
Atreya Acharyya- Post-Doctoral Scientist at University of Southern Denmark
Atreya Acharyya
- Post-Doctoral Scientist at University of Southern Denmark
About
73
Publications
5,442
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
972
Citations
Current institution
Additional affiliations
July 2021 - present
Education
September 2018 - July 2021
Publications
Publications (73)
The steady-state gamma-ray emission from the Sun is thought to consist of two emission components due to interactions with Galactic cosmic rays: (1) a hadronic component covering the solar disk, and (2) a leptonic component peaking at the solar edge and extending into the heliosphere. The flux of these components is expected to vary with the 11-yea...
A wide variety of Galactic sources show transient emission at soft and hard X-ray energies: low-mass and high-mass X-ray binaries containing compact objects, isolated neutron stars exhibiting extreme variability as magnetars as well as pulsar wind nebulae. Although most of them can show emission up to MeV and/or GeV energies, many have not yet been...
The γ -ray emission from flat spectrum radio quasars (FSRQs), a subclass of blazars, is believed to be generated through interactions of high-energy leptons and/or hadrons in the jet with the ambient photon fields, including those from the accretion disk, the broad line region (BLR), and the dusty torus. However, these same photon fields can also a...
While the sources of the diffuse astrophysical neutrino flux detected by the IceCube Neutrino Observatory are still largely unknown, one of the promising methods to improve our understanding of them is investigating the potential temporal and spatial correlations between neutrino alerts and the electromagnetic radiation from blazars. We report on t...
Assuming Galactic cosmic rays originate in supernovae and the winds of massive stars, starburst galaxies should produce very-high-energy (VHE; E > 100 GeV) gamma-ray emission via the interaction of their copious quantities of cosmic rays with the large reservoirs of dense gas within the galaxies. Such VHE emission was detected by VERITAS from the s...
While the sources of the diffuse astrophysical neutrino flux detected by the IceCube Neutrino Observatory are still largely unknown, one of the promising methods used towards understanding this is investigating the potential temporal and spatial correlations between neutrino alerts and the electromagnetic radiation from blazars. We report on the mu...
The gamma-ray emission from Flat Spectrum Radio Quasars (FSRQs), a sub-class of blazars, is believed to be generated through interactions of high-energy leptons and/or hadrons in the jet with the ambient photon fields, including those from the accretion disk, the broad line region (BLR), and the dusty torus. However, these same photon fields can al...
Assuming Galactic cosmic rays originate in supernovae and the winds of massive stars, starburst galaxies should produce very-high-energy (VHE; E$>$100 GeV) gamma-ray emission via the interaction of their copious quantities of cosmic rays with the large reservoirs of dense gas within the galaxies. Such VHE emission was detected by VERITAS from the s...
Context. The nearby elliptical galaxy M87 contains one of only two supermassive black holes whose emission surrounding the event horizon has been imaged by the Event Horizon Telescope (EHT). In 2018, more than two dozen multi-wavelength (MWL) facilities (from radio to γ -ray energies) took part in the second M87 EHT campaign.
Aims. The goal of this...
The recent detection of extended $\gamma$-ray emission around middle-aged pulsars is interpreted as inverse-Compton scattering of ambient photons by electron-positron pairs escaping the pulsar wind nebula, which are confined near the system by unclear mechanisms. This emerging population of $\gamma$-ray sources was first discovered at TeV energies...
Approximately one hundred sources of very-high-energy (VHE) gamma rays are known in the Milky Way, detected with a combination of targeted observations and surveys. A survey of the entire Galactic Plane in the energy range from a few tens of GeV to a few hundred TeV has been proposed as a Key Science Project for the upcoming Cherenkov Telescope Arr...
This paper investigates the origin of the γ -ray emission from MGRO J1908+06 in the GeV–TeV energy band. By analyzing the data collected by the Fermi Large Area Telescope, the Very Energetic Radiation Imaging Telescope Array System, and High Altitude Water Cherenkov, with the addition of spectral data previously reported by LHAASO, a multiwavelengt...
Galaxy clusters are expected to be both dark matter (DM) reservoirs and storage rooms for the cosmic-ray protons (CRp) that accumulate along the cluster's formation history. Accordingly, they are excellent targets to search for signals of DM annihilation and decay at γ-ray energies and are predicted to be sources of large-scale γ-ray emission due t...
In 2017 February, the blazar OJ 287 underwent a period of intense multiwavelength activity. It reached a new historic peak in the soft X-ray (0.3–10 keV) band, as measured by the Swift X-ray Telescope. This event coincides with a very-high-energy (VHE) γ -ray outburst that led VERITAS to detect emission above 100 GeV, with a detection significance...
