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A Systematic Review for Smart City Data Analytics

VAIA MOUSTAKA and ATHENA VAKALI, Aristotle University of Thessaloniki
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Smart cities (SCs) are becoming highly sophisticated ecosystems at which innovative solutions and smart
services are being deployed. These ecosystems consider SCs as data production and sharing engines, setting
new challenges for building effective SC architectures and novel services. The aim of this article is to “connect
the pieces” among Data Science and SC domains, with a systematic literature review which identifies the core
topics, services, and methods applied in SC data monitoring. The survey focuses on data harvesting and data
mining processes over repeated SC data cycles. A survey protocol is followed to reach both quantitative
and semantically important entities. The review results generate useful taxonomies for data scientists in
the SC context, which offers clear guidelines for corresponding future works. In particular, a taxonomy is
proposed for each of the main SC data entities, namely, the “D Taxonomy” for the data production, the “M
Taxonomy” for data analytics methods, and the “S Taxonomy” for smart services. Each of these taxonomies
clearly places entities in a classification which is beneficial for multiple stakeholders and for multiple domains
in urban smartness targeting. Such indicative scenarios are outlined and conclusions are quite promising for
systemizing.
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1 INTRODUCTION

Smart cities (SCs) have changed radically since the initial appearance of the term in literature in the
late 1990s due to the impact of disruptive technologies and new forms of interaction in everyday
life. Multiple stakeholders act in parallel with joint forces of governments, industries, and scientists
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Fig. 1. The six dimensions of SCs.

who transform cities of today. Urban challenges have been addressed from different perspectives
by the primary SC actors so far: governments, policy makers, and municipalities (e.g., EU smart cities
initiative,1 World Smart City Forum,2 Smart City Business Institute3) have structured progressive
policies to deal with issues like urbanism and climate change, with one of the most recent to
be the United Nations 2030 Agenda for sustainable development.4 On the other hand, industries
with the leading role of the information and communication technologies (ICT) (e.g., CISCO,5 IBM,6

Libelium,7 Ericsson8) define a new competitive market that is estimated to become dominant by
2030 [1], while scientists investigate the future of an interdisciplinary and very promising domain
that combines studies like engineering, ICT, humanities, ethics, political science, and so on.

In this respect, several scholars [1–7] as well as standardization bodies (e.g., the International
Telecommunications Union (ITU),9 the International Standards Organization [8]) provide alterna-
tive definitions, conceptual models, and architectures for SCs, in their attempt to clarify different
contextual and organizational issues. An indicative SC definition comes from ISO/IEC [9] and
recognizes the smart and sustainable city as “an innovative city that uses ICT and other means to
improve quality of life, efficiency of urban operation and services, and competitiveness, while ensuring
that it meets the needs of present and future generations with respect to economic, social, and envi-
ronmental aspects.” Moreover, a widely adopted SC conceptual framework analyzes the SC in six
dimensions, in an attempt to define indexes that can measure urban intelligence (Figure 1) [10]:
(i) smart economy, (ii) smart mobility, (iii) smart environment, (iv) smart people, (v) smart living, and
(vi) smart governance.

Since SCs involve multi-layered entities (devices, installations, applications), SC architectures
are needed to define the different hard and soft facilities, which provide several, so-called, smart

1http://ec.europa.eu/eip/smartcities/.
2http://www.worldsmartcity.org/.
3http://www.smartcbi.org/.
4https://sustainabledevelopment.un.org/post2015/transformingourworld.
5http://www.cisco.com/c/en/us/solutions/industries/smart–connected–communities.html.
6http://www.ibm.com/smarterplanet/us/en/smarter_cities/overview/.
7http://www.libelium.com/libeliumworld/smart_cities/.
8https://www1.ericsson.com/news?tagsFilter=smart+cities.
9http://www.itu.int/en/ITU–T/focusgroups/ssc/Pages/default.aspx.
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services to and from local stakeholders [11]. These services range from upgraded typical city utility
services (i.e., water, energy, gas) to enhanced content (i.e., optimal transportation mean’s selection
for mobility in the city) or other types of ICT-based services (i.e., government, health, education,
and tourism). SCs produce large scales of data constantly and in evolving rates. Data is produced
from sensors and devices, from applications and services, and from social media and digital plat-
forms. Effectively handling data is crucial for improving SC life and for safeguarding its dynamics
and momentum.

In most recent studies ([1, 12–17]), urban data or city data (or SC data), i.e., data produced in
the city’s operation context [18], is recognized as a significant asset for the deployment of SC. It
is now evident that a novel sector, the so-called “data economy,” emerges. In SC data economy,
new business models, which utilize and correlate data to reveal their analytics, will drive the cities
future. In particular, urban data collected from the Internet of Things (IoT) infrastructures and
analyzed with different methods can largely improve several monitoring and response tasks and
services (i.e., [19–23]). SC data impact multiple services in various inter–disciplinary domains such
as in smart transportation, resource efficiency, crowd–source based services [23–25]. For example,
Transport Management Systems (TMS) operation is based on the use of real–time data (e.g., social
media data for the detection of traffic congestions, road accidents) and on new technologies (e.g.,
smart cars, smartphones), aiming to save time and citizens’ road safety [23]. The importance of
crowd-sensing and Big Data that summarizes data sources, analytical approaches, and application
systems through the introduction of social transport for the deployment and improvement of In-
telligent Transportation System (ITS) services is also highlighted by [24] and [25]. Cisco,10 also,
claims that cities leveraging their data may attain increasing their energy efficiency by 30%.

A recent survey [26] has revealed that there are 4.9 billion connected objects, which are expected
to reach or exceed 50 billion in 2020 and over 1.4 billion smartphones, while the market of Radio
Frequency Identification (RFID) tags is worth $11.1 billion and 500 million vehicles are expected
to be connected to the Internet by 2020. Specifically, according to Statista,11 1.8 billion connected
objects were within SCs in 2015, while this number is expected to reach 3.33 billion in 2018. The
existence of these interconnected objects results in the real-time production of an astonishingly
large number of urban data offering unlimited opportunities for gaining profound insights into the
cities of today and knowledge out of them is not yet fully exploited, as this data is often scattered or
unavailable [27]. However, many local authorities (Amsterdam, Dublin, Singapore, City of Chicago,
Los Angeles, NYC, etc.), recognizing the impact of urban data in their cities and seeking to turn
into SCs, are striving to manage and exploit their data. The need to investigate how urban data is
produced, circulated, monitored, and exploited in SC has been the motivation for conducting the
current study.

It is already well recognized that SC data and their volumes impact and shape the cities of today
and tomorrow [28]. The demand to understand how data are produced, circulated, monitored and
exploited, will become more intense in the next period since data are constantly produced from
multiple devices and IoT installations with such high rates that gaining insight and knowledge
out of them is not yet fully exploited. The aim of this survey is to contribute in understanding
the urban data types, their production sources, and their exploitation practices by a systematic re-
view which addressed the different involved features and entities. Such a systematic review is very
important due to the above significant role and impact of data in SC. According to the authors’
knowledge, although an abundance of publications refer to data and SC, a systematic analysis
which connects the “pieces” between Data Science and SCs is still missing. The current article is

10https://www.postscapes.com/anatomy-of-a-smart-city/.
11https://www.statista.com/statistics/422886/smart-cities-connected-things-installed-base/.
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a comprehensive survey which examines the way in which urban data are used in SCs, covering
the period 1996–2017. Specifically, this article focuses on how data is produced, collected, stored,
mined, and visualized in SC in order to focus on the knowledge and the hidden information re-
vealed as tools for creativity and innovation. Initially, the basic principles associated with urban
data are discussed, and then the research methodology is presented. Urban data sources and urban
data types are identified, data collection and data mining processes at SC are deeply studied, and
the smart services, which have been developed so far, emerge. Based on this extensive review, a
novel set of taxonomies is built by exploiting the review’s qualitative outcomes. The proposed tax-
onomies cover the SC data entities and methods which contribute in delivering valuable tools for
researchers and developers working in data-driven SC approaches. More specifically, the overall
so-called “DMS” taxonomy set includes: the “D Taxonomy” to classify the data production entities,
the “M Taxonomy” to categorize and highlight the data analytics methods, and the “S Taxonomy”
which identifies the context of the most crucial smart services. The “DMS” taxonomy is scalable
and extensible since it has systematically summarized the state-of-the-art articles but it can also
be extended to include new and forthcoming advances in the area.

