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ABSTRACT

In this thesis, the ground state energies of the hydrogen molecular ion Hj
and the hydrogen molecule H, are numerically evaluated using the
variational Monte Carlo method. The Case of the hydrogen molecular ion
H; and the hydrogen molecule H, compressed by spherical hard wall is
studied. Our study were extended also to include the HeH** molecular
ion. Finally, we have calculated the total energies, the dissociation
energies, and the binding energies for the hydrogen molecular ion H; and
the hydrogen molecule H, in the presence of external magnetic field in
the framework of a variational Monte Carlo (VMC) method. All cases of
our results exhibit good accuracy comparing with previous values using
different methods and different forms of the trial wave functions. In this
way we conclude that the applications of VMC method can be extended

successfully to cover other characteristics of molecules.
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SUMMARY

The aim of this thesis is to investigate the ground state characteristics of
the hydrogen molecule, the confined hydrogen molecule, the hydrogen
molecular ion and the confined hydrogen molecular ion in the absence
and in the presence of aligned magnetic field. For these purposes we have
applied the variational Monte Carlo method, which has been previously
applied successfully for the ground and excited states of the helium and
lithium atoms. The Metropolis algorithm has been adopted in our
calculations with the well known Born-Oppenheimer approximation.
Accurate and compact trial wave functions have been used for this
purpose.

The present thesis consists of five chapters and is organized as follows:

Chapter One

In this chapter we introduced the essential outlines of the topics
investigated in the present thesis, especially the history of the Monte
Carlo methods which are dealing with the atomic and molecular systems.
Also, we presented a historical review about the Schrédinger equation
and its applications in these two branches. This chapter is ended by the

literature review.

Chapter Two

In chapter two we have introduced the formulation of the variational
Monte Carlo (VMC) method which is based on a combination of the
variational principle and the Monte Carlo evaluation of integrals, using
importance sampling based on the Metropolis algorithm. Furthermore, we
have explained the Metropolis algorithm, its logical steps and its

acceptance and rejection ideas. Also, we have introduced the important



role of the trial wave function in the variational method generally and in

the variational Monte Carlo method especially.

Chapter Three

In this chapter we have used the variational Monte Carlo method to
calculate the ground state energies of the hydrogen molecular ion H5 and
the hydrogen molecule H, at different interproton separation distance.
The calculations were carried out in framework of the principles of the
Born-Oppenheimer approximation, the approximation which considers
the case of an infinitely heavy nucleus. We also presented in this chapter
a survey of the trial wave functions which are used in our calculations of
the energy eigenvalues of the different molecular systems tackled in this
thesis. Our calculations gave good results in comparison with the most
recent data and the comparison showed that the accuracy and efficiency
of the VMC method in calculating different molecular properties of

hydrogen molecule H, and its molecular ion H3 are very clear.

Chapter Four

This chapter is devoted to investigate the applications of the variational
Monte Carlo method to the calculations of the ground state energy of the
hydrogen molecule H, and the hydrogen molecular ion H5 confined by a
hard prolate spheroidal cavity. In these investigations the case where the
nuclear positions are clamped at the foci (on-focus case) is considered.
Also, the case of off-focus nuclei in which the two nuclei are not clamped
to the foci is studied. Accurate trial wave functions depending on many
variational parameters are used for these purposes. The results were
extended also to include the HeH** molecular ion. The obtained results

are in good agreement with the most recent results. In all cases our results
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exhibit a good accuracy comparing with previous values using different

methods and different forms of the trial wave functions.

Chapter Five
In chapter five we have applied the variational Monte Carlo method to

calculate the 1so, state energies, the dissociation energies, and the

binding energies of the hydrogen molecular ion H; and the hydrogen
molecule H, in the presence of an aligned magnetic field regime between
0 a.u. and 10 a.u. Our calculations are based on using compact and
accurate trial wave functions. The obtained results are compared with the
most recent accurate values and have shown excellent agreement with

these results.
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Chapter 1

Chapter 1

Introduction

The history of Monte Carlo methods goes back a long time. The generic
idea of random, or "stochastic", sampling is straightforward and
appealing in its elegance and has been used for centuries. Possibly the
first systematic application of statistical sampling techniques in science
and engineering was by Enrico Fermi in the early 1930's to predict the
results of experiments related to the properties of the neutron [1] which
had recently been discovered by James Chadwick in 1932.

In 1947, Stanislaw Ulam suggested to John Von Neumann that the
newly developed ENIAC computer would give them the means to carry
out calculations based on statistical sampling with hitherto unattained
efficiency and comparative ease [2]. Their coworker Nicholas Metropolis
dubbed the numerical technique "the Monte Carlo method™ parly inspired
by Ulam's anecdotes of his gambling uncle who just had to go to Monte
Carlo. Since the deployment of the ENIAC which could do about 5000
additions or 400 multiplications per second and occupied the size of a
large room, computing power has grown dramatically.