Understanding the nature and identity of dark matter is a key goal in the physics community. In the case that TeV-scale dark matter particles decay or annihilate into Standard Model particles, very-high-energy (VHE) gamma rays (greater than 100 GeV) will be present in the final state. The Very Energetic Radiation Imaging Telescope Array System (VER...
Understanding the nature and identity of dark matter is a key goal in the physics community. In the case that TeV-scale dark matter particles decay or annihilate into standard model particles, very-high-energy (VHE) gamma rays (greater than 100 GeV) will be present in the final state. The Very Energetic Radiation Imaging Telescope Array System (VER...
Monochromatic gamma-ray signals constitute a potential smoking gun signature for annihilating or decaying dark matter particles that could relatively easily be distinguished from astrophysical or instrumental backgrounds. We provide an updated assessment of the sensitivity of the Cherenkov Telescope Array (CTA) to such signals, based on observation...
In February 2017, the blazar OJ~287 underwent a period of intense multiwavelength activity. It reached a new historic peak in the soft X-ray (0.3-10 keV) band, as measured by Swift-XRT. This event coincides with a very-high-energy (VHE) $\gamma$-ray outburst that led VERITAS to detect emission above 100 GeV, with a detection significance of $10\sig...
We use the Very Energetic Radiation Imaging telescope Array System (VERITAS) imaging air Cherenkov telescope array to obtain the first measured angular diameter of β UMa at visual wavelengths using stellar intensity interferometry (SII) and independently constrain the limb-darkened angular diameter. The age of the Ursa Major moving group has been a...
The Breakthrough Listen Initiative is conducting a program using multiple telescopes around the world to search for “technosignatures”: artificial transmitters of extraterrestrial origin from beyond our solar system. The Very Energetic Radiation Imaging Telescope Array System (VERITAS) Collaboration joined this program in 2018 and provides the capa...
High-energy neutrinos originating in astrophysical sources should be accompanied by gamma-rays at production. Depending on the properties of the emission environment and the distance of the source to the Earth, these gamma-rays may be observed directly, or through the detection of lower energy photons that result from interactions with the interven...
Blazars are a subclass of active galactic nuclei (AGN) having relativistic jets aligned within a few degrees of our line-of-sight and form the majority of the AGN detected in the TeV regime. The Fermi-Large Area Telescope (LAT) is a pair-conversion telescope, sensitive to photons having energies between 20 MeV and 2 TeV, and is capable of scanning...
The Breakthrough Listen Initiative is conducting a program using multiple telescopes around the world to search for "technosignatures": artificial transmitters of extraterrestrial origin from beyond our solar system. The VERITAS Collaboration joined this program in 2018, and provides the capability to search for one particular technosignature: opti...
We report on multiwavelength target-of-opportunity observations of the blazar PKS 0735+178, located 2.2$^\circ$ away from the best-fit position of the IceCube neutrino event IceCube-211208A detected on December 8, 2021. The source was in a high-flux state in the optical, ultraviolet, X-ray, and GeV gamma-ray bands around the time of the neutrino ev...
We report the detection of very high energy gamma-ray emission from the blazar S3 1227+25 (VER J1230+253) with the Very Energetic Radiation Imaging Telescope Array System (VERITAS). VERITAS observations of the source were triggered by the detection of a hard-spectrum GeV flare on 2015 May 15 with the Fermi-Large Area Telescope (LAT). A combined 5 h...
Blazars are a subclass of Active Galactic Nuclei (AGN) having relativistic jets aligned within a few degrees of our line-of-sight and form the majority of the AGN detected in the TeV regime. The Fermi-Large Area Telescope (LAT) is a pair-conversion telescope, sensitive to photons having energies between 20 MeV-2 TeV, and is capable of scanning the...
A deep survey of the Large Magellanic Cloud at ∼0.1–100 TeV photon energies with the Cherenkov Telescope Array is planned. We assess the detection prospects based on a model for the emission of the galaxy, comprising the four known TeV emitters, mock populations of sources, and interstellar emission on galactic scales. We also assess the detectabil...
We report the detection of very high energy gamma-ray emission from the blazar S3 1227+25 (VER J1230+253) with the Very Energetic Radiation Imaging Telescope Array System (VERITAS). VERITAS observations of the source were triggered by the detection of a hard-spectrum GeV flare on May 15, 2015 with the Fermi-Large Area Telescope (LAT). A combined fi...
