-latency communication (URLLC) appli-
cations, the LoS communication, and optimal positioning
features of UAVs can be promising. Recently, the use of UAVs
has been proposed in delay-sensitive and mission critical appli-
cations [21]–[23]. The authors in [21] proposed a dynamic tra-
jectory control algorithm to optimize the delay and throughput
in the UAV-aided networks. In [22], the authors developed a
URLLC channel model to ensure the delay-sensitive delivery
of critical control information from the ground station to the
UAV. The authors in [23] used a URLLC-enabled UAV to
develop a relay system for the delay-sensitive and ultra-reliable
communication. The authors in [24] used UAV as a relaying
node between the controller and robot when there is no LoS
link available between them. The location and power of the
UAV is optimized to meet the URLLC reliability requirements.
The authors in [25] studied the use of ultra-reliable low latency
communications for controlling UAVs and allowing them to
avoid collisions. The authors in [26] discussed the URLLC
communication for IoT networks while analyzing the security
challenges in IoT. However, most of these prior works focused
on the use of UAVs to incorporate mMTC or URLLC services,
rather than consolidating all of the 5G services. Therefore,
we propose the UAV-assisted cellular networks to serve the
cellular users while incorporating eMBB, URLLC and mMTC
services of 5G NR.

User association and power allocation schemes for the
UAV-based networks have been proposed in the literature,
e.g., in [27]–[29] and [30]. For instance, the authors in [27]
proposed sum power minimization scheme to optimize user
association and power allocation in mobile edge computing
network (MEC). The authors used an iterative algorithm to
solve the formulated problem by decomposing it into three
subproblems. The authors in [28] proposed a joint user asso-
ciation and power control scheme for UAV-enabled cellular
networks. The authors applied matching-based scheme to form
coalition game among the UAVs. The authors in [29] proposed
a machine learning based resource allocation scheme for
mutli-UAV network. The authors in [30] proposed to jointly
solve the user association and power allocation problem in
UAV-enabled MEC networks using successive convex approx-
imation scheme.

A. Energy Efficiency in UAV-Assisted Cellular Networks

The efficient utilization of the limited onboard energy of a
UAV to serve cellular users is a significant challenge. Many

energy-efficient solutions for UAV communication networks
have been proposed to address this problem [31]–[36]. For
instance, the authors in [31] developed a non-cooperative
game to optimize the beaconing periods among competing
drones. In this way, the energy consumption in individual
drones is optimized in a distributed manner. The authors
in [32] proposed a spectrum and energy-efficient scheme
for UAV-enabled relay network, in which the UAV path is
optimized by allocating the communication time slots between
source and destination nodes. In [33], the authors proposed
an energy-aware power allocation scheme in the UAV-assisted
edge networks while utilizing the internet of vehicles for
the computation offloading. The authors in [34] developed a
UAV placement scheme to maximize the served users while
consuming the minimum transmit power. The authors in [35]
designed a UAV communication scheme to optimize the UAV
trajectory while minimizing the energy consumption during
the UAV flight. The authors in [36] proposed an energy effi-
ciency scheme in downlink (DL) and uplink (UL) decoupled
access network. The authors in [37] proposed a downlink
energy transfer from the UAVs to the ground IoT devices,
and the uplink information transfer from IoT devices to the
UAVs.

In order to improve energy efficiency in UAV-assisted
wireless networks, it is possible to harness the possibility
of energy harvesting (particularly using renewable sources
such as solar energy), a technical challenge that has not
been considered in the aforementioned works [30]–[35]. By
employing energy harvesting, the same UAVs can be used
to serve the cellular users for a comparatively longer dura-
tion to increase the air time of UAV. In this regard, there
exist very few studies [38]–[41] that discussed UAVs with
energy-harvesting capabilities for wireless networking. In [38],
the authors studied the problem of energy management in
heterogeneous networks that integrate solar-powered drones.
In particular, the approach in [39] is used to optimize the
trips of the drones at specific locations so as to minimize
the total energy consumption in the network. The authors
in [40] addressed the problem of energy limitations in drones
by developing a wireless power recharging system which is
on renewable energy harvesting. In [41], a comprehensive
analysis of the energy harvesting was performed for UAVs
from the solar and wind sources. The problem of signal-
to-noise-ratio outage minimization for the ground users was
formulated to optimize the transmit power and flight duration
of UAVs. However, since all the aforementioned works assume
energy harvesting in UAV networks that are deployed to
assist traditional wireless networks, the study of UAV-enabled
networks to satisfy the requirements of heterogeneous user
traffic remains largely overlooked. In practice, it is imperative
to consider the coexistence between UAV networks with an
underlaid next-generation cellular infrastructure incorporating
eMBB, URLLC and mMTC services.