In the early 1970's, a computer design was introduced that had at its
heart an electronic component first introduced in 1958, a so-called
"integrated circuit". All of a sudden, a computer's Central Processing Unit
shrank from the size of a domestic refrigerator to that of a fingernail. The
number of transistors in a single integrated circuit kept growing at an
almost constant exponential rate since then, and with it grew the

computing power of the computer. In addition to that, miniaturization and
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the introduction of new materials allowed for equally dramatic increases
in computer's clock speeds.

For the recent CPU-computer devices, 2 billion double precision
floating point multiplications can be carried out per second which means
that the kind of hardware used these days as a word processor can do in
one second what used to take the ENIAC over two months. It is no
surprise, then, that by now the use of Monte Carlo (MC) methods has
become ubiquitous in science, technology and business.

Simulation techniques are used in: oil well exploration; stellar
evolution; electronic chip design; reactor design; quantum chromo
dynamics; material sciences; physical chemistry; nanostructure, protin,
and polymer research; operations research, e. g., when designing the
relationships and control mechanisms between raw materials input,
manufacturing, and delivery; ground and air traffic control systems
design; communication and computer system design and testing, e.g.,
network theory; bimolecular research, e. g., cancer drug design; all areas
of finance and insurance; weather forecasting (where it is referred to as
"ensemble forecasting™); and local authorities planning and
commissioning site.

Recently, Quantum Monte Carlo (QMC) have become a powerful tool
in Quantum Mechanics calculations because it provides a practical
method for solving the many-body Schrodinger equation. It is commonly
used in physics to simulate complex systems that are of random nature in
statistical physics. The term QMC refers to group of methods in which
physical or mathematical problems are simulated by using random
numbers.

QMC methods are ones of the most accurate for computing the

properties of liquids and solids for interacting Hamiltonians [3, 4]. These
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methods do not require approximation, and can be used to solve
Hamiltonians exactly.

MC methods can be used to simulate qguantum mechanical systems, but
are also well suited for calculating integrals, especially high-dimensional
integrals.

There are many versions of the QMC methods that are used to solve
the Schrodinger equation for the ground state energy of a quantum system
including the diffusion Monte Carlo (DMC) method [5], which is used to
solve the time-dependent Schrodinger equation. Another method is the
Green’s function Monte Carlo which has been extended [6] to multiple
states with the same quantum numbers. The simplest of QMC methods is
the variational Monte Carlo (VMC) method which has become a valuable
tool of the quantum chemist calculations.

Recently, VMC method was used widely to calculate both ground and
excited states for atoms and molecules. The obtained results are of good
agreement with the exact data. The major advantage of this method is the
possibility of freely choose the analytical form of the trial wave function
which may contain highly sophisticated term in such a way that electron
correlation is explicitly taken into account.

In general, QMC methods use a stochastic integration method to
evaluate expectation values for a chosen trial wave function. In a system
of 1000 electrons the required integrals are 3000 dimensional and for
such problems MC integration is much more efficient than conventional
quadrature methods such as Simpson’s rule. The main drawback of QMC
Is that the accuracy of the result depends entirely on the accuracy of the
trial wave function.

In general, MC methods are especially useful in studying systems with
a large number of coupled degrees of freedom, such as liquids, strongly
coupled solids, and cellular structure. Moreover, VMC method has been

3
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widely applied not only to strongly interacting lattice systems, but also to
realistic continuous models, such as electron gas [5], quantum dots [6],
nanoclusters [7], solid hydrogen [8] and liquid helium.

The applications of VMC method are also extended to include some
medical applications because it is the most accurate way to simulate
radiation transport on a computer. Also, it will help doctor to choose a
treatment that maximized the radiation dose to the tumor and minimizes
the dose to normal tissues [9].

In telecommunications, when planning a wireless network, design must
be proved to work for a wide variety of scenarios that depend mainly on
the number of users, their locations and the services they want to use. MC
methods are typically used to generate these users and their states. The
network performance is then evaluated and, if results are not satisfactory,
the network design goes through an optimization process.

MC methods are very important in computational physics, physical
chemistry, and related applied fields, and have diverse applications from
complicated quantum chromodynamics calculations to designing heat
shields and aerodynamic forms as well as in modeling radiation transport
for radiation dosimetry calculations. In statistical physics MC molecular
modeling is an alternative to computational molecular dynamics, and MC
methods are used to compute statistical field theories of simple particle
and polymer systems.

MC methods solve the many-body problem for quantum systems. In
experimental particle physics, MC methods are used for designing
detectors, understanding their behavior and comparing experimental data
to theory.

In astrophysics, they are used in such diverse manners as to model

both the evolution of galaxies and the transmission of microwave
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radiation through a rough planetary surface. MC methods are also used in
the ensemble models that form the basis of modern weather forecasting.

MC methods in finance are often used to evaluate investments in
projects at a business unit or corporate level, or to evaluate financial
derivatives. They can be used to model project schedules, where
simulations aggregate estimates for worst-case, best-case, and most likely
durations for each task to determine outcomes for the overall project.

