About
31
Publications
4,627
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
543
Citations
Citations since 2017
Introduction
Publications
Publications (31)
The hydrogen-based economy will require not only sustainable hydrogen production but also sensitive and cheap hydrogen sensors. Commercially available H2 sensors are limited by either use of noble metals or elevated temperatures. In nature, hydrogenase enzymes present high affinity and selectivity for hydrogen, while being able to operate in mild c...
Formation of multispecies communities allows nearly every niche on earth to be colonized, and the exchange of molecular information among neighboring bacteria in such communities is key for bacterial success. To clarify the principles controlling interspecies interactions, we previously developed a coculture model with two anaerobic bacteria, Clost...
Glyphosate is one of the most widely used post-emergence broad-spectrum herbicides in the world. This molecule has been frequently detected in aqueous environment and can cause adverse effects to plants, animals, microorganisms, and humans. This review offers a comparative assessment of current treatment methods (physical, biological, and advanced...
The acclimation process of activated sludge from a wastewater treatment plant for degradation of glyphosate and its biodegradation kinetics were studied in a batch reactor. The parameters monitored included the concentrations of glyphosate, as well as aminomethylphosphonic acid (AMPA), its main metabolite, total organic carbon (TOC), pH, dissolved...
To clarify the principles controlling inter-species interactions, we previously developed a co-culture model with two anaerobic bacteria, Clostridium acetobutylicum and Desulfovibrio vulgaris Hildenborough, in which nutritional stress for D. vulgaris induced tight cell-cell inter-species interaction. Here we show that exchange of metabolites produc...
Dynamic simulation of ultrafiltration process is applied to the treatment of chemical mechanical polishing wastewater from microelectronic industry. The ultrafiltration of nanoparticles (NPs) contained in chemical mechanical polishing wastewater is modelled by using different mathematical equations, which are derived from the literature and optimiz...
Glyphosate is one of the most widely used herbicides in the world against perennial and annual weeds. It has been reported to be a micro pollutant, and its degradation in different wastewater treatment processes must be studied. For that purpose, the kinetics of wet air oxidation of glyphosate was studied in an autoclave reactor at a temperature ra...
Bubbles hydrodynamic in gas–liquid contactor, including bubble size distribution, bubble size and gas–liquid interfacial area, was evaluated as a function of superficial gas velocity, superficial liquid velocity, temperature, pressure and different gases (N 2 and He) and liquids (water and ethanol/water mixture) phases. The results showed that with...
The increasing complexity of industrial effluents, combined with the increase in discharge constraints, leads to the necessity to improve processes treatment. Apart from new processes, the combination and optimization of existing processes could be the answer to these questions. Regarding coupling processes, the purifying potential has been demonst...
The present paper reports on results obtained from experiments carried out in a laboratory-scale anaerobic packed bed biofilm reactor (APBR), with recirculation of the liquid phase, for continuously biohydrogen production via dark fermentation. The reactor was filled with Kaldnes ® biofilm carrier and inoculated with an anaerobic mesophilic sludge...
Among the industrial effluents presenting constraints to traditional biological treatments, those from textile industries are of particular concern. Wet air oxidation is an effective process that significantly increases biodegradability of the treated effluent. In this study, the advantage of this process was tested for the treatment of acid orange...
The competitiveness of the second-generation bioethanol by biotechnological process requires an effective and quantitative control of biochemical reactions. In this study, the potential of isothermal calorimetry technique to measure heat and kinetics of a non-homogeneous substrate enzymatic hydrolysis is intended. Using this technique, optimum temp...
Experimental coupling of wet air oxidation process and aerobic packed-bed biofilm reactor is presented. It has been tested on phenol as a model refractory compound. At 30 MPa and 250 °C, wet air oxidation batch experiments led to a phenol degradation of 97% and a total organic carbon removal of 84%. This total organic carbon was mainly due to aceti...
Dark fermentation systems often show low H2 yields and unstable H2 production, as the result of the variability of microbial dynamics and metabolic pathways. Recent batch investigations have demonstrated that an artificial consortium of two anaerobic bacteria, Clostridium acetobutylicum and Desulfovibrio vulgaris Hildenborough, may redirect metabol...
Experiments were carried out to investigate pipe material impacts on biofouling, at high effluent concentration levels and under controlled hydrodynamic conditions. Two velocities (0.4 and 0.8 m s−1) were used to monitor biofilm growth on polyethylene (PE) and polyvinylchloride (PVC) pipe walls, respectively. These conditions were established based...
In this study, partial nitrification coupled with denitrification is modeled in a hybrid biofilm reactor with different hydraulic saturation conditions. The activated sludge model with two-step nitrification is implemented in GPS-X software. Hydrodynamic modeling by retention time distribution analysis and biokinetic measurement by respirometric te...
Laboratory experiments were carried out to investigate bioclogging on three types of online emitters using synthetic wastewater filtered at 10 μm (COD = 200 mg L−1). The three types of emitters were as follows: non-pressure-compensating emitters delivering 2 L h−1 (NPC2), non-pressure-compensating emitters delivering 4 L h−1 (NPC4) and pressure-com...
In trickling filters for wastewater treatment, hydrodynamic behaviour is affected by the growth of biofilm on the porous medium. Therefore, modelling hydrodynamic behaviour is necessary and efficient to predict the biodegradation of pollutants. In this study, laboratory-scale trickling filters were filled with two different porous media (glass bead...
The desalination of seawater or brackish water sees its production capacity increases by the day. In the last 40 years significant progress has been made to reduce production costs and produce drinking water with processes more and more environmentally friendly. Within this framework, a portable desalination prototype with a low environmental impac...
The desalination of seawater or brackish water sees its production capacity increases by the day. In the last 40 years significant progress has been made to reduce production costs and produce drinking water with processes more and more environmentally friendly. Within this framework, a portable desalination proto- type with a low environmental imp...
The desalination of seawater or brackish water sees its production capacity increases by the day. In the last 40 years significant progress has been made to reduce production costs and produce drinking water with processes more and more environmentally friendly. Within this framework, a portable desalination prototype with a low environmental impac...
In wastewater treatment by constructed wetland, the biodegradation capability of the biomass developed in the soil is one
of the most important factors. For this kind of treatment unit, soil properties are studied to improve its filtration capacity
and hydraulic residence time of the wastewater. The impact of soil properties like porosity and soil...
The goal of this study is the metallurgical grade silicon purification in order to obtain photovoltaic grade silicon. The silicon purification process uses thermal plasma and an applied electrical field to the silicon liquid bath. The aim is to develop electrochemical reactions due to the interaction between the plasma bias and the liquid bath that...
Laser Induced Breakdown Spectroscopy is a new analytical method permitting in less than 10.10(-6) second to qualify by atomic emission spectroscopy the composition of every kind of material without any sampling. The high sensibility of the technique (10(-7) g/g) gives the possibility to qualify the purity of the material, its defects or any kind of...
The photovoltaic properties of polycrystalline silicon depend on the crystallinity and the purity of the material. The hydrogenation of silicon leads to a passivation of crystalline defects and active impurities. In this paper, we demonstrate that the chemical properties of the plasma can be controlled in order to purify and introduce -hydrogen in...
Projects
Projects (3)
H2020 program to enhance gender equality
Biohydrogen production by fermentation process
Nutrients recovery
Water reuse