B. Contributions

The main contribution of this article is a novel
energy-efficient user association and power allocation
framework for optimizing energy-constrained UAV-assisted
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cellular networks and meet 5G NR performance requirements.
To accomplish this goal, we first formulate a joint user associ-
ation and power allocation problem to achieve the maximum
rate for enhanced mobile broadband (eMBB) users in the net-
work under the constraints of URLLC quality-of-service (QoS)
requirements and limited power of BSs. Using the framework
of ruin theory [42], [43], we solve the user association problem
by modeling the surplus power in every UAV BS (UBS) [44].
Here, surplus power is defined as the total residual power for
a given UAV at any time instant. In particular, we determine
the so-called probability of ruin of the surplus power in each
UBS and then use it for user association with UBSs. The
adoption of ruin theory to model the surplus power in the
UAVs helps to efficiently capture two opposing power flows
that include: (a) the periodic power harvested in the form of
regular premiums, and (b) the power allocated to the associated
cellular users in the form of claims. In this regard, conventional
stochastic optimization cannot properly capture the dynamics
of these opposing powers in UAVs. For instance, [35] pre-
sented an energy efficient trajectory design scheme for the
UAVs. However, they do not consider the energy harvesting
in their energy model. The authors in [45] studied the battery
dynamics of the UAVs to capture the charging and discharging
flows of battery power. In contrast to these schemes, ruin
theory captures the charging and discharging flows of powers
as well as the randomness in the transmission power of the
UAVs. After obtaining the energy-efficient association of the
cellular users with a particular BS based on the probability of
ruin, the power allocation to the associated users is performed
under 5G NR constraints.

In summary, our key contributions include the following:
• To maximize the data rate of eMBB users while satisfying

the latency and reliability constraints of URLLC users,
we formulate a joint energy-efficient, user association,
and power allocation problem. The formulated problem
is difficult to solve because the problem is mixed integer
non-linear programming (MINLP). Therefore, we pro-
pose a novel ruin-based user association and water-filling
algorithm for the power allocation to the associated
eMBB users.

• First, we model the surplus power in a UBS as function
of three components: (a) the initial power in the UAVs
at the time of dispatch, (b) the regular harvested power
was obtained in the form of premiums from the solar
panels mounted on the UAVs, and (c) the transmission
power from UAVs to the cellular users. From the surplus
process, we determine the probability of ruin which is
further used for the user association.

• After user association, we develop a new power allocation
algorithm to allocate downlink power to the associated
cellular users. Power allocation to the URLLC users is
initially performed under a reliability constraint and, then,
the water-filling scheme is used to allocate power to
eMBB users.

• Simulation results demonstrate that UAV-assisted cellu-
lar networks perform well to satisfy the stringent 5G
NR requirements. Moreover, we show that the proposed
ruin-based user association serves up to 58% more

Fig. 1. System model of UAV-assisted cellular network.

number of users during a UAV flight compared to a
benchmark SINR-based scheme.

To the best of our knowledge, this is the first study that
applies ruin theory to model the surplus power in UBSs for
optimizing user association in UAV-assisted cellular networks.

The rest of this article is organized as follows. Section II
presents the system model and problem formulation.
In Section III, we develop a ruin theoretic framework to model
the surplus UAV power which is used for the user association.
In Section III-D, the proposed water-filling based power allo-
cation algorithm is developed; and numerical evaluation of the
proposed framework are discussed in Section IV. Conclusions
are drawn in Section V.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a UAV-assisted cellular network that comprises
of a single macro BS (MBS), a set S of S SBSs, and a set
U of U UBSs for the downlink communication. These BSs
can be compositely denoted by J = {0} ∪ S ∪ U , where
{0} denotes the index of the MBS. Every UAV has a limited
power storage capacity to store ρ0 power at the start of a
flight. Moreover, there is a solar energy-harvesting module
mounted on every UAV. The UAVs are deployed above the
ground cellular network at the corresponding locations denoted
by ru = (xu, yu, hu), for every UAV u ∈ U [22]. We consider
the following three types of users in 5G NR environment: (a) a
set Ke of Ke eMBB users, (b) a set Ku of Ku URLLC users,
and (c) a set Km of Km mMTC users. The data obtained
from all the IoT nodes of mMTC network is multiplexed in a
single frame. The data demand from this single frame is equal
to one regular eMBB user demand. Therefore, without loss
of generality, we remark that there is only one mMTC user
denoted by index {0} in the network. All these cellular users
are compositely denoted by K = {0} ∪ Ke ∪ Ku, where {0}
denotes the index of the mMTC user.

We study the network for a short duration of time, and the
network topology is considered static during this period. For
the sake of exposition, we consider that the UAVs u ∈ U are
deployed at key locations ru in which the cellular demand
is highest. This assumption is aligned with the main use-case

Authorized licensed use limited to: Kyunghee Univ. Downloaded on June 17,2021 at 01:27:08 UTC from IEEE Xplore.  Restrictions apply. 



3946 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 69, NO. 6, JUNE 2021

of UAVs as BSs that service hotspot areas for a temporary
duration. We assume that determining the optimal locations
follows known algorithms such as in [14].

A. Transmission Model

Due to the different propagation environments, the channel
gain of the UBSs differs from the ground SBSs and the MBS.
In particular, the channel gain is given by: hjk = 10−δjk/10

and is a function of the corresponding pathloss δjk . The
path-loss δuk between UAVs and ground users is composed of
LoS path-loss, δLoS

uk and non-LoS path-loss, δNLoS
uk , respectively

given as follows:

δLoS
uk = 20 log

�
4πdukf

c

�
+ LLoS, (1)

δNLoS
uk = 20 log

�
4πdukf

c

�
+ LNLoS, (2)

where f is the carrier frequency, and duk denotes the distance
between UAV u and cellular user k. Moreover, LLoS and
LNLoS are the average added losses for LoS and NLOS
communication, respectively. The probability of existing a LoS
link between UAVs and ground users is given as follows [46]:

PrLoS
uk =

1
1 + a exp[b(180

π tan−1 hu

duk
) − a]

, (3)

where hu is the height of the UAV u, and a and b are environ-
ment constants, respectively. The probability of non-LoS link
between UAVs and ground users is given as follows:

PrNLoS
uk = 1 − PrLoS

uk . (4)

Hence, the average path-loss between UAVs and ground users
is given as follows:

δuk = PrLoS
uk δ

LoS
uk + PrNLoS

uk δNLoS
uk . (5)

Path-loss δjk, for the terrestrial BSs j ∈ {{0} ∪ S} is given
by the following [47], [48]:

δjk = 15.3 + 37.6 log(djk), (6)

where djk denotes the distance between BS j and cellular user
k.