The remainder of this article is organized as follows: Section 2 discusses the theoretical back-
ground and highlights this article’s objectives with an emphasis on Data Science’s fundamentals
under the SC lens. Section 3 contains the systematic literature review methodology that was fol-
lowed and which has set this article’s research questions, while Section 4 discusses the quantitative
and some of the qualitative outcomes. Section 5 introduces the novel “DMS” taxonomy, while the
current trends are presented in Section 6. Finally, Section 7 contains the conclusions of the article
and future potentials.

2 BACKGROUND

SC ambiguous definition and conceptualization has triggered standardization processes which are
under development, in an attempt to clarify the domain and homogenize the corresponding offered
solutions [1]. Today, all standardization working groups [9, 11, 29, 30] define models to communi-
cate the SC concept to corresponding stakeholders (governments, communities, technology firms,
service providers, developers, etc.), which all recognize data to be a significant element for SC real-
ization. ISO 37120, for instance, introduces several indexes to measure urban performance and this
measurement is based on data collection from several alternative resources. ITU recognizes data
to be one of the major SC “soft facilities,” which feeds each of the offered sets of smart services.
Furthermore, British Standard Institution (BSI) [30] views SC as a system that consists of several
subsystems (so-called “infrastructure-based” and “service-based” sectors) (Figure 2(a)), where data
is produced and collected via sensors from different hard facilities (energy, transport, water, and
waste) or in service-based sectors (health, education, safety, and social media); it is stored in city
data storages, flow over SC infrastructure (telecommunications and electronics), analyzed, and dis-
played on city dashboards or delivered to services’ end-users. The BSI’s approach is followed in
this article (Figure 2(b)) and explained in the following subsections, where city appears as “data
engine” and dataflows follow a circular process, since—even during the last step—the analyzed
data is stored and compared with other collected information or it returns back to the community
as the context of new smart services.

Since our study focuses on the production, processing, and analysis of SC data, next subsec-
tions offer a summary of the basic principles related to the urban data sources and the analytics
approaches. Section 2.1 refers to the production of urban data and its features, while Section 2.2
involves the data analytics basics, focusing mainly on the “Data Harvesting” and “Data Mining”
processes.
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Fig. 2. (a) City as a “data system” [30], (b) Smart city as a “data engine.”

2.1 Urban Data Sources

Cities have become actual “data engines” which constantly produce and consume data. A huge va-
riety of devices (sensors and mobile equipment) and applications act as data sources, which record
multiple everyday activities from everywhere and produce a large scale of heterogeneous datasets.
Urban data is produced either directly during daily activities and smart service execution (e.g.,
social networks, smart applications) or it is collected via sensing devices, which can be either fixed
or portable (e.g., environmental sensors, traffic sensors, motion detectors, mobile devices, wearable
devices). The differentiation of SC data sources typically involves two major data origin levels [1]:

— IoT data production from sensors and actuators embedded in physical objects which are
linked through wired and wireless networks [31]. This “umbrella” term involves all the
interconnected smart devices, such as RFID tags, sensors, cameras, mobile devices, Near
Field Communication (NFC), and so on.

—Crowd-Sensing Data production coming from the engagement of a defined “crowd” of indi-
viduals for obtaining required services, contents, or ideas; also known as crowd-sourcing
[32]. The extension of crowd-sourcing when it is related with sensors or sensing capabil-
ity is named crowd-sensing. Crowd-sensing when using mobile devices (wearable devices,
mobile phone applications, etc.) is more specifically referred to as Mobile Crowd-Sensing
and Computing (MCSC) [33]. Crowd-sensing has largely contributed in the definition of
the so-called Internet of People (IoP) [34], which is extending IoT with human experience
and capabilities. Several times IoP is used independently or in combination with IοT, while
it often helps to verify the data coming from IoT sources [35].

Data derived from the urban data sources is characterized by heterogeneity and it typically is of
big data scale, based on the Gartner [36] big data definition: “Big Data is high-volume, high-velocity
and/or high-variety information assets that demand cost-effective, innovative forms of information
processing that enable enhanced insight, decision making, and process automation.” SC data fall into
the Marr [37] big data definition which identifies the five big data characteristics, known as the
5V’s which are (i) volume, (ii) variety, (iii) velocity, (iv) veracity, and (v) value. This is due to the
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SC typical sources such as, for example, in the case of environmental sensors which produce nu-
merical and periodic data, Facebook produces multimedia and real-time data, while censuses offer
alphanumeric and offline data of large scale and evolving rhythm.

With regard to data ownership status, urban data may be closed, shared, or open [38]. Closed
data contains personal and sensitive information and can be strictly accessed by its owner (e.g.,
financial data that comes from companies, health data). Shared data is published with the name
of its owner (e.g., published surveys, social media data). In case data is accessible and available
for everyone to acquire, use, and process without restriction by copyright, it is called Open Data
[39]. The development and management of open datasets is very crucial for SC since they en-
hance decision–making, citizen engagement, and data economy. Many local government agencies
and public organizations have deployed open data platforms such as NYC Open Data,12 DataSF,13

London Datastore,14 Transport for London,15 to effectively contribute to the deployment and im-
plementation of SC, while European Commission16 has funded a lot of projects on open data for SC
(i.e., European Data Portal,17 EU Smart Cities Information System,18 Open Cities,19 Organicity20).

2.2 Data Analytics Basics

Data production in SC sets new challenges when it comes to revealing patterns and detecting
norms and phenomena in the city context. SC data analytics is an important approach toward
improving city experiences, quality of life, and city services. Such analytics require “Data Min-
ing” and “Data Harvesting” solutions which are often inter-changed and correlated. As depicted in
Figure 2(b), the role of these two different approaches is important at different levels. Data har-
vesting drives processes from data production to their storage and management level, while data
mining receives the stored data to produce intelligence and analytics.

In the Data Science context, “Data Harvesting is the gathering of data from numerous disparate
databases into a single database from which it can be re-published in a unified manner” [40]. The data
harvesting process involves the acquisition and recording of data and it is accompanied by data pre-
processing and storage in an attempt to generate useful and qualitative datasets. Urban raw data
is characterized by heterogeneity (different types, duration, format), while it may contain noise
and be inaccurate [41]. The Data Pre-processing process affects the quality of collected data and
consists of the following methods: (i) Data Cleaning, (ii) Data Integration, (iii) Data Transformation,
and (iv) Data Discretization [42]. Then, depending on the portability and usability requirements,
the pre-processed datasets are stored either in traditional databases (DBMS) or in cloud storages,
while according to its type is stored either in Graph DBMS, or in DBMS/SQL, or in NoSQL (key-value
stores, document stores, column-family stores, graph databases), or in other data storages [43–45].
Respectively, with other data categories (business data, healthy data, financial data, statistics, etc.),
the pre-processing process of massive and complex urban data collected from various sources and
the flexible storage means (i.e., NoSQL, scalable cloud data storages) are crucial for the acquirement
and management of high-quality datasets that will facilitate the data analysis and offer worthwhile
and accurate insights [46, 47].

