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Altered levels of circulating cytokines and
microRNAs in lean and obese individuals with
prediabetes and type 2 diabetes

Yury O. Nunez Lopez,a Gabriella Garufia and Attila A. Seyhan*abc

Today obesity and type 2 diabetes (T2D) have both reached epidemic proportions. However, our current

understanding of the primary mechanisms leading to these diseases is still limited due to the complex

multifactorial nature of the underlying phenomena. We hypothesize that the levels of specific cytokines

and miRNAs vary across the diabetes spectrum and unique signatures associated with them may serve as

early biomarkers of the disease and provide insights into respective pathogenetic mechanisms. In this

study, we measured the circulating levels of cytokines and microRNAs (miRNAs) in lean and obese

humans with prediabetes (n = 21), T2D (n = 17), and healthy controls (n = 20) (ORIGINS trial,

NCT02226640). Data were analyzed by fitting linear models adjusted for confounding variables (BMI, age,

and gender in the diabetes context and age, gender, and diabetes status in the obesity context) and

implementing nonparametric randomization-based tests for statistical inference. Group differences and

correlations (r 4 0.3) between variables with P o 0.05 were considered significant. False discovery rates

(FDR) correcting for multiple testing were calculated using the Benjamini–Hochberg correction. We found

a number of circulating cytokines and miRNAs deregulated in subjects with obesity, prediabetes, and T2D.

Specifically, cytokines IL-6, IL-8, IL-10, IL-12, and SFRP4, as well as miRNAs miR-21, miR-24.1, miR-27a,

miR-28-3p, miR-29b, miR-30d, miR-34a, miR-93, miR-126, miR-146a, miR-148, miR-150, miR-155, and

miR-223, significantly changed across the diabetes spectrum, and were associated with measures of

pancreatic islet b cell function and glycemic control, among others. Notably, SFRP4 was the only studied

cytokine that was significantly associated with obesity, prediabetes, and T2D, which underscores the

important role of this molecule during disease development and progression. Our data suggest that

changes in circulating miRNAs and cytokines may have clinical utility as biomarkers of prediabetes.

Introduction

Although obesity is an established risk factor for metabolic
diseases including type 2 diabetes (T2D), our current under-
standing of the primary mechanisms leading to T2D is
still limited. It is known that tissue inflammation mediated
by the stimulation of different immune signaling molecules
such as cytokines plays an important role in the pathogenetic
mechanisms of diabetes. In particular, inflammatory processes
contribute to glucotoxicity, lipotoxicity, oxidative stress, and
endoplasmic reticulum stress during the development of the
disease.1 Elevated systemic concentrations of proinflammatory

cytokines/chemokines and downregulation of anti-inflammatory
adiponectin, for example, lead to chronic subclinical inflamma-
tion that is frequently associated with the development of insulin
resistance, pancreatic islet b cell dysfunction, and eventually
T2D.2 Diabetes is also characterized by upregulation of specific
anti-inflammatory proteins,1 which may be part of compensatory
mechanisms and/or mechanisms involved in the regulation of
specific immune cell subsets. However, the activation state of
the immune system depends on complex interactions among
multiple genetic and environmental factors3 that contribute to
the heterogeneity of T2D. Obesity, for example, is an important
risk factor for diabetes. For example, the influx of macrophages
and T cells into adipose tissues during obesity causes the release
of proinflammatory mediators that cause insulin resistance.4

Obesity-induced chronic low-grade inflammation and the
development of a metabolic syndrome have been suggested to
qualify under the established criterion of ‘‘autoinflammatory
disease cluster’’.4 Autoinflammation is defined as a self-directed
inflammatory process, ‘‘whereby local factors at sites predisposed
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to disease lead to activation of innate immune cells, including
macrophages and neutrophils, with resultant target tissue damage’’.5

Cytokines are well-known modulators of inflammatory
and immune responses, and microRNAs (miRNAs) are well-
known small (18–22 nucleotides), non-protein coding RNAs that
modulate the differentiation, growth, apoptosis and proliferation
of cells by interfering with protein synthesis either by inducing
mRNA degradation or repressing translation.6–8 It is estimated
that miRNAs regulate the expression of more than 60% of protein-
coding genes.9 miRNAs have been shown to play key roles in
the regulation of a broad spectrum of physiological and patho-
physiological processes including obesity, metabolic dysfunction,
diabetes, and aging, among others.10–14 Because the miRNA
species in circulation may reflect the activation state of circulating
cells or tissue injury in response to disease states, circulating
miRNAs are also becoming increasingly recognized as powerful
biomarkers for human diseases.15–19 Altered levels of circulating
miRNAs have been reported in a variety of disease states including
obesity, metabolic dysfunction, and diabetes.10