The signal-to-interference-plus-noise ratio (SINR), which is
denoted by γij from the BS j to the cellular user k is given
by the following:

γjk =
Pjkhjk�

j�∈J\{j}
Pj�khj�k + σ2

jkωjk
, (7)

where Pjk denotes the downlink transmission power from BS
j ∈ J to the user k ∈ K, hjk denotes the channel gain,
and σ2

jk denotes the noise power spectrum density at user
k [26]. Note that Pj�k denotes the interference power from the
neighboring BS j� to the user k and is equal to Pj�k�� , where
k�� is another user that uses the same frequency band as user
k. ωjk denotes the bandwidth allocated to the communication
link between the BS j ∈ J and cellular user k ∈ K. Each
BS j ∈ J is assigned a portion of the licensed bandwidth
denoted by Wj . This bandwidth Wj is further divided equally

among the various cellular users associated with BS j.1

A bandwidth ωjk = Wj�

k∈K
xjk

is allocated to the communication

link between the BS j ∈ J and cellular user k ∈ K, where�
k∈K xjk denotes the total number of associated users with

the BS j. xjk denotes the association variable given as:

xjk =

�
1, if user k ∈ K is associated with BS j ∈ J ,
0, otherwise.

The achievable rate of a cellular user k associated with the
BS j is given by the following:

Rjk = xjkωjk log (1 + γjk) , (8)

B. 5G NR Traffic Classification Model

As previously explained, the set of cellular users K in
the network can be classified into two main categories based
on the 5G NR traffic classification as K = Ku ∪ Ke while
Ku ∩ Ke = ∅, where Ku denotes the set of URLLC users
and Ke denotes the set of eMBB users. This means that any
user k can be classified into one of these two network user
groups Ku or Ke. The data obtained from all the IoT nodes
of mMTC network is multiplexed in a single subframe 1 ms.
Thus, we consider the communication for the mMTC traffic
which is multiplexed into a single subframe and is dedicated
fixed bandwidth of ωj0 as shown in Fig. 2. Additionally,
we consider the downlink communication for the URLLC
and eMBB traffic. It can be observed from Fig. 2 that the
arrival of URLLC traffic reduces the achievable rate of the
eMBB users because eMBB traffic could be stopped during
URLLC transmission. The achievable eMBB rate after serving�

k�∈Ku
xjk� URLLC requests is given as follows:

Djk (xjk, Pjk) =

�
T-t

�
k�∈Ku

xjk�

�
Rjk, ∀k ∈ Ke, (9)

where T and t denote the eMBB and URLLC TTIs respec-
tively as shown in Fig. 2. Djk represents the amount of data
which can be communicated from BS j to the eMBB user
k during time T while simultaneously serving

�
k�∈Ku

xjk�

URLLC users.

C. Problem Formulation

We can now formulate an optimization problem to maximize
the network rate for eMBB users subject to the URLLC
reliability and latency constraints, the power level constraints
of each BS j ∈ J , and the unique association of the cellular
users with each BS, as follows:

max
x,P

�
j∈J

�
k∈K

Djk (xjk, Pjk) , (10)

�
k∈K

Pjk ≤ ρj , ∀j ∈ J , (10a)

Pr (γjk� ≥ ζ) ≥ (1 − 	), ∀j ∈ J , ∀k� ∈ Ku, (10b)

1Note that the proposed resource allocation scheme can be efficiently used
for the multiple antennas on separate instances for each channel resource.
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Fig. 2. The frame structure of 5G NR traffic for the coexistence of eMBB,
URLLC, and mMTC. mMTC is allocated a dedicated bandwidth. eMBB traffic
is pre-schedules for eMBB TTI duration, T in each frame. URLLC traffic is
scheduled instantaneously for URLLC TTI duration, t.

�
k�∈Ku

xjk� = λu, ∀j ∈ J , (10c)

�
j∈J

xjk = 1, ∀k ∈ K, (10d)

0 ≤ Pjk ≤ pmax, ∀j ∈ J , k ∈ K, (10e)
xjk ∈ {0, 1}, ∀j ∈ J , k ∈ K. (10f)

The objective is to maximize the eMBB users’ sum-rate in
the network. Based on the maximum power level ρj of each
BS j, the constraint in (10a) limits the total power allocation
to all the associated users. (10b) ensures ultra-reliability by
maintaining a sufficient SINR level for the URLLC users
above the threshold ζ with 1−	 confidence level. (10c) ensures
low latency for URLLC users by strictly scheduling the arrived
λu URLLC requests in the same slot. (10d) ensures the unique
association of eMBB user k with a single BS j. (10e) and
(10f) are the bounds for the decision variables, where pmax

denotes the maximum power level that can be allocated for a
user. Note that, the upper bound pmax is helpful in reducing
the interference from neighboring BSs. The following is the
power level, ρj for each BS j ∈ J :

ρj =

⎧⎪⎨
⎪⎩
ρj(τ), for j ∈ U ,
P0, for j = 0,
P1, for j ∈ S.