12https://opendata.cityofnewyork.us/.
13https://datasf.org/opendata/.
14https://data.london.gov.uk/.
15https://opendata.cityofnewyork.us/.
16https://ec.europa.eu/digital–single–market/en/open–data.
17https://www.europeandataportal.eu/en/highlights/open-data-european-cities.
18http://smartcities-infosystem.eu/.
19http://www.opencities.net/content/project.
20http://organicity.eu/.
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According to Kantardzic [48], “Data Mining is a process of discovering various models, summaries
and derived values from a given collection of data.” The data mining process is used for (i) search-
ing non-trivial information and patterns and (ii) predicting unknown values from available huge
volumes of data, utilizing, respectively, descriptive and predictive methods. Such popular methods
involve (i) Clustering; (ii) Classification; (iii) Regression; (iv) Summarization; (v) Dependency Model-
ing; and (vi) Change and Deviation Detection. Overall, data mining is an interdisciplinary process
that incorporates and utilizes many techniques and methods from other fields such as data ware-
houses systems, statistics, machine learning, visualization, fuzzy logic, artificial neural networks, and
others [48]. Data mining in SC context is used to investigate and extract urban patterns related
to the daily city operation and citizens (e.g., transport system conditions, environment quality,
community activities, consumer patterns), as well as to predict and prevent future situations (e.g.,
resource management, delinquent behavior prevention) [46].

“Urban Data Analytics” as a term is used to encapsulate techniques that are used to analyze and
acquire profound knowledge out of urban data. Since urban data are produced from the sources
highlighted in Subsection 2.1, multiple data types are produced such as (i) text, (ii) audio, (iii)
video, (iv) social media, and (v) metadata. Depending on each SC data analytics case, these data
types are the sources for data harvesting over which then various methods such as data min-
ing, machine learning, statistical/predictive/graph analysis, and so on are implemented to gain
knowledge and to advance SC intelligence detection [49]. The gained insights by data analytics
can synthesize the city profile bringing out the urban potentials but also city’s weaknesses and
problematics. Taking into account the acquired knowledge, decision-makers (local governments,
businesses, researchers), according to their interests, suggest, design, and implement new services
that can increase city’s “intelligence.” These new services, in turn, feed back new data produc-
tion cycles following an iterative approach at which urban analytics can drive innovation in a
continuous agile refinement manner.

3 RESEARCH METHODOLOGY

Our research interests, the identification of research gaps discussed in Section 1, and the intense
debate in the academia and business circles around the SC, have led us to conduct the present
systematic review. The study has followed a methodology to determine how scientists have ap-
proached SC data production, harvesting, and analytics and to offer insights and understanding
of the corresponding state-of-the-art. In this context, the proposed methodology has identified
“schools of thought” which had a major contribution in this domain.

Systematic literature reviews are secondary-level studies and the quality of their findings is
significantly dependent on the quality of the primary studies they use. An initial search for relevant
studies on the Internet for the period 1996–2017 returned 2,312 articles. Due to the large number of
references in the area, it was considered necessary to adopt a systematic methodology that would
help to limit the initial number of articles based on strict criteria. The adopted methodology is
based on the guidelines that were introduced by Kitchenham [50, 51]. The selection criteria of this
method concern the review process’s novelty, systematic approach, and comparative advantages,
such as the completeness and rigor. These software engineering–oriented guidelines offer the basic
and essential principles required for a complete and systematic literature review, contributing to
the selection of qualitative empirical studies and time-saving [52]. This method is chosen since
it follows a uniform protocol, which unfolds in three phases with the following specific stages
(outlined in Figure 3):

(i) the Planning Phase, to identify the review’s contribution and describe the review protocol;
(ii) the Conducting Phase, to follow the step-by-step review protocol; and
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Fig. 3. The phases of the systematic review process.

(iii) the Reporting Phase, to deliver an overall presentation and the peer review of the system-
atic review.

Each of the systematic review phases is detailed in the next subsections.

3.1 Phase 1: Planning the Review

Phase 1 involves two stages, the first of which clarifies the need and the novelty of the systematic
review, and the second concerns the drawing up of the review protocol.

Stage 1.1: Identification of the Need for a Systematic Review
The first stage of the Planning Phase is the identification of the need for a Systematic Review. The
study of SC in the Data Science context is an interesting topic and there is an abundant amount
of related articles, which is growing exponentially as is documented in Section 4. Several litera-
ture studies were referenced in the Introduction with regard to IoT, big data, data analytics, and
SC (methodologies, architectures, models, etc.). Nevertheless, none of them focused on this ar-
ticle’s objective with regard to connecting the pieces between data science and SC or explicitly
investigating data harvesting and data mining under the SC lens, while no similar work could be
located.

Stage 1.2: Development of the Review Protocol
It is the most crucial stage of the process since it analyzes and describes the actions that have to
take place before the Conducting Phase. The review protocol is refined during the entire process
of the systematic review. Thus, in this stage the emerging research questions, the search strategy,
and the selection criteria are discussed and identified.

3.2 Phase 2: Conducting the Review

In the Conducting Phase the actions that are delineated in the Protocol Development Stage
(Phase 1) are carried out. The stages of this phase follow a sequential flow which can iterate since

ACM Computing Surveys, Vol. 51, No. 5, Article 103. Publication date: December 2018.
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many activities which initiate at the protocol development stage need to be refined as the review
is implemented.

Stage 2.1: Identification of Research
This is a pivotal stage in every systematic review since the research questions which drive the
review’s goals are defined under the consideration of three major views:

(i) the Population that corresponds to the individuals or records of the investigation topic
(e.g., studies related to data analysis on SCs);

(ii) the Interventions that addresses the alternative approaches and methods to the topic
and/or their comparison (e.g., data analytics methods, smart services); and

(iii) the Outcomes that reflect results and factors, which can be used for the interventions’
comparison (e.g., algorithms, smart applications).

As described in Section 2, the several issues with respect to the cycle(s) of data production, data
harvesting, and data mining in the SC context, raise many challenges which are addressed in this
review by setting the most important next research questions:

RQ1. How many research studies exist that address the data harvesting and the data mining
processes in SC?

RQ2. Which methods were used for the harvesting and mining of urban data?
RQ3. Which smart services utilize urban data in smart cities?
RQ4. What are the most common sources and types of storage of urban data?
RQ5. Which smart applications utilize or produce urban data?

These questions are adapted to the following review protocol since research question RQ1 is
associated with the Population perspective, questions RQ2 and RQ3 are related to the Interventions
perspective, and questions RQ4 and RQ5 cover the Outcomes perspective.

Stage 2.2: Selection of Primary Studies
The common methods for searching articles are the following: (i) the manual search in specific
journals and conference proceedings, (ii) the broad automated search in digital libraries, (iii) the
snowball technique (backward or forward), and (iv) a combination of the upper methods [53]. Our
search strategy was based on the broad automated search in digital sources and was carried out
in the time period June–August 2017 focusing on the articles that have been published in journals
and conferences. This method, in spite of its disadvantages (time—consuming procedure, irrelevant
articles), is exhaustive and impartial as includes all the possible results regardless of the mean of
publication. The selection of the most appropriate digital sources (digital libraries and indexing
systems) and the determination of the search terms are necessary for the implementation of the
broad automated search method.