Importantly, miRNAs have been recently suggested to be
critical components of complex regulatory networks in immune
responses.20 In addition to directly regulating specific cytokines
by interacting with miRNA-binding sites in the mRNA 30UTR
regions,21,22 miRNAs indirectly regulate cytokines by interfering with
the recognition of AU-rich elements (AREs) by ARE-binding proteins
and/or regulating the expression of the latter.20,23 The crosstalk
between cytokines and miRNAs has also been demonstrated.24

Barbagallo et al. showed that murine pancreatic aTC1-6 and
bTC1 cells are subjected to differential activity of miR-296-3p
and miR-298-5p and that these differences accounted, at least
in part, for the higher resistance of pancreatic islet a cells to
apoptotic death induced by proinflammatory cytokines.24 This
evidence has a direct impact on our mechanistic understanding
of b cell loss during diabetes development. Another important
immunologic role of miRNAs is in modulating M1–M2 macro-
phage phenotypic polarization, supported by growing evidence
linking excessive or impaired macrophage-driven inflammatory
responses with the deregulation of miRNAs.25

In this study, we characterized a panel of circulating cytokine
and miRNA profiles in lean and obese humans with prediabetes
and T2D to identify early biomarkers of diabetes development
across the spectrum of glucose tolerance and to gain insights into
potential mechanisms of T2D development and/or progression.
We identified distinctive cytokine and miRNA signatures with
early biomarker potential and discuss the potential mechanistic
insights at the molecular regulatory level.

Methods
Research design and subjects

All procedures were approved by the Translational Research
Institute for Metabolism and Diabetes (TRI-MD)/Florida Hospital
(FH) Institutional Review Board (IRB). Informed consent was
obtained from all volunteers before initiation of the study. The
study cohort included 60 participants from the ORIGINS trial

(NCT02226640): 20 healthy controls (11 lean + 9 with obesity),
21 with prediabetes (10 lean + 11 with obesity), and 17 with T2D
(2 lean + 15 with obesity). The groups were classified as per ADA
guidelines:26 healthy subjects (fasting glucose o100 mg dl�1),
subjects with prediabetes [either 5.7 r HbA1C o 6.5, or
impaired fasting glucose (100 mg dl�1 r fasting glucose o
126 mg dl�1), and subjects with diabetes (fasting glucose Z

126 mg dl�1, or HbA1C Z 6.5)]. Overweight/‘‘with obesity’’
status was considered when the subject’s BMI Z 25. The
inclusion and exclusion criteria of the subjects were described
previously (NCT02226640).

Clinical and metabolic measurements

Anthropometric measures were performed according to stan-
dardized protocols. Body composition was measured using
a GE Lunar iDEXA whole-body scanner (GE, Madison, WI).
Fasting blood samples were obtained and subjects underwent
a 2-hour 75 g oral glucose tolerance test (OGTT). Plasma glucose
concentrations were measured using the glucose oxidase
method with a YSI 2300 STAT Plus Analyzer (YSI Life Sciences,
Yellow Springs, OH). Plasma insulin and C-peptide concentra-
tions were determined using the MSD human insulin assay kit
and C-peptide kit, respectively (MSD, Rockville, MD). HbA1c levels
were measured using a Cobas Integra 800 Analyzer (Roche, Basel,
Switzerland). The b cell function was assessed by calculating
HOMA-B, the insulinogenic index [DIns-300/DGluc-300] and the
insulin and c-peptide areas under the curve (AUC) in response
to OGTT. Insulin activity was assessed by calculating HOMA-IR
and the Quicki indices as described elsewhere.

Enzyme-linked immunosorbent assay

The levels of a panel of serum cytokines IFN-g, IL-1b, IL-2, IL-4, IL-6,
IL-8, IL-10, IL-12p70, IL-13, and TNF-a were measured using MSD’s
V-PLEX Proinflammatory Panel1 (human) kit and a Sector 2400
imager following the manufacturer’s instructions. Serum SFRP4
was measured using the ELISA kit for human SFRP4 (Biomatik,
Wilmington, DE) following the manufacturer’s instructions. ELISA
plates were analyzed on a Synergy 2 Multi-Mode Reader (Biotek,
Winooski, VT). Intra- and inter-assay reproducibility in replicate
assays for pro-inflammatory cytokines were CV: o7.0% (intra-
plate) and CV: o15% (inter-plate) and for SFRP4 was CV: r10%.

