Audrey Coutens

Audrey Coutens
Research Institute in Astrophysics and Planetology | IRAP

About

138
Publications
8,609
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
3,916
Citations

Publications

Publications (138)
Preprint
Full-text available
The molecule studied in this work, 2-hydroxyprop-2-enal, is among the candidates to be searched for in the interstellar medium (ISM), as it is a dehydration product of C3 sugars and contains structural motifs typical for some interstellar molecules. The aim of this work is to deepen knowledge about the millimetre-wave spectrum of 2-hydroxyprop-2-en...
Preprint
Full-text available
The observational counterparts of theoretically predicted first hydrostatic cores (FHSC) have been searched for in the interstellar medium for nearly two decades now. Distinguishing them from other types of more evolved but still embedded objects remains a challenge because these objects have a short lifetime, are small, and embedded in a dense coc...
Preprint
Full-text available
Characterizing the molecular composition of solar-type protostars is useful for improving our understanding of the physico-chemical conditions under which the Sun and its planets formed. In this work, we analyzed the Atacama Large Millimeter/submillimeter Array (ALMA) data of the Protostellar Interferometric Line Survey (PILS), an unbiased spectral...
Article
Full-text available
Characterizing the molecular composition of solar-type protostars is useful for improving our understanding of the physico-chemical conditions under which the Sun and its planets formed. In this work, we analyzed the Atacama Large Millimeter/submillimeter Array (ALMA) data of the Protostellar Interferometric Line Survey (PILS), an unbiased spectral...
Preprint
Full-text available
This work aims to constrain the abundances of interstellar amides, by searching for this group of prebiotic molecules in the intermediate-mass protostar Serpens SMM1-a. ALMA observations are conducted toward Serpens SMM1. A spectrum is extracted toward the SMM1-a position and analyzed with the CASSIS line analysis software for the presence of chara...
Article
Context. Di-deuterated molecules are observed in the earliest stages of star formation at abundances of a few percent relative to their nondeuterated isotopologs, which is unexpected considering the scarcity of deuterium in the interstellar medium. With sensitive observations leading to the detection of a steadily increasing number of di-deuterated...
Preprint
Full-text available
The evolution of star-forming regions and their thermal balance are strongly influenced by their chemical composition, that, in turn, is determined by the physico-chemical processes that govern the transition between the gas phase and the solid state, specifically icy dust grains (e.g., particles adsorption and desorption). Gas-grain and grain-gas...
Preprint
Full-text available
Accurate quantification of the column density of di-deuterated methanol is a key missing puzzle piece in the otherwise thoroughly constrained family of D-bearing methanol in the deeply embedded low-mass protostellar system and astrochemical template source IRAS16293-2422. A spectroscopic dataset for astrophysical purposes is built for CHD$_{2}$OH a...
Preprint
Full-text available
Massive stars disrupt their natal molecular cloud material through radiative and mechanical feedback processes. These processes have profound effects on the evolution of interstellar matter in our Galaxy and throughout the Universe, from the era of vigorous star formation at redshifts of 1-3 to the present day. The dominant feedback processes can b...
Preprint
Molecular line surveys are among the main tools to probe the structure and physical conditions in protoplanetary disks (PPDs), the birthplace of planets. The large radial and vertical temperature as well as density gradients in these PPDs lead to a complex chemical composition, making chemistry an important step to understand the variety of planeta...
Article
Context. Molecular line surveys are among the main tools to probe the structure and physical conditions in protoplanetary disks (PPDs), the birthplace of planets. The large radial and vertical temperature as well as density gradients in these PPDs lead to a complex chemical composition, making chemistry an important step to understand the variety o...
Article
Methyl formate, HCOOCH3, and many of its isotopologues have been detected in astrophysical regions with considerable abundances. However, the recipe for the formation of this molecule and its isotopologues is not yet known. In this work, we attempt to investigate, theoretically, the successful recipe for the formation of interstellar HCOOCH3 and it...
Preprint
Methyl formate, HCOOCH$_3$, and many of its isotopologues have been detected in astrophysical regions with considerable abundances. However, the recipe for the formation of this molecule and its isotopologues is not yet known. In this work, we attempt to investigate, theoretically, the successful recipe for the formation of interstellar HCOOCH$_3$...
Preprint
Full-text available
Establishing the origin of the water D/H ratio in the Solar System is central to our understanding of the chemical trail of water during the star and planet formation process. Recent modeling suggests that comparisons of the D$_2$O/HDO and HDO/H$_2$O ratios are a powerful way to trace the chemical evolution of water and, in particular, determine wh...