The sources that were used in the present review were the following indexing systems and dig-
ital libraries due to their wide and universal adoption in the academic communities and their free
access given to academia [54–56]: Google Scholar;21 Scopus;22 IEEE Xplore;23 and Science Direct.24

According to Brophy and Bawden [57], Google Scholar offers coverage and accessibility and the
digital libraries (IEEE Explore, Science Direct, etc.) are preferred for the results’ quality, while both
of them are accurate. Taking into consideration these findings and in order to get the best possible

21https://scholar.google.gr/.
22https://www.scopus.com/home.uri.
23http://ieeexplore.ieee.org/Xplore/home.jsp.
24http://www.sciencedirect.com/.
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search and collection of the existing research articles related to our study, the two search systems
were combined.

The search in the aforementioned digital sources was carried out using appropriate search
strings combined with Boolean operators following the guidelines of Spanos and Angelis [53],
who have explained, in their work, that “the determination of search terms is an iterative proce-
dure starting with trial searches using different search terms, considering an initial set of articles
that is already known to belong to the research field of the systematic review. The procedure of de-
termining search terms ends when the initial set of already known articles is found by the search.”
In our case, the search terms were used «“Data Harvesting” AND “Smart Cities”» and «“Data Min-
ing” AND “Smart Cities”». The search has been conducted for the period 1996–2017, as the notion
“smart city” has first appeared in 1996 according to [57, 1], and was based on the title, the keywords,
and the citations of the articles to get the most relevant articles as search results.

This stage is completed by the setting of the appropriate and well-defined inclusion/exclusion
selection criteria according to which the candidate articles are evaluated and the final sample of
the included articles is determined. In our case, the selection criteria are the following:

—Inclusion Criteria
(1) Articles published in Journal/Conference which correspond to at least three articles from

those found during the selection. This criterion applies only to the search string «“Data
Mining” AND “Smart Cities”».

(2) Articles that perform at least one study that analyzes the data harvesting processes/data
mining processes on SCs.

—Exclusion Criteria
(1) Articles performing studies related to smart services and not to SCs.
(2) Articles performing studies referring only to data harvesting/data mining processes or

only to SCs.

Stage 2.3: Study Quality Assessment
According to Kitchenham [50], the Quality Assessment of articles is very difficult and depends on
various factors. The adoption of additional criteria is needed to make certain of the high-quality
level of the included articles in a systematic literature review. The quality assessment criteria,
which should be covered at least in part, for an article to be included in the present study were
related to the following:

(i) the description of the data, i.e., description and documentation of the terms, methodolo-
gies, surveys, or results that presented or cited in the article (e.g., datasets, data mining
algorithms, smart applications, other studies used in this article);

(ii) the availability of the data, i.e., information on access to aforementioned used data (e.g.,
URLs, DOI, databases, organizations that provide data);

(iii) the description of the used methodology, (i.e., detailed description and documentation of
the methodology steps by citing fundamental axioms, rules);

(iv) the presentation of the results (i.e., comprehensive and coherent presentation using graphs,
tables).

Stage 2.4: Data Extraction and Synthesis
During this last stage, valuable information is extracted from the final sample of articles, which
remained after “screening” and can provide answers to the above Research Questions. This knowl-
edge is built on the exploitation and synthesis of the useful data features selected manually by each
inserted article. For their convenient processing and synthesis, this data is encoded by the using
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Fig. 4. Selection process of the articles final sample.

some data features. The data features extracted from each article, based on our Research Questions,
are listed below:

(i) Authors, publication source, and year of publication (RQ1).
(ii) Type of article (Journal/Conference) (RQ1).

(iii) Data harvesting and analysis methods (RQ2).
(iv) SC dimensions and SC services (RQ3).
(v) Urban data sources and urban data types (RQ4).

(vi) Smart applications (RQ5).

The sequential execution of the stages of the Review Protocol extracted a final set of articles of
our review. The results for the search terms «“Data Harvesting” AND “Smart Cities”» and «“Data
Mining” AND “Smart Cities”» are depicted in Figure 4.

With regard to “Data Harvesting” AND “Smart City,” 50 candidate articles were found, by per-
forming the initial search process (Figure 4(a)). The “screening” process left out five irrelevant
articles. After studying the remaining articles, 13 more were removed as irrelevant based on the
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Fig. 5. Rate of published articles (yearly).

inclusion/exclusion and the quality assessment criteria. Consequently, 32 articles synthesized our
final sample.

Similarly, “Data Mining” AND “Smart Cities” led to selection of returned 767 candidate articles
(Figure 4(b)). This set was classified according to the publication type in Journal Articles (341) and
Conference Articles (426). The Inclusion Criterion 1 resulted in a subset of 117 journal and 142 con-
ference articles that remained for further analysis. Their careful analysis excluded 40 journal and
47 conference articles as irrelevant according to the inclusion/exclusion and quality assessment
criteria. In the end, 77 journal and 95 conference articles structured the final sample.

The data features derived from the remaining set of articles and their synthesis are presented
in detail in the Sections 4 and 5.

3.3 Phase 3: Reporting the Review

The Reporting Phase concerns the final presentation and the assessment of the systematic re-
view’s results. The clarification of the systematic review’s contribution depends on the effective
presentation of its results to readers. Hence, the completed review should be documented, properly
structured, and well-written with coherent text flow.

4 SYSTEMATIC REVIEW RESULTS

This section outlines the survey findings and it is organized in two subsections. Section 4.1 sum-
marizes the initial sample of articles and answers to RQ1, which concerns the number of articles
addressed to data harvesting and data mining processes, while Section 4.2 offers a general overview
of the outcomes of the investigated articles.

4.1 Quantitative Analysis

Results to the response to RQ1 are depicted in Figure 5, which summarizes the corresponding
amounts of works that address data harvesting (DH) and data mining (DM) with regard to SC.
Studies with regard to DH in SC start appearing in 2010 and increase slowly until 2016 (21 articles),
with a scholars’ focus on data analytics omitting the previous stages of collection, processing, and
storage. Results scale up with regard to DM and SC: only a few studies (between 1 and 6) were pub-
lished on an annual basis during 2000 and 2010. Nevertheless, they emerged radically and reached
the amount of 315 articles in 2016, which was double the number of 2015’s publications. Such re-
sults demonstrate an increasing corresponding interest of scholars, which utilize DM in SC in an
attempt to collect and analyze urban information with several methods and algorithms. Most of

ACM Computing Surveys, Vol. 51, No. 5, Article 103. Publication date: December 2018.



A Systematic Review for Smart City Data Analytics 103:13

Fig. 6. Number of published articles for «“Data Mining” AND “Smart Cities”» search term per digital library
and per year.

Fig. 7. Proportions of articles per publication source in period 1996–2016.

the articles were collected from Google Scholar® (92.5%), while Scopus® (4.95%), Science Direct®
(1.95%), and IEEE Explorer® (0.65%) follow (Figure 6). With regard to corresponding publishers
(Figure 7(a)), Springer journals have published the majority of articles (27%) followed by Elsevier
(22%) and IEEE (19%). On the other hand (Figure 7(b)), IEEE “leads the race” of conference orga-
nizers (65%), followed by ACM (17%). More specifically, the most attractive conference series for
DM and SC appear to be ISC2 (23 articles), WAINA (8 articles), SMARTCOMP (8 articles), WF-IoT
(8 articles), INFOCOM (8 articles), and UbiComp (7 articles).

4.2 Qualitative Analysis

From the original sample and following Kitchenham’s methodology, we came up with the selection
and study of 204 articles. The keywords of the investigated articles were used for the creation of
the tag cloud depicted in Figure 8 in order to get a general overview of the review’s outcomes
[58, 59]. The tag cloud illustrates the topics/terms where scholars pay attention in the domain of
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Fig. 8. Tag cloud of the investigated articles’ keywords.