(11)

D. UAV Energy Model

Every UAV u ∈ U has a certain power level ρu(τ) at time
instant τ , which comprises the initial power ρ0 stored in the
UAV, the power ρu that is harvested by UAV u from renewable
energy sources within a unit time. Note that the unit time τ is
measured in seconds and is longer than the eMBB TTI T and
URLLC TTI t. The UAVs have power consumption in the form

of propulsion power and the power allocation to the cellular
users. The propulsion power ρh, consumed in the hovering
state of the UAV is constant due to the fixed air speed, UAV
height and other environmental variables. The power allocation
to the set of cellular users associated with UAV u is denoted
by
�

k∈K Puk. The surplus power of UAV u at time instant
τ , is given by:

ρu(τ) = ρ0 + ρuτ −
�
k∈K

Puk − ρh. (12)

Note that the surplus power of every UAV has an upper
bound ρmax which denotes the limited power storage capacity
of the UAVs. In the absence of the solar energy source at
night time or cloudy weather, the UAVs can be switched
to other renewable energy sources (e.g., laser, UV, or fuel
cells) [45], [49]. We now observe that this surplus power
has bidirectional flows of power. The positive power flow
is in the form of periodic harvested power and the negative
power flow is in the form of power consumption on the
downlink communication from UAVs to cellular users and
propulsion power. Hence, an efficient system design should
well-capture these power flows to improve the overall energy
utilization. In this regard, conventional stochastic optimization
requires full network knowledge to provide a centralized
solution; hence, less efficient. Therefore, we use a stochastic
process-based framework of ruin theory to address this chal-
lenge and model the surplus UAV power and the probability of
ruin of UAV to formulate the stochastic optimization problem.
To that end, the probability of ruin at UAV represents the
vulnerability of draining out a UAV’s power. In particular, it is
used to efficiently utilize the available energy of UAVs while
performing user association with each UAV.

III. USER ASSOCIATION AND POWER ALLOCATION:
A RUIN-BASED SOLUTION

A. Ruin Theory: Preliminaries

In the area of actuarial science [44], ruin theory is applied
to express an insurer’s vulnerability of bankruptcy. This is
performed by modeling the so-called surplus process which
represents the insurer’s capital at a time instant τ and com-
prises two opposing cash flows: (a) the periodic income gained
from regular insurance premiums, and (b) random claims.
The insurer’s vulnerability of risk is determined from the
probability of ruin which essentially represents the probability
of getting a negative surplus. As explained earlier, we will
apply ruin theory to formulate the surplus power in every
UAV u at a time instant τ , and is further used to compute the
probability of ruin. The number of cellular users associated
with the UAV is then determined based on the probability of
ruin of each UAV.

Ruin theory is utilized to model the UAV surplus power
process which represents the random UAV power levels over
time τ . The surplus UAV power depends on three essential
factors: a) launch power, b) premium power, and c) claim,
that we define next.

Definition 1: The launch power, which is denoted by ρ0 is
defined as the power stored in the UAV at the time of launch.
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Definition 2: The premium power, which is denoted by ρu

is defined as the constant power harvested by UAV u from the
renewable energy resource in a unit time τ .

Definition 3: The claims are defined as the random transmit
power allocations to the cellular users associated with a UAV.

The UAV surplus power, is composed of constant renewable
power harvested at regular intervals, and the power dissipation
on providing the communication services to the associated
cellular users, i.e.,

�
k∈Ku

Puk . For simplicity, we ignore the
constant hovering power ρh in the rest of the article.

Let, Su =
�

k∈Ku
Puk denote the compound random

variable which is composed of two random variables Ku, and
Puk, where Ku denotes the number of users associated with
the UAV u and Puk denotes the power allocated by the UAV
u to the associated cellular user k. This compound variable Su

is exponentially distributed with parameter μ. Consequently,
the surplus power given in (12) can be formally defined as
follows:

ρu(τ) = ρ0 + ρuτ − Su. (13)

The surplus in (13), which represents the UAV power at
time instant, τ , is utilized to find the finite-time probability of
ruin defined as follows [42].

Definition 4: The finite-time probability of ruin is defined
as the probability of getting a negative surplus at any time
instant s during a finite time τ . The finite-time probability of
ruin is mathematically given by:

ψ(ρ0, τ) = Pr[ρu(s) < 0, for some s as 0 < s < T ], (14)

where τ denotes the total number of discrete time units, and
s ranges from 0 to T .

In the surplus process, the depreciation in surplus is mod-
eled using an exponential distribution of a parameter, μ,
which represents the distribution parameter of the claims in
the surplus process. The exponential distribution is used for
the independent time-separated arrival of events. Therefore,
the depreciation in the surplus process with exponential distri-
bution in ruin theory [44]. The finite-time probability of ruin,
ψk(ρ0, τ), can be obtained as follows [42]:

ψu(ρ0, τ) =
t�

j=1

[μcj(ρ0))]j−1

(j − 1)!
e−μcj(ρ0) c1(ρ0)

cj(ρ0)
, (15)

where μ denotes the parameter of Poisson distribution for the
arrival of claims and cj(ρ0) = ρ0+jc, and c1(ρ0) = ρ0+c rep-
resent the expressions for the accumulated power levels at time
instants j and 1, respectively. In our scenario, we model the
arrival of cellular users with Poisson process [50]. ψk(ρ0, τ)
represents the probability of ruin of the UAV power at time
instant, τ , while ρ0 denotes the UAV power at time 0.