Total RNA extraction of circulating miRNA and qRT-PCR

Total RNA was extracted using a miRNeasy Serum/Plasma Kit
(Qiagen, Hilden, Germany) according to the manufacturer’s
instructions. Real-time PCR was performed in triplicate using Life
Technologiest kits (Thermo Fisher Scientific, Waltham, MA)
and following the manufacturer’s instructions. In short, reverse
transcription was done using a TaqMans MicroRNA Reverse
Transcription Kit, cDNA was pre-amplified through 12 cycles
using the TaqMans PreAmp Master Mix, and the qRT-PCR
reaction was performed using TaqMans Universal Master Mix II
and TaqMans MicroRNA assay. A diabetes-related human
miRNA panel including miR-15a, miR-21, miR-24.1, miR-25,
miR-27a, miR-28-3p, miR-29a, miR-29b, miR-30d, miR-34a,
miR-93, miR-138, miR-146a, miR-148a, miR-150, miR-152, miR-155,
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miR-181a, miR-199a, miR-223, miR-320, miR-326, and miR-376 was
used. qRT-PCR reactions generating raw Ct values greater than 35
were not included in the analysis (those data points were reassigned
as NA values). The �DDCt method was used for the calculation of
relative expression values. The first normalization step adjusted the
raw Ct values relative to the recovered levels of spike-in cel-miR-39
(to adjust for the variability in RNA extraction efficiency per sample).
The second normalization step subtracted the geometric means
of three endogenous control miRNAs: miR-191, miR-423-3p, and
miR-451. These normalized �DDCt data, equivalent to a log fold
change (log FC) relative to the geometric mean of the endogenous
control levels, were used for statistical analysis.

Statistical analysis

For statistical inference, randomization tests27 were implemented
in the R 3.3.1 environment.28 Imbalances in cohort demographic
and clinical characteristic measures were assessed using the Monte
Carlo Kruskal–Wallis test (Box 1) using the independence_test()
function in the coin package, a valuable tool for COnditional
INference analysis.29 This function provides a general framework
for testing statistical independence and is based on the flexible
conceptual framework for conditional inference procedures
proposed by Strasser and Weber.30 A comprehensive description
of the software implementation can be found in ref. 29. Differential
abundance of circulating cytokines and miRNAs was assessed by
multiple comparisons among groups, with subjects grouped either
by diabetes status (diabetes context analysis) or by obesity status
(obesity context analysis). The interaction analysis of diabetes status
and obesity status was not possible due to the limited number of
lean T2D subjects in our cohort. In the diabetes context analysis,
cytokine and miRNA data were modeled as a function of the
diabetes status (an independent variable with 3 levels: Healthy,
Prediabetes, and T2D) adjusted for BMI, age, and gender. To gain
insights into the obesity contribution, we tested an alternative

model where each cytokine or miRNA was modeled as a function
of the obesity status (an independent variable with 2 levels: Lean
and Obese), adjusted for diabetes status, age and gender. The
statistical metric used to measure the effect of interest in the
observed one thousand iterations of the randomization test was
the standardized statistic calculated using the independence_test()
function (Box 2). To generate the standardized statistics for all
pairwise comparisons between levels of the dependent variables,
conditional nonparametric tests (equivalent to the Kruskal–Wallis
test for the diabetes context analysis that included three ‘‘diabetes
status’’ levels and to the Wilcoxon–Mann–Whitney test for the
obesity context analysis that included two ‘‘obesity status’’ levels)
were performed via a rank transformation of the response variable,
followed by a Tukey’s all-pairwise comparison via the specification
of the model and contrast matrices for the dependent variables as
shown in Box 2. Our specific formulas for this part of the analysis
were ‘‘response_variable B Group_Diabetes + Age + Gender + BMI’’
for the diabetes context analysis and ‘‘response_variable B
Group_Obesity + Age + Gender + Group_Diabetes’’ for the obesity
context analysis. After extracting the standardized statistics for
real data comparisons (the observed statistics) and for one
thousand iterations of the test using randomly permuted data
(which generates an approximate distribution of the standar-
dized statistic), a two-sided P value can be calculated by
determining the frequency of the absolute value of the calcu-
lated random statistics being greater than or equal to the
absolute value of the observed statistic for a particular compar-
ison. Partial correlations adjusting for BMI, age, and gender (in
the diabetes context analysis) and adjusting for age, gender,
and diabetes status (in the obesity context analysis) were
calculated using the ppcor package.31 Group differences and
correlations (r 4 0.3) between variables with P o 0.05 were
considered significant. Weak correlations with r o 0.3 were
filtered out of the analysis and considered nonsignificant,