Article
Context. Establishing the origin of the water D/H ratio in the Solar System is central to our understanding of the chemical trail of water during the star and planet formation process. Recent modeling suggests that comparisons of the D 2 O/HDO and HDO/H 2 O ratios are a powerful way to trace the chemical evolution of water and, in particular, deter...
Article
Context. Water is a key molecule in the physics and chemistry of star and planet formation, but it is difficult to observe from Earth. The Herschel Space Observatory provided unprecedented sensitivity as well as spatial and spectral resolution to study water. The Water In Star-forming regions with Herschel (WISH) key program was designed to observe...
Article
Aims. Methyl isocyanate (CH 3 NCO) and glycolonitrile (HOCH 2 CN) are isomers and prebiotic molecules that are involved in the formation of peptide structures and the nucleobase adenine, respectively. These two species are investigated to study the interstellar chemistry of cyanides (CN) and isocyanates (NCO) and to gain insight into the reservoir...
Preprint
Full-text available
Methyl isocyanate (CH$_{3}$NCO) and glycolonitrile (HOCH$_{2}$CN) are isomers and prebiotic molecules that are involved in the formation of peptide structures and the nucleobase adenine, respectively. ALMA observations of the intermediate-mass Class 0 protostar Serpens SMM1-a and ALMA-PILS data of the low-mass Class 0 protostar IRAS~16293B are used...
Article
Full-text available
Context. The chemical composition of protoplanetary disks is expected to impact the composition of the forming planets. Characterizing the diversity of chemical composition in disks and the physicochemical factors that lead to this diversity is consequently of high interest. Aims. The aim of this study is to investigate the chemical evolution from...
Article
Physicochemical models can be powerful tools to trace the chemical evolution of a protostellar system and allow to constrain its physical conditions at formation. The aim of this work is to assess whether source-tailored modelling is needed to explain the observed molecular abundances around young, low-mass protostars or if, and to what extent, gen...
Preprint
(Abridged) The aim of this study is to investigate the chemical evolution from the prestellar phase to the formation of the disk, and to determine the impact that the chemical composition of the cold and dense core has on the final composition of the disk. We performed 3D nonideal magneto-hydrodynamic (MHD) simulations of a dense core collapse usin...
Preprint
Physicochemical models can be powerful tools to trace the chemical evolution of a protostellar system and allow to constrain its physical conditions at formation. The aim of this work is to assess whether source-tailored modelling is needed to explain the observed molecular abundances around young, low-mass protostars or if, and to what extent, gen...
Article
Context. Complex organic molecules with three carbon atoms are found in the earliest stages of star formation. In particular, propenal (C 2 H 3 CHO) is a species of interest due to its implication in the formation of more complex species and even biotic molecules. Aims. This study aims to search for the presence of C 2 H 3 CHO and other three-carbo...
Article
Full-text available
Context. Complex organic molecules with three carbon atoms are found in the earliest stages of star formation. In particular, propenal (C 2 H 3 CHO) is a species of interest due to its implication in the formation of more complex species and even biotic molecules. Aims. This study aims to search for the presence of C 2 H 3 CHO and other three-carbo...
Preprint
Complex organic molecules with three carbon atoms are found in the earliest stages of star formation. In particular, propenal (C$_2$H$_3$CHO) is a species of interest due to its implication in the formation of more complex species and even biotic molecules. This study aims to search for the presence of C$_2$H$_3$CHO and other three-carbon species s...
Article
Context. Complex organic molecules are detected in many sources in the warm inner regions of envelopes surrounding deeply embedded protostars. Exactly how these species form remains an open question. Aims. This study aims to constrain the formation of complex organic molecules through comparisons of their abundances towards the Class 0 protostellar...
Preprint
Complex organic molecules (COM) are detected in many sources in the warm inner regions of envelopes surrounding deeply embedded protostars. Exactly how these COM form remains an open question. This study aims to constrain the formation of complex organic molecules through comparisons of their abundances towards the Class 0 protostellar binary IRAS...
Article
Full-text available
jats:p>Observations of young stellar objects (YSOs) in centimeter bands can probe the continuum emission from growing dust grains, ionized winds, and magnetospheric activity that are intimately connected to the evolution of protoplanetary disks and the formation of planets. We carried out sensitive continuum observations toward the Ophiuchus A star...