B. Ruin-Based Problem Formulation

Next, we separate (10a) for j ∈ U and embed it to the
objective function in the form of the probability of ruin
for every UAV u. Then we define a new optimization that
is equivalent to (10) (the proof of equivalence is given in

Appendix A), as follows:

max
x,P

ς
�
j∈J

�
k∈K

Djk (xjk, Pjk) − ξ
�
u∈U

ψu(ρ0, τ), (16)

�
k∈K

Pjk ≤ ρj , ∀j ∈ {{0} ∪ S}, (16a)

Pr (γjk� ≥ζ) ≥ (1−	), ∀j ∈ J , ∀k� ∈ Ku, (16b)�
k�∈Ku

xjk� = λu, ∀j ∈ J , (16c)

�
j∈J

xjk = 1, ∀k ∈ K, (16d)

0 ≤ Pjk ≤ pmax, ∀j ∈ J , k ∈ K, (16e)
xjk ∈ {0, 1}, ∀j ∈ J , k ∈ K. (16f)

The objective is to maximize the sum-rate of the users
in the network and minimize the probability of ruin for the
surplus power in the UAVs, where ς and ξ are normalizing
constants. Before proceeding to the solution, we first simplify
the problem by embedding (16c) in the objective function.
This is done as follows:

(16c) is an equality constraint which ensures the immediate
scheduling of λu number of arrived URLLC users in the same
time slot t. This scheduling is performed by associating the
URLLC user k� with the BS j delivering best SINR γjk� . The
resultant eMBB rate after URLLC scheduling is expressed as
follows:

D�
jk (xjk, Pjk) = (T-tλu)Rjk, ∀k ∈ Ke, (17)

where the expression T-tλu denotes the remaining duty-cycle
for the eMBB communication after scheduling λu number of
URLLC packets.

�
k�∈Ku

xjk� in (16c) refers to the associated
URLLC users which sum up to the number of arrived URLLC
users, λu. By replacing the expression

�
k�∈Ku

xjk� with λu

in (9), we get (17).
For the optimal power allocation to the URLLC users,

we state the following proposition:
Proposition 1: Power allocation to the URLLC users is

performed to meet certain SINR threshold, ζ, which ensures
the URLLC reliability as given in (16b). The optimal power
allocation to the URLLC users can be performed as follows:

P ∗
jk� =

F−1
γjk� (1 − 	)(1 + I)

hjk
, (18)

where F−1
γjk� (1 − 	) denote the inverse CDF of γjk� , and I =�

j�∈J\{j} Pj�khj�k + ωjkσ
2.

Proof: The proof of (18) is given in Appendix B. �
Note that we analyze the network for a duration in which

the power allocation from another BS j� ∈ J \ {j} is known.
Therefore, (16b) becomes a convex constraint.

After adjusting (16c) and solving the URLLC power allo-
cation in (18), the remaining power at each BS for the eMBB
users is ρj −

�
k�∈Ku

P ∗
jk� . The user association and power

allocation problem for eMBB users is given as follows:

max
x,P

ς
�
j∈J

�
k∈K

D�
jk (xjk, Pjk) − ξ

�
u∈U

ψu(ρ0, τ), (19)

�
k∈Ke

Pjk ≤ ρj −
�

k�∈Ku

P ∗
jk� , ∀j ∈ {J \ U}, (19a)
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�
j∈J

xjk = 1, ∀k ∈ K, (19b)

0 ≤ Pjk ≤ pmax, ∀j ∈ J , k ∈ K, (19c)
xjk ∈ {0, 1}, ∀j ∈ J , k ∈ K. (19d)

It can be observed that problem (III-B) is an MINLP, which
is difficult to solve using exhaustive search and branch and
bound techniques, particularly for a large network. Further-
more, the binary variable xjk makes the problem combi-
national which may require exponential-complexity to solve
using exhaustive search for the number of users. To avoid the
difficulty, we convert the problem into simple sub-problems
which are solved for each variable separately. In particular,
to get a near optimal solution, we first fix the power allocation
and solve the problem of user association by employing
ruin-based heuristic approach. Then, we solve the power allo-
cation problem using the optimal ruin-based user association
solution.

C. Ruin-Based User Association With UAVs

The first sub-problem solves xjk to estimate the possible
number of users which can be associated with each UAV. This
estimation is performed by modeling the surplus power of a
UAV using the probability of ruin. After fixing Pjk , the user
association sub-problem is given by:

max
x

ς
�
j∈J

�
k∈K

D�
jk (xjk, Pjk) − ξ

�
u∈U

ψu(ρ0, τ), (20)

�
j∈J

xjk = 1, ∀k ∈ K, (20a)

xjk ∈ {0, 1}, ∀j ∈ J , k ∈ K. (20b)

For the sake of energy-efficiency, the user association xjk ,
with every UAV u is performed based on its probability of
ruin, ψu(ρ0, τ), obtained from (15). This is done by limiting
the number of associated users with each UAV based on the
probability of ruin. Meanwhile, when the probability of ruin
of a UAV is high, fewer users are associated to that UAV
and vice versa. One meaningful approach for user association
is to associate the cellular user k, with that BS which is
providing better SINR level γjk. This SINR-based approach
is not energy-efficient and, hence, it is not suitable for the
problem of power constrained user association with the UAVs.
We propose an approach that combines SINR and probability
of ruin-based approach in the following definition.