Box 1. Implementing an univariate Monte Carlo Kruskal–Wallis test to assess the demographic and clinical characteristics of the study cohort.
## The inference test can be specified using the independence_test() function in the coin package:
model = independence_test (response_variable B Group_Diabetes,

data = my_demographics_data_frame,
ytrafo = rank_trafo, teststat=‘‘quadratic’’,
distribution = approximate (B = 10000))

## The global P value can be extracted with the pvalue() function:
pvalue.global = pvalue (model)

Box 2. Implementing a multivariate Kruskal–Wallis test with multiple comparisons
## The model and the inference tests for all pairwise comparisons can be specified using the independence_test() function in the coin package:
model = independence_test (formula = my_specific_formula, data = my_data_frame,

ytrafo = function (data) trafo(data, numeric_trafo = rank),
xtrafo = function (data) trafo(data, factor_trafo = function(x)

model.matrix(Bx � 1)%*% t(contrMat(table(x), ‘‘Tukey’’))),
teststat = ‘‘quadratic’’)

## The standardized statistics can be extracted by using the statistic() function:
stats.std = statistic (model, type = ‘‘standardized’’)
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independently of the corresponding P value. False discovery
rates (FDR) correcting for multiple testing were calculated
using the Benjamini–Hochberg correction.32

Results
Demographic and clinical characteristics of the study cohort

The subject characteristics of the study cohort are detailed in
Table 1. Age presents a significant imbalance among subjects
with obesity. However, the potential confounding effect of age
is adjusted for in the models used for differential abundance
and partial correlation analyses. HbA1c, fasting glucose, and
glucose AUC were significantly imbalanced among the distinct
groups, as expected by the study design. Several indices of
insulin resistance and sensitivity showed significant differ-
ences mainly among the obese subjects, while the MATSUDA
index marginally changed in the lean population.

Cytokines in the diabetes context

To assess the relative levels of circulating cytokines (this Section)
and miRNAs (following Section) during diabetes development, we
measured their respective serum levels in subjects at two distinct
stages of the disease and compared them to healthy controls by
implementing mathematical models that accounted for the con-
founding effects of age, gender, and BMI. Serum levels of IL-6, IL-8,
IL-10, IL-12 (p70), and SFRP4 changed significantly (P o 0.05,
FDR o 0.13) in subjects with prediabetes and/or T2D (Fig. 1A–E and
Table 2A–C). Specifically, the levels of pro-inflammatory IL-8 were
significantly increased in subjects with prediabetes, as compared
to healthy controls and remained significantly elevated in T2D
subjects, while anti-inflammatory IL-10 was significantly increased
only in T2D. The levels of pro-inflammatory IL-12 (p70) were
significantly reduced in subjects with prediabetes and tended to
remain low in T2D (P = 0.078, FDR = 0.117). The level of pro-
inflammatory/anti-angiogenic SFRP4 was significantly increased in
subjects with prediabetes as compared to healthy controls, and
tended to remain increased in T2D (P = 0.088, FDR = 0.132). IL-6,
on the other hand, appeared to be significantly increased in the
T2D group as compared to the prediabetes group. In addition,
partial correlation analysis (adjusting for age, gender, and BMI)
revealed significant associations (r 4 0.3, P o 0.05, FDR o 0.08) of
these cytokines with important clinical parameters related to
glycemic control, b cell function, and systemic insulin sensitivity/
resistance (Table 3). In particular, the levels of IL-12 inversely
correlated with HbA1c levels, whereas the levels of SFRP-4 and
IL-10 co-associated with fasting insulin and insulin AUC, as well
as with the HOMA B and MATSUDA indices. SFRP4 also signifi-
cantly and positively correlated with the insulin resistance index
HOMA IR and negatively with the QUICKI index. On the other
hand, IL-8 and IL-12 were significantly associated with cardio-
metabolic risk factors LDL and triglycerides.

miRNAs in the diabetes context

To assess the relative abundance of miRNAs in the circulation,
we measured a panel of miRNAs previously reported to change

in subjects with diabetes,10 and modeled their levels as
described in the Material and methods section, adjusting for
age, gender, and BMI. As shown in Fig. 1F–P and Table 2E–G,
three miRNAs (i.e., miR-29b, miR-126, and miR-155) were
significantly reduced (P o 0.05, FDR o 0.13) in the circulation
of subjects with prediabetes. On the other hand, miR-21,
miR-24.1, miR-34a, and miR-148a were significantly elevated
(P o 0.05, FDR o 0.05) in the circulation of subjects with T2D.
Four other miRNAs (i.e., miR-27a, miR-146a, miR-223, and
miR-326) also displayed significantly elevated levels in the
T2D group as compared to the prediabetes group. In addition,
we found that the differentially abundant circulating miRNAs
correlate with measures of glucose metabolism and b cell
function including fasting glucose, 2 h glucose, glucose AUC,
fasting insulin, HOMA IR, and QUICKI (Table 4).