Data Science (DM and DH) and SC. Findings show that scholars are mostly interested in “IoT” and
“smart mobility,” while “crowd-sensing” and “smart living” are also topics of interest. Additionally,
works appeared to focus on “open data,” “big data,” “data mining,” “Online Social Networks (OSN),”
“smart governance,” “smart environment,” “smart people,” and “cloud computing.” The accurate
results of the survey are presented in detail in Section 5.

The tag cloud (Figure 8) depicts and highlights the intensity of such activities in specific cities,
the majority of which come from Europe: Santander, Aarhus, London, Copenhagen, Prague,
Barcelona, Dublin, Madrid [60–63] and Italian cities (Rome, Cesena, Bologna, Florence, Lecce,
Turin, Murcia, Trento) [64–69] appear as SC cases. Then, references appear for U.S. cities (Man-
hattan, Newark, NYC, Chicago, San Francisco) [70–72]. Asia follows (Kyoto, Xian, Beijing, Taipei,
and Singapore) [73–76]. Finally, the city of Melbourne, Australia, has also been studied [77, 78].

5 DISCUSSION: FROM SYSTEMATIC REVIEW TO TAXONOMIES

The thorough study of the 204 investigated articles and the synthesis of extracted data features (see
Stage 2.4, Section 3) have led to the responses to the research questions (RQ2, RQ3, RQ4, and RQ5)
raised in Section 3. The above systematic review and its results have offered the insight to proceed
with further analysis in order to extend the systematic approach with a contextualized representa-
tion which would classify and order the involved data types, the methods, and the services offered
in SC. Since taxonomies are a well comprehended and valuable tool for such a contextualization,
it has been chosen as a “tool” to highlight knowledge and insights in terms of data production,
sources devices, and analytics methods in the SC context. Thus, the effort for the systematic pre-
sentation of rich and significant outcomes of the review have driven the definition of taxonomies
that will offer knowledge and insight in terms of urban data production and data processing and
analysis methods in the context of SC. Each of the taxonomies was built according to the steps in-
troduced by Bennett and Lehman [79], while it classifies and presents findings in a systematic and
scalable manner. The novel “D,” “M,” and “S” taxonomies that concern individual taxonomies for
data production, data analysis methods, and smart services, respectively, return the unified “DMS”

ACM Computing Surveys, Vol. 51, No. 5, Article 103. Publication date: December 2018.



A Systematic Review for Smart City Data Analytics 103:15

Fig. 9. Articles per data source.

taxonomy. Each of “D,” “M,” and “S” taxonomies corresponds to the components (data production,
data analytics, services) of Figure 2(b) which depicts the city as a “data engine.”

The current section is organized as follows: Section 5.1 outlines the findings that concern the
urban data production in SC and answers to RQ4 and RQ5. Section 5.2 presents the DH and DM
methods used so far to exploit urban data and answers to RQ2. Section 5.3 discusses the identified
smart services and answers to RQ3. Section 5.4 completes Section 5, presenting three use case
scenarios of “DMS” taxonomy highlighting its usefulness.

5.1 The “D Taxonomy”: Urban Data Production

Literature review results contain important information that deals with urban data production
(sources and types) and answers to RQ4 and RQ5. More specifically, according to the collection
method (Section 2.2.1), data sources can be distinguished in (i) IoT devices and (ii) crowd-sensing
processes. Results validated these classes (Figure 9) and showed that IoT is the most usual source
(42.6%), followed by crowd-sensing (22.05%). Nevertheless, both the sources can be combined in
the urban context according to scholars (21.60%). On the other hand, some works claim to use
“open data” (4.90%) as a data source, while the rest (8.80%) combine all three data sources.

The study of the literature has shown that there is a rich variety of urban data sources that
exhibit common features. Taking advantage of these features, we have developed the novel “D
taxonomy” (Schema 1), which describes in a systematic manner all the sources of urban data and
the types of data that were found. Each level of hierarchy in taxonomy is depicted in a different
color, with the highest levels being more general and the lower the more specific. According to
our taxonomy, the urban data may be raw data that comes directly from (i) various devices, (ii)
network infrastructure, (iii) applications, or can be processed datasets that come from other data
sources such as censuses, surveys, data providers, or systems (ITS systems, Geospatial Information
Systems (GIS) systems, etc.).

“D taxonomy” (Schema 1) attempts to describe the sources and the types of data that literature
evidence provides. Different colors are used to depict each of the hierarchical levels in the tax-
onomy, with the highest levels being more generic and the lower more specific. Urban data may
be raw streams that are collected directly from (i) various devices, (ii) network infrastructure, and
(iii) applications; or can be processed datasets that are collected from other sources such as censuses,
surveys, data providers, or information systems (e.g., ITS, GIS).
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Collected data can be in text, numbers, image, audio, or video format and can be accompanied by
descriptive metadata. According to the type of data source, metadata concerns time, measurements,
records, unique attributes (ID, MAC address), social media data (posts, links, photos), and so on. Fi-
nally, collection can be continuous (systems and applications); periodical (sensors/actuators/RFID);
or offline (i.e., surveys, statistics).

Devices
Three types of data collection devices appeared in literature:

(i) Fixed, which are located at specific places (e.g., buildings, streets, dumpsters), and
(ii) Moving, which are installed on a vehicle or other moving objects, or it is held by humans

(e.g., mobile devices, wearing computing).
(iii) LiDAR (Light Detection And Ranging) can be either static or moving [2, 63].

Fixed devices concern smart meters, sensors and actuators, cameras, and Radiofrequency Iden-
tity (RFID) readers. They can all be used to sense, measure, and record data with regard to mobility,
environment, and living SC dimensions [79–89].

On the other hand, moving devices offer flexibility and additional options. Mobile phones and
tablets, wearable devices, Quick Response (QR) Codes and drones, as well as sensors, cameras, and
RFID tags, again, belong in this class [74, 90–94, 95].

Network Infrastructure
Network infrastructure interconnects devices and it is distinguished, again, in (i) fixed infrastruc-
ture and (ii) moving infrastructure.

Fixed infrastructure is installed in specific places and concerns Local Area Networks (LAN) and
Wide Area Networks (WAN) [96]; Beacon networks (RFID tags, NFC, etc.) [97–99]; and wireless net-
works (WiFi, 3G, 4G, etc.) [100, 101]. They all enable citizens’ interaction, social networking, and
transportation services, while they support urban planning and smart grid operation [102, 103, 61].

Moving infrastructure, on the other hand, concerns Mobile Ad-Hoc Networks (MANET) that are
used for wide-scale urban monitoring [64], and Vehicle Mobile Networks (VANET) that enable ITS
deployment [65, 79, 104, 105].

Applications
Cutting-edge ICT (e.g., Web 3.0, new programming languages, flexible data storages, powerful ICT
tools, ubiquitous networks) have enabled the development of web and mobile applications, which
provide the community and its stakeholders with visualized information and services within the
urban space. Scholars in the analyzed literature introduced web platforms (e.g., Open Street Maps,
Google Earth, Baidu) to visualize open data [94, 106–108] while others have developed web plat-
forms (e.g., CAPIM platform, OpenIoT platform) for real-time processing and visualization of raw
data by using cutting-edge data analysis tools [109, 110]. As regards the mobile applications, some
of these offer visualized information resulting from the processing of data [111, 112] while oth-
ers are used as crowd-sensing applications [107, 113–116]. Furthermore, social media (Foursquare,
Twitter, Instagram, etc.) constitute an important urban data source, which in the absence of their
users many times, used for recording of human activity and sentiment and opinion [66, 70, 71, 117,
118].