The local Cosmic Ray (CR) energy spectrum exhibits a spectral softening at energies around 3~PeV. Sources which are capable of accelerating hadrons to such energies are called hadronic PeVatrons. However, hadronic PeVatrons have not yet been firmly identified within the Galaxy. Several source classes, including Galactic Supernova Remnants (SNRs), h...
Dark matter is a key piece of the current cosmological scenario, with weakly interacting massive particles (WIMPs) a leading dark matter candidate. WIMPs have not been detected in their conventional parameter space (100 GeV ≲ M χ ≲ 100 TeV), a mass range accessible with current Imaging Atmospheric Cherenkov Telescopes. As ultraheavy dark matter (UH...
Superluminous supernovae (SLSNe) are a rare class of stellar explosions with luminosities ∼ 10–100 times greater than ordinary core-collapse supernovae. One popular model to explain the enhanced optical output of hydrogen-poor (Type I) SLSNe invokes energy injection from a rapidly spinning magnetar. A prediction in this case is that high-energy gam...
Dark matter is a key piece of the current cosmological scenario, with weakly interacting massive particles (WIMPs) a leading dark matter candidate. WIMPs have not been detected in their conventional parameter space (100 GeV $\lesssim M_{\chi} \lesssim$ 100 TeV), a mass range accessible with current Imaging Atmospheric Cherenkov Telescopes. As ultra...
Superluminous supernovae (SLSNe) are a rare class of stellar explosions with luminosities ~10-100 times greater than ordinary core-collapse supernovae. One popular model to explain the enhanced optical output of hydrogen-poor (Type I) SLSNe invokes energy injection from a rapidly spinning magnetar. A prediction in this case is that high-energy gamm...
MAXI J1820+070 is a low-mass X-ray binary with a black hole as a compact object. This binary underwent an exceptionally bright X-ray outburst from March to October 2018, showing evidence of a non-thermal particle population through its radio emission during this whole period. The combined results of 59.5 hours of observations of the MAXI J1820+070...
MAXI J1820+070 is a low-mass X-ray binary with a black hole as a compact object. This binary underwent an exceptionally bright X-ray outburst from March to October 2018, showing evidence of a non-thermal particle population through its radio emission during this whole period. The combined results of 59.5 hours of observations of the MAXI J1820+070...
We present a spatially resolved H ii region study of the gas-phase metallicity, ionization parameter, and interstellar medium (ISM) pressure maps of six local star-forming and face-on spiral galaxies from the TYPHOON program. Self-consistent metallicity, ionization parameter, and pressure maps are calculated simultaneously through an iterative proc...
We present a spatially-resolved HII region study of the gas-phase metallicity, ionization parameter, and ISM pressure maps of 6 local star-forming and face-on spiral galaxies from the TYPHOON program. Self-consistent metallicity, ionization parameter, and pressure maps are calculated simultaneously through an iterative process to provide useful mea...
Upcoming space-based integral field spectrographs will enable spatially resolved spectroscopy of distant galaxies, including at the scale of individual star-forming regions (i.e., down to just tens of parsecs) in galaxies that have been strongly gravitationally lensed. In the meantime, there is only a very small set of lensed galaxies where such sp...
In addition to the well-known gas phase mass-metallicity relation (MZR), recent spatially-resolved observations have shown that local galaxies also obey a mass–metallicity gradient relation (MZGR) whereby metallicity gradients can vary systematically with galaxy mass. In this work, we use our recently-developed analytic model for metallicity distri...
The Cherenkov Telescope Array (CTA), the new-generation ground-based observatory for γ astronomy, provides unique capabilities to address significant open questions in astrophysics, cosmology, and fundamental physics. We study some of the salient areas of γ cosmology that can be explored as part of the Key Science Projects of CTA, through simulated...
For the extremely bright lensed galaxy SDSS J1723+3411 at z = 1.3293, we analyze spatially integrated MMT, Keck, and Hubble Space Telescope spectra that fully cover the rest-frame wavelength range of 1400–7200 Å. We also analyze near-IR spectra from Gemini that cover H α for a portion of the lensed arc. We report fluxes for 42 detected emission lin...
In addition to the well-known gas phase mass-metallicity relation (MZR), recent spatially-resolved observations have shown that local galaxies also obey a mass-metallicity gradient relation (MZGR) whereby metallicity gradients can vary systematically with galaxy mass. In this work, we use our recently-developed analytic model for metallicity distri...
We present a new model for the evolution of gas phase metallicity gradients in galaxies from first principles. We show that metallicity gradients depend on four ratios that collectively describe the metal equilibration timescale, production, transport, consumption, and loss. Our model finds that most galaxy metallicity gradients are in equilibrium...