Cytokines in the obesity context

To assess the effect of obesity on the levels of circulating
cytokines (this section) and miRNAs (following section), we
implemented an alternative mathematical model that accounted
for the confounding effects of age, gender, and diabetes status.
We found that the serum levels of IL-6, IFNg, TNFa, and SFRP4
were significantly elevated in people with obesity (Fig. 2A–D and
Table 2D). In addition, cytokine IL-1b also displayed a strong
trend (P = 0.056) towards elevation in the circulation levels in
people with obesity (Fig. 2E). Remarkably, these cytokines dis-
played a large number of statistically significant correlations
(r 4 0.3, P o 0.05, FDR o 0.05) with body composition measures
and measures of cardiometabolic risk factors, b cell function,
glucose-stimulated insulin release, and systemic insulin sensi-
tivity/resistance (Table 5). In particular, significant correlations
(r 4 0.6, P o 0.0005, FDR o 0.001) were detected for SFRP4
and IL-6 with insulin baseline levels, 2 hour insulin levels,
insulin AUC, HOMA B, HOMA IR, QUICKI, and the insulino-
genic index among others.

miRNAs in the obesity context

As shown in Fig. 2F–Q and Table 2H, the levels of 12 serum
miRNAs (i.e., miR-21, miR-24.1, miR-27a, miR-34a, miR-126,
miR-146a, miR-148a, miR-152, and miR-223 with elevated
levels, and miR-25, miR-93, and miR-150 with reduced levels
in the obese group) were affected by the obesity status of the
subjects, independently of the diabetes stage. These miRNAs
appeared to be directly involved with the development and/or
progression of obesity. Notably, increased miR-152 was reported
to indirectly upregulate SFRP4 expression.33 Consistent with
this, SFRP4 was also elevated in overweight/obese subjects.
Interestingly, several of these miRNAs (i.e., miR-21, miR-24.1,
miR-27a, miR-34a, miR-126, miR-146a, miR-148a, and miR-223)
were concomitantly associated with diabetes independent of
obesity and BMI status. In addition, we found that several of
these differentially abundant circulating miRNAs displayed
significant correlations with measures of glycemic control
and b cell function including HbA1c, fasting glucose, glucose
AUC, 2 h insulin, C-peptide AUC, and HOMA B, as well as with
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body composition measures such as fat mass and percentage,
lean mass, total weight, and waist circumference (Table 6).

Cytokine-miRNA correlations in the context of either diabetes
or obesity

Interestingly, only a few but strong correlations (r 4 0.6) were
found to be statistically significant (P o 0.05, FDR o 0.24)
between differentially abundant circulating cytokines and differ-
entially abundant circulating miRNAs in the context of either
diabetes or obesity (Table 7). These cytokine–miRNA correlations

were all, with the exception of two cases, of positive sign. This
suggested that the associations represent mostly indirect interac-
tions between these signaling/regulatory molecules. However, the
levels of circulating IL-8 were strongly anti-correlated with the
levels of circulating miR-24.1 (r =�0.83, P = 0.0027, FDR = 0.0241)
and miR-27a (r = �0.63, P = 0.05, FDR = 0.17). These particular
negative correlations indicate that miR-24.1 and miR-27a may
directly target and downregulate IL-8 production and/or secretion
in specific tissues. Notably, miR-34a consistently correlated with
SFRP4 levels in the context of both obesity and diabetes.

Fig. 1 Differentially abundant circulating cytokines and miRNAs in the context of diabetes. Cytokine levels were assessed in serum samples and miRNA
levels in plasma samples from participants in the ORIGINS clinical trial (ClinicalTrials.gov, NCT02226640). (A–E) Levels of differentially abundant
circulating cytokines by diabetes status [subjects with cytokine data were subdivided into three groups: healthy (n = 17), prediabetes (n = 11), and T2D
(n = 10)]; (F–P) The levels of differentially abundant circulating miRNAs by diabetes status [subjects with miRNA data were subdivided into three groups:
healthy (n = 6), prediabetes (n = 12), and T2D (n = 15)]. Data were analyzed in the R environment using randomization tests and adjusting for BMI, age, and
gender. Due to limited sample availability, miRNA and cytokine data were generated for distinct (as indicated by different subgroup n’s) but partially
overlapping (n = 13) subsets of subjects. Data are presented in summary boxplots with the group median represented by the horizontal line inside the
box, the box delineating the first and third quartile, and the whiskers delineating the smallest and the largest values inside a 1.5 box-length (IQR) from the
end of the box. Asterisk indicates a significant difference with P o 0.05. The dot indicates a marginally significant difference (0.05 o P o 0.10). Red font
was chosen for cytokine comparisons and blue font was chosen for miRNA comparisons.
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Discussion