Other Data Sources
Several datasets can be also available and utilized within the context of a SC: historical data from
surveys and interviews; statistical data with regard to local demographics and activities; processed
datasets from service providers (e.g., city utility and telecommunications providers, energy sup-
pliers) and information systems (e.g., ITS, GIS); and official reports (e.g., from local and national
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authorities, from the Organization of Economic Cooperation and Development (OECD), European
organizations) are such datasets [119–123]. Some corresponding examples come from Llacuna and
Ibnez [124], who analyzed data from questionnaires for urban planning processes; Li et al. [125] ex-
amined the fiber-optic network in the city of Hankou with GIS data and tools; Calegari et al. [126]
used several local and regional data sources in the city of Milan, Italy to recognize the emerging
affinities; Balasubramani et al. [108] used datasets in the city of Chicago to help city administrators
in decision making; while several scholars present cases where data from heterogeneous sources
were combined for interdisciplinary studies and for smart applications’ development [127–140].

5.2 The “M Taxonomy”: Data Analysis Methods

DM and DH processes can follow different techniques and algorithms, which concern the “M Tax-
onomy” (Schema 2). The “M Taxonomy,” which is depicted with the same coloring and hierarchy
as the “D taxonomy,” constitutes the answer to RQ2.

5.2.1 DH Pre-Processing. DH is usually being performed with the collection of data from vari-
ous devices and with web scraping.

The collected data is being pre-processed for quality improvement purposes. Alternative pre-
processing methods and techniques can be followed: noise filtering, missing value filling, Principal
Component Analysis (PCA), data swapping, data interpolation, data discretization, and data com-
pression techniques can be applied on numerical data coming from various sensors [77, 141–146].
Moreover, several techniques can be associated with text data reduction (duplicates’ removal and
aggregation), data cleaning (data annotation), and data transformation (token filtering, out-of-words
filtering, location filtering) [99, 132, 147–152]. Data reduction and integration techniques can be ap-
plied to consolidate heterogeneous data from different data sources [2, 144, 153–155].

Literature evidence shows that structured data that is being retrieved from sensors, censuses,
data providers, or other sources is usually stored in relational databases (SQL) (Microsoft SQL Server,
PostgreSQL, Oracle Database, and Sedna), while semi-structured and unstructured data from the
Internet is stored in non-relational databases (NoSQL) (MongoDB, HBase, and CouchDB) [65, 83,
108, 118, 156–161]. Data that describes ontologies and RDF (Resource Description Framework)
graphs is usually stored in Graph Databases (AllegroGraph, Apache Jena, Virtuoso, Oracle Spatial
and Graph, Graph DB, and Neo4j [162–164]). In addition to traditional databases, cloud databases
(i.e., Microsoft Azure®) are very popular since they provide scalability, flexibility, and share ability,
and are being used by a plethora of applications [78].

5.2.2 DM Pre-Processing and Processing. Several DM pre-processing and processing techniques
and methods can be located and their usage ranges [42, 44, 48] according to the type and model of
the data, the type of data store, and the processing objectives. Statistical methods and descriptive
and predictive data mining techniques are commonly used to exploit spatial, temporal, or other nu-
merical data such as measurements, coordinates, movements, recordings, call detail records, demo-
graphics, and so on. Central tendency, dispersion measures, and similarity measures are useful for
investigating the characteristics and the similarities of the datasets; Log Linear models are suitable
for the analysis of the relationship between categorical or quantitative variables [165, 166]; while
Linear Discriminant Analysis and Scale Linear Discriminant Analysis are associated with classifi-
cation problems [90, 167]. With regard to the descriptive DM techniques, many researchers have
used clustering methods such as Temporal Data Mining, Density-based Spatial Clustering, and Par-
titional and Agglomerative Clustering [66, 90, 93, 98, 126, 147, 159, 168–174]. More specifically, the
Symbolic Aggregate ApproXimation (SAX) algorithm was used for the transformation of time-series
into strings and the T-Density-based Clustering algorithm (T-DBSCAN) was developed for the tra-
jectory segmentation of GPS data [62, 175–177]. Additionally, predictive DM techniques, such as
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Fig. 10. Articles per smart dimension.

C4.5, RIPPER, CART, and Naive Bayes algorithms define a tree of options under decision-making
purposes [82, 178–181].

Similarly, many algorithms from the Machine Learning field can be utilized for DM, such as
the Latent Dirichlet Allocation and the Expectation Maximization algorithms from Clustering tech-
niques; the k-Nearest Neighbor, Support Vector Machine, and AdaBoost algorithms from Classifica-
tion techniques; and the Apriori algorithm from Association Rules [74, 89, 97, 103, 117, 144, 145,
182–189].

Apart from the traditional DM methods, advanced mining methods enable the exploitation of
all types of heterogeneous data: RDF graphs, ontologies, XML mining, and social network mining
algorithms constitute valuable tools for the Semantic Web data analysis. Ontologies are used to
organize knowledge and to explore relationships, while social network mining reveals the links
between the actors define behavioral patterns [63, 168, 191–199]. Text mining methods that were
identified concern the Centroid-fee Sequence algorithm and Maximum Entropy Classifier [197].

Visualization methods and tools extract knowledge from urban data easily and quickly. Tensor-
Flow graphs can be used for computation visualization; tag clouds for text visual representation;
and heat maps for colorful, graphical representations [118, 158, 168, 200–203].

Finally, some DM processing methods have been located in the fields of Artificial Intelligence
(Learning Real-time A* (LRTA*) algorithm), Fuzzy Logic (Genetic algorithms, Any Relational Clus-
tering (ARCA) algorithm, FTI-Apriori algorithm, Gustafson–Kessel algorithm), and Artificial Neural
Networks (Backpropagation algorithm) [175, 204–209].

5.3 The “S” Taxonomy: Smart Services

Smart services concern the “products/services” that the SC delivers to its stakeholders via its soft
or hard facilities and aim to enhance the quality of life within a city, and in this respect to improve
city’s “livability” [1]. These services concern a “core element” of SC, since they support the real-
ization of urban “intelligence” in terms of the SC six dimensions (people, economy, governance,
environment, mobility, and living) [1, 2]. Literature findings (Figure 10) demonstrate that the ma-
jority of the works are associated with smart mobility services (33.33%), followed by services that
address a combination of SC dimensions (30.40%). In addition, 23 studies (11.30%) deal with smart
living, while smart people, smart governance, and smart environment dimensions have been dis-
cussed in 18 (8.83%), 17 (8.30%), and 15 (7.35%) articles, respectively. Finally, only one article (0.49%)
deals with smart economy dimension.
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The identification and classification of all smart services by dimension, led to the deployment
of the “S taxonomy” (Schema 3), which answers to RQ3.

Smart Mobility
Urban requirements for safer, more efficient, and sustainable mobility [210, 211] have led to nu-
merous innovative applications and systems for the estimation of trip duration, optimal route’s
identification, and weather conditions’ prediction [144, 159, 212–214], and for public and person-
alized transportation information services [98, 170, 215–218]. Additionally, city’s traffic manage-
ment concerns another challenge for the local governments and corresponding stakeholders [109,
129, 219–221]. Furthermore, a lot of researchers have designed applications for car, ride, and taxi
sharing in order to improve traffic conditions and minimize costs and generated emission [67, 208,
222, 223]. Finally, some applications deal with taxi services [91, 224] and flexible demand-oriented
public pub services [175, 225].

Smart Environment
Pollution, climate change, and sustainability are some environmental challenges that have been
seen in the examined literature: real-time monitoring and management of public infrastructures,
smart grids, smart buildings, and smart lighting systems are some of the corresponding smart ser-
vices [179, 192, 226–228]. Furthermore, energy efficiency [229] and emission and waste monitoring
and management [86, 89, 195, 230, 231] are also of scholars’ interest.