Definition 5: To incorporate both the SINR and the proba-
bility of ruin in the UAV user association problem, we intro-
duce a factor, ηjk , defined as follows:

ηjk := α(1 − ψu(ρ0, τ))γjk , (21)

where the term (1 − ψu(ρ0, τ)) denotes the probability of
survival and α is a control factor.
It can be observed that the factor ηjk consolidates both the
SINR and the probability of ruin. Therefore, the cellular user
is associated with that UBS that provides a better SINR to the
cellular user and has a relatively less probability of ruin.

The user association problem (20) is combinatorial and
difficult to solve for the large network. To solve the problem,

Algorithm 1 User Association Algorithm
1: Input: J , K , Pjk , ρj ;
2: Initialize: x∗jk = 0;
3: Step 1:
4: Compute ψu(ρ0, τ) from (15);
5: Compute ηjk from (21);
6: for k = 1 to K do
7: Select single BS j with max

j∈J
ηjk;

8: end for
9: Step 2:

10: for j = 1 to J do;
11: Initialize P = ρj ;
12: while P ≥ 0 do
13: Find max

k∈K
γjk;

14: Update x∗jk = 1, and P = P − Pjk;
15: Remove max

k∈K
γjk from SINR vector γjk;

16: end while
17: end for

we present a ruin-based heuristic approach in Algorithm 1
that results to a near optimal solution. The inputs are the
following: the total number of BSs, J , the total number of
network users, K , fixed power allocation Pjk , allocated to each
user k, and the total power bound, pj of BS j. In Algorithm 1,
first, the probability of ruin, ψu(ρ0, τ) is computed in step
4 by using the initial power storage ρ0, the harvested power
ρu and the random claim arrivals. The probability of ruin is
further used to compute ηjk from (22) in step 5. Then, every
cellular user, k, selects the BS j with the maximum value
of ηjk in step 7. Next, the users are sorted according to the
SINR values and are associated with the corresponding BS
under the constraints of power level ρj of each BS in step
13. The association x∗jk and the remaining BS power P is
updated in step 14. The algorithm terminates when either P
is zero or all the cellular users are associated. This algorithm
gives a near-optimal solution with the complexity of O(N)
for performing user association using the probability of ruin.
We will show the optimality gap in the simulation results in
Section IV, where it will be observed that the UAV with less
surplus power will have a high probability of ruin. Hence,
fewer users will be associated with that UAV.

D. Power Allocation to eMBB Users

From the previous section, we obtain the optimal associated
users denoted by x∗jk . After performing the ruin-based optimal
user association, the next step is to solve the power allocation
problem. Thus, the updated value of the achievable rate for
the set of the associated eMBB users is given by:

R�
jk = (T-tλu)x∗jkωjk log (1 + γjk) . (22)

The proof of equivalence of (19) and (23) is given in
Appendix C. The sub-problem for the power allocation to
eMBB users is given as follows:

max
P

�
j∈J

�
k∈Ke

R�
jk, (23)
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Algorithm 2 Iterative Ruin-Based Resource Allocation Algo-
rithm
1: Input: J , K , Pjk , ρj , ηjk;
2: Set uniform power to each BS and user pair {j,k} i.e.

Pjk[0] = ρj/K;
3: Compute γjk at each user k from the BS j;
4: Initialize: t = 0;
5: Associate and allocate power to URLLC users using (18)

;
6: while t ≤ Tmax or 	∗ ≥ 	0 do
7: x∗jk[t] = argmax

x

�
j∈J

�
k∈K

D�
jk;

8: Allocate power P ∗
jk to eMBB users using (24);

9: Update
10: Pjk[t] = P ∗

jk;
11: 	∗ = Pjk[t] − Pjk[t− 1];
12: t = t+ 1;
13: end while

s.t.
�

k∈Ke

Pjk ≤ ρj −
�

k�∈Ku

P ∗
jk� , ∀j ∈ {{0} ∪ S}, (23a)

0 ≤ pjk ≤ pmax, ∀j ∈ J , k ∈ Ke. (23b)

Problem (23) is convex because the objective function and
all of the constraints are convex. To solve this problem, we use
a variant of the water-filling algorithm where the power, Pjk

allocated to a user is limited by a threshold, pmax, and the
leftover power is allocated to the other low-gain network
users as shown in Fig. 4. The following optimal solution is
obtained:

Proposition 2: The optimal power allocation P ∗
jk is

expressed as:

P ∗
jk =min

�
pmax,


x∗jkωjk

λj
− 1
θjk

�+�
, ∀j ∈ J , k ∈ Ke,

(24)

where θjk is the channel gain for the user k from BS j defined
as:

θjk =
hjk

1 +
�

j�∈J\{j}
Pj�khj�k + ωjkσ2

, ∀j ∈ J , k ∈ Ke.