Cytokine profiles detected in our study cohort are consistent
with the activation of an inflammatory response during the
early stages of diabetes development, driven by deregulation of
specific pro-inflammatory cytokines (i.e., IL-6, IL-8, IL-12, and
SFRP4). The early changes in the levels of IL8, IL-12, and SFRP4
in the diabetic context have potential as early biomarkers of
disease development. The elevation of anti-inflammatory IL-10
levels in the T2D stage suggests an adaptive response of the
organism in an effort to cope with increasing inflammatory
signaling. In addition, IL-10 and IL-12 are key cytokines that
drive the balance between Th1 and Th2 effector (Teff) T helper
cells.34 Interleukin IL-10 suppresses Th1 cells, which require
IL-12 for differentiation.35 Therefore, the reduced levels of IL-12
in the prediabetes stage and the elevated IL-10 in the T2D stage
suggest a continuous organismal effort for halting the activa-
tion of the Th1 subpopulation of Teff cells (main producers of
pro-inflammatory INFg), possibly as a mechanism to maintain
homeostasis in relevant tissues. Notably, several studies have
reported the augmentation of the Th1 cell subset and the causal
involvement of this phenomenon in inflammation and insulin
resistance in mouse models of diabetes, and in T1D and T2D in
humans.35 The significantly elevated level of IL-8 in subjects
with prediabetes and T2D suggests that this cytokine is an
important driver of inflammation in subjects at high risk
of developing diabetes and progressing through diabetes.
Supporting our reasoning, IL-8 has been reported as significantly
upregulated in T2D patients36 and is the most consistently
upregulated cytokine in both adults and children with T1D.37

As reported previously, the production of IL-8 could be induced
by TNFa and IL-6.38 The elevation of IL-6 in the T2D group could
therefore explain, at least in part, the increase in circulating IL-8.
In addition, IL-8 has a key role as a neutrophil chemoattractant
and activator, and is a primary cytokine secreted by neutrophils
themselves and M1 inflammatory macrophages.39 Consequently,
our results suggest that an inflammatory process involving neutro-
phil and macrophage activation may be related to the development
of T2D. Indeed, it is widely acknowledged that proinflammatory
macrophages in adipose tissues are the primary cell type respon-
sible for the inflammation in diabetes,40 however, the diabetogenic
role of neutrophils has only recently started to gain support.41

On the other hand, all the cytokines affected by obesity and
diabetes in our cohort (i.e., IL-8, IL-6, IL-10, IL-12, IFNg, TNFa,
and SFRP4) have known functions in angiogenesis,42–44 which
plays a known key role during the development of obesity.
Because impaired adipose tissue angiogenesis in obesity

Table 2 Differential abundance analysis for circulating cytokines and
miRNAs in the context of either diabetes (A–C, E–G) or obesity (D and H).
Only significant results are shown (all P o 0.05)

Cytokine comparisons

A

PreT2D–healthy Difference P value FDR

SFRP4 (ng mL�1) 51.34 0.042 0.126
IL-8 (pg mL�1) 1.62 0.014 0.042
IL-12.p70 (pg mL�1) �0.05 0.011 0.033

B

T2D–healthy Difference P value FDR

IL-8 (pg mL�1) 1.77 0.035 0.053
IL-10 (pg mL�1) 0.13 0.030 0.045

C

T2D–PreT2D Difference P value FDR

IL-6 (pg mL�1) 0.27 0.023 0.069
IL-10 (pg mL�1) 0.15 0.007 0.021

D

Obesity–lean Difference P value FDR

SFRP4 (ng mL�1) 89.41 0.005 0.018
TNFa (pg mL�1) 0.30 0.001 0.006
IFNg (pg mL�1) 1.49 0.048 0.123
IL-6 (pg mL�1) 0.45 0.001 0.006

MicroRNA comparisons

E

PreT2D–healthy log FC P value FDR

miR-29b �0.75 0.041 0.123
miR-126 �0.38 0.032 0.048
miR-155 �0.58 0.013 0.039

F

T2D–healthy log FC P value FDR

miR-21 0.32 0.014 0.021
miR-24 0.49 0.026 0.039
miR-34a 1.03 0.011 0.030
miR-148a 0.84 0.006 0.009