Smart Governance
Transparency and community’s engagement can be enabled by ICT and corresponding services
are seen from the government’s perspective [1]. Open data portals, public consultations, service
co-design and simplification, and agencies’ responsiveness [108, 201, 232–234] concern some of the
corresponding smart services. Moreover, urban planning has been simplified from data analysis
[73, 235, 236], while crowd management and effective responses on emergency issues [117, 147,
202, 237] are of high interest too.

Smart People
This dimension deals with social and human capital including the level of qualification, participa-
tion, and lifelong learning. Crowd-sensing is one of the identified data sources that can be utilized
in this regard [113, 196, 238–241]. Additionally, co-creation and living labs [35, 242, 243] can be
also located as useful tools. Furthermore, community detection, human dynamics, and behavior
have also attracted scholars’ attention [244–249]. Finally, Lenz et al. [250] have analyzed intelligent
learning and evaluation mechanisms in schools and universities with wearable devices.

Smart Living
This class of services deal with urban facilities (e.g., parks, swimming pools, shopping centers,
universities) [84, 106, 181, 200, 251, 252]; cultural events and activities, and touristic paths that
make the city attractive to visitors and tourists [69, 98, 253]; safety and emergency [143, 254, 255];
and health and care [71, 82, 256, 257].

Smart Economy
Smart economy addresses local growth and how it can be achieved based on the digital economy,
entrepreneurship, flexibility of labor market, logistics, and so on [258, 259].

Combination of Smart Services
DM and DH can be utilized for smart services that deal with more than one SC dimension. For
instance, transportation produces emissions (NOx, CO2 PMs, etc.) that harm the environment [260,
261] and affect the local quality of life and a community’s health [262, 263]. On the other hand,
public safety deals with smart living and smart governance [197, 265, 266]. Furthermore, citizens’
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engagement is part of the smart people dimension but it is influenced by the openness of local
governance. In this respect, several works combine more than one smart dimension [180, 267,
268].

5.4 Scenarios for Taxonomies Uptake

The proposed DMS taxonomy summarizes systematically the relevant literature of the previous
years and aims to become a vital “tool” for stakeholders (i.e., researchers, developers, engineers,
local authorities). The “DMS” taxonomy is scalable and offers the basis for classification of future
work, in order to achieve a better understanding of the emerging SC literature which scales up and
evolves rapidly. Many use cases and scenarios can flourish based on the proposed taxonomy set as
indicated next with three different indicative scenarios which exploit the unified DMS taxonomy
set.

Use Case 1: Industrial Domain Exploitation
A Senior Engineer works in company “X,” which is specialized in the fields of engineering design
and prototyping, electronics, and communications and software solutions. Since the company par-
ticipates in research projects, he is interested in proposing a new application for SCs, which should
be attractive and innovative to convince the project reviewers to fund it. Since he is responsible for
submitting the proposal, he can use the “DMS” taxonomy to save time and effort. Starting with “S”
taxonomy, he can easily identify which smart services have been developed so far, and depending
on the project’s objectives, he can decide on which dimension it will focus on. Considering that
he chooses to develop an application for the environment—and in particular to control the quality
of water in a lake—he can use the “D” taxonomy to identify which data sources have been used so
far and which ones fit in his case. Then, after deciding to use fixed submerged measurement sen-
sors, he has to discuss with the Software Engineer how they will collect, process, and exploit the
data that will be generated. The Software Engineer, in his turn, using the “D” and “M” taxonomies,
can identify the type of generated data and decide which storage means and which methods of
pre–processing and analysis are suitable for his purposes. X’s work team, following the above
simple procedure, combined with the use of the article that is more detailed, can easily design and
implement the new application.

Use Case 2: Academia and Scientific Advancing
A PhD student and an early-stage researcher in the Department of Informatics with research inter-
ests regarding the study of intelligent cities in the light of the Data Science, with a careful reading
of this article, can gain considerable insight into the subject of her dissertation, as it summarizes
all the relevant bibliography concerning the years 1996–2017. She, using the “D,” “M,” and “S” tax-
onomies, can easily understand how data is produced, processed, and exploited in SC, as well as
she can identify, directly, the research gaps. Also, she can exploit that the literature was investi-
gated in this article, and study in depth, depending on her interests, the urban data sources, the SC
dimensions and services, as well as the urban data processing and analysis methods. Finally, she
can identify publishers, journals, and conferences related to her dissertation. Thus, she will save
valuable time, her work will be facilitated, and she will focus on bridging the research gaps and
addressing new challenges in the SC era.

Use Case 3: Local Government Agency Adoption
A technical advisor of C city’s mayor and the city council have recently decided to take action to
turn their city into a SC. He, in collaboration with the Technical Services and the ICT department
of the municipality, should examine the city’s weaknesses and opportunities and propose smart
services taking into account the existing infrastructure and implementation costs. He, by taking
a look at “S” taxonomy, can get ideas for the smart services that have been developed so far to
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Table 1. Articles Per Resource

Resource “data harvesting”
AND

“smart city”

“data mining”
AND

“smart city”
Initial
results

Articles after
screening

Initial
results

Articles after
screening

Google Scholar 44 24 1,330 548
Scopus 1 1 73 69

IEEE Xplore 0 0 27 10
Science Direct 4 4 17 11

choose which ones fit in his case. Having decided on the service to be developed, he will discuss
his idea with his colleagues, who can utilize the “D” and “M” taxonomies. The chief of technical
services, utilizing the “D” taxonomy, will decide the choice of hard facilities (i.e., sensors, applica-
tions, networks), while the head of the ICT Department, utilizing the “M” taxonomy will choose
the soft facilities (i.e., storage means, urban data processing, and analytics methods). In this way,
the municipal team, taking advantage of the unified “DMS” taxonomy, will be able to easily and
successfully meet the mayor’s expectations for a SC.

6 ONGOING STATE-OF-THE-ART AND TRENDS

Since this systematic review covered literature analysis before the end of 2017, results of published
work until the end of 2016 are summarized above, and the ongoing published work is presented
here to indicate the current state-of-the-art and its trends. The review of current year has iden-
tified ongoing scholars’ trends with regard to data and SC. The same keywords were used and
the literature evidence that was published until December 2017 has followed the same process
as above. Nevertheless, the outcomes were not incorporated directly in the previous analysis be-
cause many conferences were still under their publication process, while several journal articles
delay with regard to their publication and/or are even published the following year. Despite their
exclusion from the above analysis, literature findings of 2017 were examined with regard to publi-
cations’ number, focus, and trends. Table 1 presents the corresponding findings, which show that
publications kept on emerging during 2017 and doubled compared to 2016, a fact that validates the
importance of this article’s problem and an increasing scholars’ interest in data science and SC.
The “screening” process of the articles followed the same inclusion/exclusion criteria that were
followed before and left out articles irrelevant to the purposes of this study.

The articles extracted for 2017 were examined in brief and not in the same detail as the publi-
cations from the past years of study but, some interesting findings were generated that are quite
similar to the previous outcomes. More specifically, several journals from the same publishers ap-
pear to host corresponding works, while works with regard to DH/DM and SC were presented
in some new conferences (e.g., ADHOC-NOW, MobileCloud, HealthINF, IISSC, IEEE International
Conference on Smart City and SmartGreens, International Conference on Web Intelligence, Smart
City Symposium Prague, International Smart Cities Conference). With regard to the context of the
articles, scholars keep paying attention to similar types of data collection resources (IoT and crowd-
sensing), while their works adjust to the generated DMS taxonomy. Only some new types of smart
services were identified, which concern smart food [269] that belongs to smart living dimension;
transportation resilience [270] that addresses smart mobility dimension; energy usage patterns for
load prediction [271, 272] that deals with smart environment and smart governance dimensions;
indoor space quality as related with smart buildings and is measured by human behavior [273];
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and crime prediction via criminal behavioral analysis [274], which belongs to the context of safety
in the smart living dimension. Scholars again, follow similar data collection methods, storage re-
sources, and analysis techniques/algorithms, facts that validate the accuracy of the identified DMS
taxonomy. Big data and open data still attract scientific attention but, some new trends appeared
from this brief analysis, which can be summarized in the following:

—There’s an increasing shift from SC smart dimensions to SC smart services: more specifically,
more and more scholars (i.e., [269, 270, 275–277]) do not discuss the SC architectural dimen-
sions and the corresponding indexes. Instead, they prefer discussing smart services (health,
food, traffic, buildings, waste management, etc.) that are fed with DH and DM techniques.