(25)

We note that the maximum power that can be allocated
to a user is limited by pmax. From (24), we get λ∗j which
denotes the optimal water level chosen such that the following
condition is satisfied.�

k∈Ke

P ∗
jk = ρj −

�
k�∈Ku

P ∗
jk� , ∀j ∈ J . (26)

Proof: To get (26), we get the KKT conditions by com-
puting the Lagrangian function and other necessary condtions
of (25). By concurrently solving the KKT conditions we
obtain (26). �

The maximum power bound pmax helps to serve more users
by allocating the leftover power to low channel gain users. This
is performed by adjusting the water level, λj , using (26). This
is illustrated in Fig. 4 where the first two users are allocated

Fig. 3. Systematic diagram of the iterative algorithm.

maximum power, while the leftover power is allocated to the
other users by accordingly adjusting the water level, λj . The
third user is allocated power using (24) based on the available
channel gain, θjk, while the fourth user is not allocated any
power because of a very small channel gain.

To solve (20), we present an iterative association and power
allocation approach in Algorithm 2. First, a uniform power is
allocated to all the user-BS pairs. Then, the users maximizing
the network rate under maximum power bounds are selected
until the algorithm iteration time t is less than the maxi-
mum iteration threshold Tmax, or the algorithm convergence
parameter 	∗ is greater than the convergence threshold 	0.
Then, the power allocation for the selected users is performed
using the water-filling algorithm. Fig. 3 shows the systematic
diagram and flowchart of the iterative algorithm for the asso-
ciation and power allocation. Note that this algorithm adopts
water-filling algorithm with the complexity of O(N.M). The
joint algorithm complexity of the proposed algorithm compris-
ing of both ruin-based algorithm and water-filling algorithm
is O(N.M). The algorithm gives a near-optimal solution and
we show the optimality gap in the next section.

IV. SIMULATION RESULTS

For our simulation, we consider a geographical area
of 4000 m × 4000 m square. MBS is deployed in the center at
a fixed location, whereas 10 SBSs and 5 UAVs are uniformly
deployed in the area. The cellular users are randomly located
in the geographical area. Statistical results are averaged over
several runs of random locations of cellular users, SBSs and
UAVs. Other simulation parameters are given in table I.

Fig. 5 shows the network topology which comprises a single
MBS and uniformly deployed SBSs, UBSs and the cellular
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Fig. 4. An illustration of the water-filling algorithm.

TABLE I

SIMULATION PARAMETERS.

Fig. 5. Network topology consisting of MBS, SBSs, UBSs and the cellular
users.

users. The UBSs are deployed at a height of 200 m above the
ground level.

Fig. 6 demonstrates the per-user network rate as a function
of the number of users. The network rate is calculated after
solving the optimization problem for 5 UAVs and 5 SBSs.
These results indicate that the UAV-assisted network achieves

Fig. 6. Network rate vs. number of cellular users in the network.

Fig. 7. Total surplus power of all UAVs at different time instants.

a better per-user rate when compared with the terrestrial
network. For example, when the number of users in the
network is about 75, the UAV-assisted network achieves about
40% more rate when compared with the terrestrial network.
This is due to the LoS communication link between UAV and
ground users which deliver better SINR as compare to the
non-LoS link of the terrestrial network. From Fig. 6, we can
also observe that the network rate reduces as the number of
users in the network increases. This is due to the limited power
resources at BSs which are insufficient to serve all the users
in the network. We also observe that the decline in network
rate is very slow. This is due to the optimal user associa-
tion where the users with better SINR are associated with
the BS.

Fig. 7 illustrates how the surplus power per UAV varies
over time during a single flight of UAV. We show the
power allocation to the associated users for 100 TTIs. The
optimization problem is solved by running the ruin-based
association algorithm and water-filling power allocation
algorithm for each TTI. The initial UAV surplus power at the
time of launch t = 0 is set to be 100 Watts. By controlling the
number of the associated users through the probability of ruin,
up to 52% higher level of the UAV surplus power is achieved
when compared with the non-ruin approach. By preserving the
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Fig. 8. Number of total users associated with all UAVs vs. the probability
of ruin.

Fig. 9. Comparison of ruin and SINR-based approach for UAV flight time
and number of served users.

Fig. 10. Network rate vs. number of cellular users in the network.

surplus UAV power as shown by the significant differences
in power drops at certain time instants, the ruin-based
approach can serve more number of cellular users
eventually.

Fig. 11. Plot of convergence.

Fig. 12. Network rate vs. number of cellular users in the network.

Fig. 8 demonstrates how the number of UAV-associated
cellular users varies with the probability of ruin. We com-
pare the proposed ruin-based scheme with a baseline
SINR-based scheme, which associates the cellular users
with the UAVs to give the best SINR without consider-
ing the surplus power of the UAVs. By decreasing the
number of associated cellular users with the UAVs, it can
be observed that the proposed ruin-based scheme tries to
preserve UAV power with an increase in the probability
of ruin. The non-associated users are offloaded to other
UAVs with less probability of ruin or to the terrestrial
network.

Fig. 9 shows the flight time in units of TTIs and the
number of served users during a single flight of UAV for the
SINR-based and ruin-based approaches. Fig. 9 demonstrates
that the ruin-based approach enhances the flight time of UAV
by offloading the users to terrestrial network. As a result,
exploiting the energy harvested during the enhanced flight
duration, more number of cellular users are served by the
UAV eventually. For instance, the flight duration of UAV
in the ruin-based approach is 64 TTIs as compared to the
SINR-based approach. During 64 TTIs, additional energy is
harvested which is further used to serve 93 more users during
the UAV flight. Consequently, the proposed ruin-based scheme

Authorized licensed use limited to: Kyunghee Univ. Downloaded on June 17,2021 at 01:27:08 UTC from IEEE Xplore.  Restrictions apply. 