We present a new model for the evolution of gas phase metallicity gradients in galaxies from first principles. We show that metallicity gradients depend on four ratios that collectively describe the metal equilibration timescale, production, transport, consumption, and loss. Our model finds that most galaxy metallicity gradients are in equilibrium...
We provide an updated assessment of the power of the Cherenkov Telescope Array (CTA) to search for thermally produced dark matter at the TeV scale, via the associated gamma-ray signal from pair-annihilating dark matter particles in the region around the Galactic centre. We find that CTA will open a new window of discovery potential, significantly e...
We present a temporal and spectral analysis of the gamma-ray flux from nine of the brightest flat spectrum radio quasars (FSRQs) detected with the Fermi Large Area Telescope (LAT) during its first eight years of operation, with the aim of constraining the location of the emission region. Using the increased photon statistics provided from the two b...
We present a temporal and spectral analysis of the gamma-ray flux from nine of the brightest flat spectrum radio quasars (FSRQs) detected with the Fermi Large Area Telescope (LAT) during its first eight years of operation, with the aim of constraining the location of the emission region. Using the increased photon statistics provided from the two b...
For the extremely bright lensed galaxy SDSS J1723+3411 at z=1.3293 , we analyze spatially integrated MMT, Keck, and Hubble Space Telescope spectra that fully cover the rest-frame wavelength range of 1400 to 7200 Angstroms. We also analyze near-IR spectra from Gemini that cover H alpha for a portion of the lensed arc. We report fluxes for 42 detecte...
Metallicity gradients are important diagnostics of galaxy evolution, because they record the history of events such as mergers, gas inflow, and star formation. However, the accuracy with which gradients can be measured is limited by spatial resolution and noise, and hence, measurements need to be corrected for such effects. We use high-resolution (...
For studies of galaxy formation and evolution, one of the major benefits of the James Webb Space Telescope is that space-based IFUs like those on its NIRSpec and MIRI instruments will enable spatially resolved spectroscopy of distant galaxies, including spectroscopy at the scale of individual star-forming regions in galaxies that have been gravitat...
Metallicity gradients are important diagnostics of galaxy evolution, because they record the history of events such as mergers, gas inflow and star-formation. However, the accuracy with which gradients can be measured is limited by spatial resolution and noise, and hence measurements need to be corrected for such effects. We use high resolution (~2...
Our ability to study the properties of the interstellar medium in the earliest galaxies will rely on emission-line diagnostics at rest-frame ultraviolet (UV) wavelengths. In this work, we identify metallicity-sensitive diagnostics using UV emission lines. We compare UV-derived metallicities with standard, well-established optical metallicities usin...
We examine the diagnostic power of rest-frame ultraviolet (UV) nebular emission lines, and compare them to more commonly used rest-frame optical emission lines, using the test case of a single star-forming knot of the bright lensed galaxy RCSGA 032727–132609 at redshift $z$ ∼ 1.7. This galaxy has complete coverage of all the major rest-frame UV and...
We examine the diagnostic power of rest-frame ultraviolet (UV) nebular emission lines, and compare them to more commonly used rest-frame optical emission lines, using the test case of a single star-forming knot of the bright lensed galaxy RCSGA 032727-132609 at redshift z~1.7. This galaxy has complete coverage of all the major rest-frame UV and opt...
The Cherenkov Telescope Array (CTA) is the major next-generation observatory for ground-based very-high-energy gamma-ray astronomy. It will improve the sensitivity of current ground-based instruments by a factor of five to twenty, depending on the energy, greatly improving both their angular and energy resolutions over four decades in energy (from...
The Cherenkov Telescope Array (CTA) is the major next-generation observatory for ground-based very-high-energy gamma-ray astronomy. It will improve the sensitivity of current ground-based instruments by a factor of five to twenty, depending on the energy, greatly improving both their angular and energy resolutions over four decades in energy (from...
We stack the rest-frame ultraviolet spectra of N=14 highly magnified gravitationally lensed galaxies at redshifts 1.6<z<3.6. The resulting new composite spans $900< \lambda_{rest} < 3000$ \AA, with a peak signal-to-noise ratio of 103 per spectral resolution element ($\sim$100 km/s). It is the highest signal-to-noise ratio, highest spectral resoluti...
We report the detection of extended Lyman-$\alpha$ emission from the host galaxy of SDSS~J2222+2745, a strongly lensed quasar at $z = 2.8$. Spectroscopic follow-up clearly reveals extended Lyman-$\alpha$ in emission between two images of the central active galactic nucleus (AGN). We reconstruct the lensed quasar host galaxy in the source plane by a...