—Emerging topics appear regarding user behavioral analysis (e.g., [274, 278–283]) and cyber–
physical systems analysis (e.g., [269, 284]).

7 CONCLUSIONS

This article dealt with SC analytics under the assumption of SC being a “data engine.” Since data
concerns one of the primary components of the SC architecture, which plays a significant role
for SC to achieve in its mission, it is of high interest to understand how, where, and why data
is produced, collected, stored, processed, mined, and visualized within the urban context. This
problem is of high interest for both the Data Science and the SC domain, due to the emerging
literature evidence with regard to data and SC. In this respect, this article attempted to perform a
comprehensive bibliographic analysis, which is missing from literature and that could connect the
pieces between Data Science and SC. Due to the broad scope of Data Science, this article focused
on Data Harvesting and Data Mining in SC.

For the purposes of this review, the authors followed the Kitchenham [50] method: the authors
defined broadly accepted bibliographic resources, which were crawled with relative keywords for
an extensive time period (1996–2016), while even articles from the ongoing 2017 were collected.
A screening process left out irrelevant works and a detailed study of the remaining articles was
performed. The overall process attempted to provide with answers five research questions (RQ1–
RQ5), which were relative to the purposes of this article. Results show that an emerging number
of articles has been published (Figure 5) since the initial appearance of SC in literature, while more
attention is paid on DM instead of DH in the urban context (RQ1). Due to the broad context of
the identified evidence, the remaining research questions (RQ2–RQ5) have been answered with
an identified taxonomy (“DMS”). This taxonomy demonstrates broad sources and types of stor-
ages for the generated urban data (RQ4), which mainly deal with IoT and crowd-sensing. Quite
often, these two sources are combined in order to obtain more data which are complementary or
interrelated. Of course, the proliferation of smartphones, wearable devices, and the development
of mobile applications have contributed decisively to the spread of crowd-sensing. On the con-
trary, open data, despite the efforts made to promote them, are scarcely used. Additionally, several
collection/storing/mining methods appear to be preferred by scholars (RQ2), while even more are
under investigation.

With regard to the collection and analysis of urban data, our research has revealed that an effort
is being made for the real-time collection, processing, and analysis of urban data to allow imme-
diate monitoring of life in cities and facilitate the decision making. In this respect, urban data
is collected and exploited using conventional DH and DM methods and techniques. The deploy-
ment and use of NoSQL and cloud databases, and the multi-purpose open source tools (Apache
Hadoop, TensorFlow Graphs, etc.) offer flexibility and facilitate the processing and analysis of this
data. Apart from the traditional DM methods, advanced DM methods such as text mining and web
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mining, as well as methods from other fields such as statistics, machine learning, visualization,
fuzzy logic, and artificial neural networks are used.

A continuous shift from SC smart dimensions to SC smart services appear in literature, which
keeps evolving in 2017, while all types of services are fed with collected data with a preference
to transportation, health, safety/emergency, and environmental services (RQ3). Finally, emerging
smart applications utilize and visualize open and big data that are being produced by sensors or
via users (crowd-sensing) in SC (RQ5), while trends show a preference to applications that analyze
human behavior for several purposes (e.g., environment, mobility, consuming).

Classifying the smart services, which have been developed so far, in the six proposed dimensions
of SCs proposed by Giffinger and Gudrun [10], it turned out that up to now particular attention was
placed mainly on the smart mobility and smart living dimensions. In the smart mobility case, an
abundance of services have been developed due to the many local authorities initiatives. In such
intitiatives, emphasis has been placed on smart mobility which largely facilitates transport and
leads to saving time and enhancing city’s energy efficiency (e.g., fuels, road maintenance costs),
combined with the relative ease of collecting mobility data (e.g., transfer cards, fixed devices on
roads). The multifaceted dimension of smart living has attracted the interest of both the public and
the private sector. Several applications have already been developed in the context of smart living,
which emerge and evolve because human needs and city trends are dynamic and unforeseen so
there are still several services to be developed. In the smart governance, smart people, and smart
environment dimensions, several services have also been deployed, but enhancements are still ex-
pected with future services (i.e., the ones dealing with self-service government, “we-government”
[1]). Finally, our results have shown that few studies and smart services are related to the smart
economy dimension. This deficiency may be due to the fact that this dimension is associated with
companies that do not disclose their business data, while the entire data economy can be consid-
ered that it concerns this SC dimension. Along with previous findings, our survey has revealed that
there is a tendency to combine smart dimensions in the study and development of smart services.
This is justified because dimensions are inextricably linked and interact with each other.

Some additional outcomes have been extracted from this study: most case studies in existing
literature can be located in Europe, while North America and Asia follows. This finding may vali-
date the continuous political support that SC gains momentum in Europe, which can be justified
by corresponding policies and funding opportunities (i.e., Horizon 2020, URBACT). On the other
hand, the wide context of methods and techniques for DH and DM, is further being encouraged by
the recent trends for cyber-physical systems and human behavioral analysis, while it leaves space
for corresponding products’ standardization.

The double size of the publications that have been located in 2017 generates a limitation for this
aticle’s findings, while it grounds a necessity for continuous update of the “DMS taxonomy.” On
the other hand, this emerging amount of corresponding publications justifies the importance of
this article’s findings and of the “DMS” contribution, since it can play the role of a “roadmap” for
researchers and practitioners who work in the domains of Data Science and SC. A further limitation
is that our findings resulted from the exploitation of the Kitchenham’s methodology and the use
of specific search terms selected according to the purpose of the current systematic review. The
findings will certainly be different in cases where (i) a different research approach or methodology
is adopted; (ii) different search terms are selected; and/or (iii) different inclusion/exclusion criteria
are set.

Beyond the role of the identified “DMS” to this study, the generated taxonomy offers signifi-
cant potentials to forthcoming scientific works: scholars can follow the traces that have already
been defined and even tested in several cities around the world in order to go beyond existing
state-of-the-art in terms of DH, DM, and SC. In this respect, this work’s results can be utilized for
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future works that will be performed by scholars who work in Data Science and SC. Some more
future thoughts concern the continuous update of “DMS” with the incorporation of detailed anal-
ysis even from 2017. Nevertheless, the emerging amount of corresponding publications (articles
in 2017 are double the size of those in 2016), makes this future process quite hard to be performed
and the existence of “DMS” to be very important. Due to the extensibility and flexibility of “DMS”
taxonomy, each stakeholder (e.g., researcher, developer), will be able to classify his/her work into
the existing categories of “DMS” or to add new categories (and subcategories), concerning new
sources and analysis methods of urban data and smart services. Thus, the “DMS” will be constantly
updated, the bibliography will continue to be ordered, and the research gaps will be recognized
quickly facilitating further research. Some future thoughts of this study concern the continuous
update of the taxonomies, as well as the testing with regard to the alignment of the identified
SC data utilization scenarios to these taxonomies. Moreover, trends like Complex Systems Sci-
ence on SC can be also investigated on the extracted outcomes with regard to SC dimensions and
services.
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