MANZOOR et al.: RUIN THEORY FOR ENERGY-EFFICIENT RESOURCE ALLOCATION IN UAV-ASSISTED CELLULAR NETWORKS 3953

Fig. 13. Scenarios: (a) sufficient transmission power at the UAVs, (b) the high channel gain users are allocated maximum power level pmax and the low
channel gain users are allocated power proportionally, and (c) all the users have very low channel gain as compared to the available power.

can enhance the flight duration up to 61% and the number of
served users in a UAV flight by up to 58%, compared to a
baseline SINR-based scheme.

Fig. 10 shows the plot of a network for the two traffic
classes of 5G NR, i.e., eMBB and URLLC against the number
of network users. From this figure, we can see that the rate
of URLLC traffic is not affected by increasing the number
of network users. Meanwhile, the eMBB rate significantly
decreases as the number of users in the network increases.
This is because the URLLC users are given priority over the
eMBB users by allocating the resources to satisfy their latency
and reliability requirements.

Fig. 11 shows the convergence of power allocation algo-
rithm against the number of iterations. The power alloca-
tion is performed to the associated set of users by the BS
in an iterative manner. It can be observed that the algo-
rithm converges after 30 number of iterations. With the
help of water-filling scheme, the iterative power allocation is
performed.

Fig. 12 demonstrates the optimality gap between the pro-
posed and optimal solution. We use the Gurobi optimiza-
tion tool to obtain the optimal solution of the original
problem II-C. We show the optimality gap results for the
small network containing up to 30 cellular users. It can be
observed that there is no gap for a small network when there
are up to 7 cellular users in the network. A very small and
negligible gap is observed as the number of cellular users
increases in the network. This gap is due to the upper bound
of maximum number of iterations Tmax. This upper bound
restricts the iterative algorithm to the near-optimal solution
for the large network.

Fig. 13 illustrates three possible cases of the water-filling
algorithm for power allocation. We show the results for a
different amount of powers to be allocated to the associated
cellular users. In the first case Fig. 13(a), there is sufficient
available power which is allocated to the associated users
based on the proportional noise level. It means that the user
with high noise level is allocated less power and vice versa.
In the second case Fig. 13(b), there is enough power available
that pmax is allocated to the low-noise users and high-noise
users are allocated power based on the water level. In the third

case Fig. 13(c), the available power is insufficient; therefore,
the power is allocated to each user based on the noise level
while satisfying the water level feasibility.

V. CONCLUSION

In this article, we have studied the UAV-assisted cellular
networks to enhance the cellular network capacity. We have
formulated a joint optimization problem for the user asso-
ciation and power allocation for the 5G NR traffic classifi-
cations. First, we have performed the user association and
power allocation to the URLLC users under reliability and
latency constraints. Then, by utilizing the probability of ruin to
estimate the possible number of cellular users to be associated
with each UAV, we have solved the user association problem.
Based on the probability of ruin of the UAV, the cellular
traffic was offloaded by associating the cellular users with
the other UAVs or the terrestrial network. Then, we have
iteratively solved the power allocation problem using the
water-filling scheme. Simulation results have demonstrated
the effectiveness of the proposed ruin-based energy-efficiency
scheme in terms of increasing the flight time of UAVs and the
number of served cellular users.

APPENDIX A
PROOF OF EQUIVALENCE OF (10) AND (16)

(10a) is separated for the UBSs j ∈ U as follows:�
k∈K

Pjk ≤ ρj , ∀j ∈ U , (27)

where ρj = ρ0 + ρt denoted the power level of UAV j.
By rearranging (27), we get that

ρ0 + ρt−
�
k∈K

Pjk ≥ 0, ∀j ∈ U . (28)

Inequality (28) refers to the positive surplus power for every
UAV which is the definition of the probability of ruin. There-
fore, inequality (28) is equivalent to minimizing the probability
of ruin.
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APPENDIX B
PROOF OF POWER ALLOCATION TO URLLC USERS

From (16b), Pr (γjk� ≥ ζ) can be expressed as CDF
Fγjk� (ζ). So we get:

Fγjk� (ζ) ≥ (1 − 	), (29)

From here, we can easily get the following expression for ζ

ζ ≥ F−1
γjk� (1 − 	) (30)

The maximization of the eMBB data rate under the con-
straint (16b) gives boundary solution γjk� = ζ for the optimal
power allocated to the URLLC users. The optimal power is
given as follows:

P ∗
jk� =

F−1
γjk� (1 − 	)(1 + I)

hjk
, (31)

where I =
�

j�∈J\{j}
Pj�khj�k + ωjkσ

2.

APPENDIX C
PROOF OF EQUIVALENCE OF (19) AND (23)

The objective function of problem (19) is given as follows:

ς
�
j∈J

�
k∈K

D�
jk − ξ

�
u∈U

ψu(ρ0, τ). (32)

It can be seen that the factor ξ
�

u∈U ψu(ρ0, τ) is constant
when observed from the perspective of power allocation and
therefore can be ignored in the optimization problem (23).
Then after the URLLC association xjk� according to Proposi-
tion 1 and the ruin-based eMBB association xjk , the eMBB
data rate is given as follows:

R�
jk = (T-tλu)x∗jkωjk log (1 + γjk) , (33)

which is the objective function of the problem (23).
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