Article
Context. Propyne (CH 3 CCH), also known as methyl acetylene, has been detected in a variety of environments, from Galactic star-forming regions to extragalactic sources. These molecules are excellent tracers of the physical conditions in star-forming regions, allowing the temperature and density conditions surrounding a forming star to be determine...
Preprint
Context. Propyne (CH$_3$CCH) has been detected in a variety of environments, from Galactic star-forming regions to extragalactic sources. Such molecules are excellent tracers of the physical conditions in star-forming regions. Aims. This study explores the emission of CH$_3$CCH in the low-mass protostellar binary, IRAS 16293$-$2422, examining the s...
Article
Context. How water is delivered to planetary systems is a central question in astrochemistry. The deuterium fractionation of water can serve as a tracer for the chemical and physical evolution of water during star formation and can constrain the origin of water in Solar System bodies. Aims. The aim is to determine the HDO/H 2 O ratio in the inner w...
Preprint
The deuterium fractionation of water can serve as a tracer for the chemical and physical evolution of water during star formation and can constrain the origin of water in Solar System bodies. We determine the HDO/H$_2$O ratio in the inner warm gas toward three low-mass Class 0 protostars selected to be in isolated cores, i.e., not associated with a...
Article
Full-text available
Observations of young stellar objects (YSOs) in centimeter bands can probe the continuum emission from growing dust grains, ionized winds, and magnetospheric activity that are intimately connected to the evolution of protoplanetary disks and the formation of planets. We carried out sensitive continuum observations toward the Ophiuchus A star-formin...
Preprint
Observations of young stellar objects (YSOs) in centimeter bands can probe the continuum emission from growing dust grains, ionized winds, and magnetospheric activity, which are intimately connected to the evolution of protoplanetary disks and the formation of planets. We have carried out sensitive continuum observations toward the Ophiuchus A star...
Preprint
Full-text available
The complexity of physico-chemical models of star formation is increasing, with models that take into account new processes and more realistic setups. These models allow astrochemists to compute the evolution of chemical species throughout star formation. Hence, comparing the outputs of such models to observations allows to bring new constraints on...
Article
Full-text available
The complexity of physico-chemical models of star formation is increasing, with models that take into account new processes and more realistic set-ups. These models allow astrochemists to compute the evolution of chemical species throughout star formation. Hence, comparing the outputs of such models to observations allows us to bring new constraint...
Article
Context. The majority of stars form in binary or higher order systems. The evolution of each protostar in a multiple system may start at different times and may progress differently. The Class 0 protostellar system IRAS 16293–2422 contains two protostars, “A” and “B”, separated by ~600 au and embedded in a single, 10 ⁴ au scale envelope. Their rela...
Preprint
[Abridged] The majority of stars form in binary or higher order systems. The Class 0 protostellar system IRAS16293-2422 contains two protostars, 'A' and 'B', separated by ~600 au and embedded in a single, 10^4 au scale envelope. Their relative evolutionary stages have been debated. We aim to study the relation and interplay between the two protosta...
Article
Full-text available
Nitrogen oxides are thought to play a significant role as a nitrogen reservoir and to potentially participate in the formation of more complex species. Until now, only NO, NO, and HNO have been detected in the interstellar medium. We report the first interstellar detection of nitrous acid (HONO). Twelve lines were identified towards component B of...
Preprint
Full-text available
Nitrogen oxides are thought to play a significant role as a nitrogen reservoir and to potentially participate in the formation of more complex species. Until now, only NO, N$_2$O and HNO have been detected in the interstellar medium. We report the first interstellar detection of nitrous acid (HONO). Twelve lines were identified towards component B...
Preprint
Protoplanetary disks are challenging objects for astrochemical models due to strong density and temperature gradients and due to the UV photons 2D propagation. In this paper, we have studied the importance of several model parameters on the predicted column densities of observed species. We considered: 1) 2-phase (gas and homogeneous grains) or 3-p...
Article
Protoplanetary discs are challenging objects for astrochemical models due to strong density and temperature gradients and due to the UV photons 2D propagation. In this paper, we have studied the importance of several model parameters on the predicted column densities of observed species. We considered: (1) two-phase (gas and homogeneous grains) or...
Article
Context . Cyanamide is one of the few interstellar molecules containing two chemically different N atoms. It was detected recently toward the solar-type protostar IRAS 16293−2422 B together with H 2 N ¹³ CN and HDNCN in the course of the Atacama Large Millimeter/submillimeter Array (ALMA) Protostellar Interferometric Line Survey (PILS). The detecti...