G

T2D–PreT2D log FC P value FDR

miR-21 0.36 0.003 0.009
miR-24 0.61 0.013 0.039
miR-27a 0.71 0.010 0.030
miR-34a 1.47 0.020 0.030
miR-126 0.52 0.007 0.021
miR-146a 0.74 0.014 0.042
miR-148a 0.91 0.006 0.009
miR-223 0.64 0.009 0.027
miR-326 0.79 0.014 0.042

H

Obesity–lean log FC P value FDR

miR-21 0.33 0.004 0.024
miR-24 0.74 0.002 0.024
miR-25 �0.44 0.039 0.085
miR-27a 0.60 0.018 0.054
miR-34a 1.18 0.031 0.083
miR-93 �0.48 o0.001 o0.001
miR-126 0.32 0.035 0.084
miR-146a 0.73 0.005 0.024

Table 2 (continued )

H

Obesity–lean log FC P value FDR

miR-148a 0.87 0.005 0.024
miR-150 �0.67 0.016 0.054
miR-152 0.66 0.049 0.096
miR-223 0.58 0.006 0.024
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is a contributing factor to insulin resistance and metabolic
disease,45 which are early steps in the development of T2D,

our data suggest that this particular circulating cytokine
profile might play a causative role in the development of T2D.

Table 3 Significant partial correlations among DA circulating cytokines and the relevant clinical parameters in the diabetes (DM) context (adjustments for age,
gender, and BMI). Weak correlations (r o 0.3) were filtered out irrespective of the calculated P value. FDR were calculated using the Benjamini–Hochberg
correction. DA: differentially abundant in circulation. Blue font highlights significant negative correlations; red font highlights significant positive correlations
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Therefore, modulation of these cytokines, individually or
simultaneously, may show therapeutic effects. Remarkably,
blockage of the IL-8 receptor with reparixin enhances pancreatic

islet survival after transplantation in humans and reverts
T1D in mice46 implying that reparixin may also prove useful
in the treatment of T2D. Importantly, our results corroborate an

Table 4 Significant partial correlations among DA circulating miRNAs and the relevant clinical parameters in the diabetes (DM) context (adjustments for age,
gender, and BMI). Weak correlations (r o 0.3) were filtered out irrespective of the calculated P value. FDR were calculated using the Benjamini–Hochberg
correction. DA: differentially abundant in circulation. Blue font highlights significant negative correlations; red font highlights significant positive correlations
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emerging role of SFRP4 in obesity47 and implicate its deregula-
tion in the early development of T2D. Other studies have
implicated SFRP4 elevation in human T2D.48 Previously, we
demonstrated that circulating levels of SFRP4 were elevated in a
different cohort of individuals with obesity, that abdominal
adipose tissues are major contributors for circulating SFRP4,
and that SFRP4 has an important role in adipose tissue
pathophysiology in obesity.47 The strong and large number of
correlations detected between SFRP4 and multiple measures of
glycemic control and insulin action in this study cohort, both

dependently and independently of the obesity status (Tables 2
and 4), underscore the role recently suggested for SFRP4 in the
development and progression of diabetes.

Similarly, the levels of specific miRNAs are altered in the
circulation of subjects with prediabetes and T2D, independently
of the BMI (which defines our selection of obesity status) of the
subjects, as well as in subjects with obesity, independently
of the diabetes status. The role of circulating miRNAs in the
pathogenesis of diabetes and their potential use as biomarkers
of disease development, progression, and response to treatment

Fig. 2 Differentially abundant circulating cytokines and miRNAs in the context of obesity. Cytokine levels were assessed in serum samples and miRNA
levels in plasma samples from participants in the ORIGINS clinical trial (ClinicalTrials.gov, NCT02226640). (A–E) Levels of differentially abundant
circulating cytokines by obesity status [subjects with cytokine data were subdivided into two groups: lean (n = 15) and with obesity (n = 23)]; (F–Q) levels
of differentially abundant circulating miRNAs by obesity status [subjects with miRNA data were subdivided into two groups: lean (n = 12) and with obesity
(n = 21)]. Data were analyzed in the R environment using randomization tests and adjusting for age, gender, and diabetes status. Due to limited sample
availability, miRNA and cytokine data were generated for distinct (as indicated by different subgroup n’s) but partially overlapping (n = 13) subsets of
subjects. Data are presented in summary boxplots with the group median represented by the horizontal line inside the box, the box delineating the first
and third quartiles, and the whiskers delineating the smallest and the largest values inside a 1.5 box-length (IQR) from the end of the box. Asterisk
indicates a significant difference with P o 0.05. The dot indicates a marginally significant difference (0.05 o P o 0.10). The red font was chosen for
cytokine comparisons and blue font was chosen for miRNA comparisons.
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has been reported.49–51 However, little is known about their
interplay/crosstalk with immune mediators as such. In this
regard, we detected mostly positive correlations among the
differentially abundant circulating miRNAs and cytokines
(Table 7). The positive associations suggest that these miRNAs
are not directly targeting the respective cytokines, but are
indirectly interacting. Supporting this reasoning, Wang et al.
found that TGF-b, a key cytokine involved in the pathogenesis
of many diseases,52 stimulates the secretion of miR-130b from