Preprint
Cyanamide is one of the few interstellar molecules containing two chemically different N atoms. It was detected recently toward the solar-type protostar IRAS 16293-2422 B together with H$_2$N$^{13}$CN and HDNCN in the course of the Atacama Large Millemeter/submillimeter Array (ALMA) Protostellar Interferometric Line Survey (PILS). The detection of...
Preprint
Full-text available
Methyl cyanide (CH3CN) and propyne (CH3CCH) are two molecules commonly used as gas thermometers for interstellar gas. They are detected in several astrophysical environments and in particular towards protostars. Using data of the low-mass protostar IRAS 16293-2422 obtained with the IRAM 30m single-dish telescope, we constrained the origin of these...
Article
Studies of deuterated isotopologues of complex organic molecules can provide important constraints on their origin in star formation regions. In particular, the abundances of deuterated species are very sensitive to the physical conditions in the environment where they form. Because the temperatures in star formation regions are low, these isotopol...
Preprint
Studies of deuterated isotopologues of complex organic molecules can provide important constraints on their origin in regions of star formation. In particular, the abundances of deuterated species are very sensitive to the physical conditions in the environment where they form. Due to the low temperatures in regions of star formation, these isotopo...
Article
Recent measurements carried out at comet 67P/Churyumov–Gerasimenko (67P) with the Rosetta probe revealed that molecular oxygen, O₂, is the fourth most abundant molecule in comets. Models show that O₂ is likely of primordial nature, coming from the interstellar cloud from which our solar system was formed. However, gaseous O₂ is an elusive molecule...
Article
Context. One of the important questions of astrochemistry is how complex organic molecules, including potential prebiotic species, are formed in the envelopes around embedded protostars. The abundances of minor isotopologues of a molecule, in particular the D- and ¹³ C-bearing variants, are sensitive to the densities, temperatures and timescales ch...
Preprint
This paper presents a systematic survey of the deuterated and 13C isotopologues of a variety of oxygen-bearing complex organic molecules on Solar System scales toward the protostar IRAS 16293-2422B. We use the data from an unbiased molecular line survey between 329 and 363 GHz from the Atacama Large Millimeter/submillimeter Array (ALMA). The observ...
Article
Context. Hydroxylamine (NH 2 OH) and methylamine (CH 3 NH 2 ) have both been suggested as precursors to the formation of amino acids and are therefore, of interest to prebiotic chemistry. Their presence in interstellar space and formation mechanisms, however, are not well established. Aims. We aim to detect both amines and their potential precursor...
Preprint
Hydroxylamine (NH$_{2}$OH) and methylamine (CH$_{3}$NH$_{2}$) have both been suggested as precursors to the formation of amino acids and are therefore of interest to prebiotic chemistry. Their presence in interstellar space and formation mechanisms, however, are not well established. We aim to detect both amines and their potential precursor molecu...
Article
Context. Methyl isocyanide (CH 3 NC) is the isocyanide with the largest number of atoms confirmed in the interstellar medium (ISM), but it is not an abundant molecule, having only been detected towards a handful of objects. Conversely, its isomer, methyl cyanide (CH 3 CN), is one of the most abundant complex organic molecules detected in the ISM, w...
Preprint
Methyl isocyanide (CH$_3$NC) is the isocyanide with the largest number of atoms confirmed in the interstellar medium (ISM), but it is not an abundant molecule, having only been detected towards a handful of objects. Conversely, its isomer, methyl cyanide (CH$_3$CN), is one of the most abundant complex organic molecules detected in the ISM, with det...
Preprint
Recent measurements carried out at comet 67P/C-G with the ${\it Rosetta}$ probe revealed that molecular oxygen, O$_2$, is the fourth most abundant molecule in comets. Models show that O$_2$ is likely of primordial nature, coming from the interstellar cloud from which our Solar System was formed. However, gaseous O$_2$ is an elusive molecule in the...
Article
Context . Complex organic molecules are readily detected in the inner regions of the gaseous envelopes of forming protostars. Their detection is crucial to understanding the chemical evolution of the Universe and exploring the link between the early stages of star formation and the formation of solar system bodies, where complex organic molecules h...
Preprint
Full-text available
Complex organic molecules are readily detected in the inner regions of the gaseous envelopes of forming protostars. In particular, molecules that contain nitrogen are interesting due to the role nitrogen plays in the development of life and the compact scales such molecules have been found to trace around forming protostars. The goal of this work i...