adipocytes (but not from myocytes) and that circulating miR-
130b can enter the muscle cells and reduce the expression of
genes such as PGC-1a, which plays a key role in lipid oxidation
in muscle tissues.52 In another example of indirect association,
Xiang et al. showed that one of the mechanisms by which
chronic inflammation contributes to cancer involves the
IL-6-dependent activation of the transcription factor STAT3,
which consequently activates the promoter of miR-146b.53 The
upregulation of miR-146b, in turn, inhibits the nuclear factor

Table 5 Significant partial correlations among DA circulating cytokines and the relevant clinical parameters in the obesity context (adjustments for age,
gender, and diabetes status). Weak correlations (r o 0.3) were filtered out irrespective of the calculated P value. FDR were calculated using the
Benjamini–Hochberg correction. DA: differentially abundant in circulation. Blue font highlights significant negative correlations; red font highlights
significant positive correlations
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Table 6 Significant partial correlations among DA miRNAs and the relevant clinical parameters in the obesity context (adjustments for age, gender, and
diabetes status). Weak correlations (r o 0.3) were filtered out irrespective of the calculated P value. FDR: Benjamini–Hochberg correction
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kB-dependent production of IL-6, thereby creating a feedback
loop.53 Other authors reported that IL-21 inhibits the produc-
tion of chemokines that favor the crosstalk of CD40-activated

chronic lymphocytic leukemia cells with supportive cells within
the microenvironment through a miRNA-mediated mechanism
involving miR-663b.54 Alternatively, the positive correlation

Table 7 Significant partial correlations among DA circulating miRNAs and DA cytokines in either context: diabetes (adjustments for age, gender, and
BMI) or obesity (adjustments for age, gender, and diabetes status). Weak correlations (r o 0.3) were filtered out irrespective of calculated P value. FDR
were calculated using the Benjamini–Hochberg correction. DA: differentially abundant in circulation. Blue font highlights significant negative
correlations; red font highlights significant positive correlations
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might be due to miRNAs being released as an adaptive response to
counter the effects of cytokine-induced inflammation. Relevantly,
Nesca et al. reported that ‘‘obesity and insulin resistance trigger
adaptations in the levels of particular miRNAs to allow sustained b
cell function, and that additional miRNA deregulation negatively
impacting on insulin-secreting cells may cause b cell demise and
diabetes manifestation’’.55 Similar miRNA-driven adaptive/homeo-
static phenomena have been described during early stages of
distinct disorders such as alcohol addiction.56 The two significant
negative associations detected between the levels of miR-24.1 and
IL-8 and between miR-27a and IL-8 in our study suggest that these
miRNAs could directly target the transcript of the IL8 gene. Indeed,
the IL8 transcript is predicted using software RNAhybrid57

and miRWalk58 to harbor miR-24.1 and miR-27a binding sites in
its 30-UTR. Although cytokines are not commonly reported as
miRNA targets, several instances of validated interactions have
been documented, such as the targeting of IL-8 by miR-9321 and
miR-520b,22 among others cataloged by miRWalk.

Although these results appear interesting from our viewpoint,
several limitations of our study need to be noted. Because the
cohorts analyzed in this study were small and the study was cross-
sectional by design, these findings must be validated in separate
and larger cohorts followed up longitudinally to correlate these
findings with the natural progression of diabetes and be able to
make causal inferences. The study warrants further characteriza-
tion of miRNAs and cytokines in specific potential source or target
tissues such as peripheral blood mononuclear cells and adipose,
muscle, and vascular tissues, among others.

Conclusions

Our study demonstrates a potential role for circulating cytokines and
miRNAs in contributing to the pathophysiological changes in sub-
jects with prediabetes and T2D and pinpointed the early biomarker
potential of cytokines (i.e., IL-8, IL-12, and SFRP4) and miRNAs (i.e.,
miR-29b, miR-126, and miR-155) as markers of prediabetes. By early
detection of an increased risk for development of the disease, we
could more effectively implement preventive measures aimed at
halting the diabetes epidemic. Our results suggest that the unba-
lanced pro-/anti-inflammatory/angiogenic cytokine levels and the
deregulation of immune and metabolically-involved miRNAs con-
tribute to the remodeling of a diabetogenic molecular network that
eventually leads to disease development.
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