In general, VMC method are used in mathematics to solve various
problems by generating suitable random numbers (see also Random
number generation) and observing that fraction of the numbers that obeys
some property or properties. The method is useful for obtaining
numerical solutions to problems too complicated to solve analytically.
The most common application of the MC method is MC integration.

The Schrddinger equation is the name of the basic non-relativistic
wave equation used in one version of quantum mechanics to describe the
behavior of a particle in a field of force.

Schrodinger was the first person who set his mind on finding a wave
equation for the electron. Closely following the electromagnetic
prototype of a wave equation, and attempting to describe the electron
relativistically, he first arrived at what we today know as the Klein-
Gordon-equation. To his annoyance, however, this equation, when
applied to the hydrogen atom, did not result in energy levels consistent
with Arnold Sommerfeld’s fine structure formula, a refinement of the
energy levels according to Bohr. Schrodinger therefore retreated to the
non-relativistic case, and obtained as the non-relativistic limit to his
original equation the famous equation that now bears his name. He
published his results in a series of papers in 1926 [10, 11].

Therein, he emphasizes the analogy between electrodynamics as a
wave theory of light, which in the limit of small electromagnetic

5


http://en.wikipedia.org/wiki/Ensemble_forecasting
http://en.wikipedia.org/wiki/Numerical_weather_prediction

Chapter 1

wavelength approaches ray optics, and his wave theory of matter, which
approaches classical mechanics in the limit of small de Broglie
wavelengths. His theory was consequently called wave mechanics. In a
wave mechanical treatment of the hydrogen atom and other bound
particle systems, the quantization of energy levels followed naturally
from the boundary conditions. A year earlier, Werner Heisenberg had
developed his matrix mechanics, which vyielded the values of all
measurable physical quantities as eigenvalues of a matrix.

Schrodinger succeeded in showing the mathematical equivalence of
matrix and wave mechanics [12]. They are just two different descriptions
of quantum mechanics. A relativistic equation for the electron was found
by Paul Dirac [13]. It included the electron spin of 1/2, a purely quantum
mechanical feature without classical analog. Schrodinger’s original
equation was taken up by Klein and Gordon, and eventually turned out to
be a relativistic equation for bosons, i.e. particles with integer spin. In
spite of its limitation to non-relativistic particles, and initial rejection
from Heisenberg and colleagues, the Schrddinger equation became
eventually very popular. Today, it provides the material for a large
fraction of most introductory quantum mechanics courses.

In the case of a few idealized scenarios, the Schrédinger equation may
be solved analytically in order to describe the phenomenon of a quantum
particle. For other systems the behavior of the quantum particle can
become so complex that numerical techniques must be used in order to
solve the Schrodinger equation and obtain its eigenfunctions and
eigenvalues. The MC method provides a convenient way to solve the
Schrodinger equation because of its success in obtaining a probability
distribution.

The ground-state energy of a quantum particle may be obtained

analytically by solving the Schrédinger equation if the problem is simple

6
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enough for this to be possible. Alternatively, using a variational wave
function for the quantum particle, the Schrodinger equation can be solved
numerically within a MC method. The MC method makes use of an
initial probability distribution to estimate the ground-state energy of the
guantum particle. The exact minimum energy of the quantum particle is
found by varying the trial wave function. The minimum ground-state
energy as a function of the variational parameter identifies the ground
state as well as the system’s eigenstate. The minimum of the energy must

be accompanied by a minimum in the standard deviation.
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Literature Review

In this section, we will handle in details the previous work presented in
frame work of the MC methods.

Manisa [14] investigated systematic nuclear matter. Total, kinetic and
potential energies per particle were obtained for nuclear matter by VMC
method. They had observed that the results were in good agreement with
those obtained by various authors who used different potentials and
techniques.

Ma et al. [15] presented all electron variational and diffusion (VMC
and DMC) calculations for the noble gas atoms He, Ne, Ar, Kr, and Xe.
The calculations were performed using Slater-Jastraw wave functions
with Hartree-Fock single-particle orbitals. The quality of both the
optimized factors and the nodal surfaces of the wave functions declines
with increasing atomic number Z. They discussed the scaling of the
computational cost of the DMC calculations with Z.

Chiesa et al. [16] reported that computation of ionic forces using QMC
had long been a challenge. They introduced a simple procedure, based on
known properties of physical electronic densities, to make the variance of
the Hellmann-Feynman estimate finite. They obtained very accurate
geometries for the molecules H,, LiH, CH4, NH3, H,0, and HF, with a
Slater-Jastraw trial wave function. Harmonic frequencies for diatomic
also are in good agreement with experiment.

Drummond et al. [17] reported all electron and pseudopotential
calculations of the ground-state energies of the neutral Ne atom and the
Ne™ion using the variational and diffusion quantum Monte Carlo (VQMC
and DQMC) methods. They investigated different levels of Slater-Jastraw
trial wave function: (i) using Hartree- Fock orbitals, (ii) using orbitals

optimized within a Monte Carlo procedure in the presence of a Jastraw
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factor, and (iii) including backflow correlations in the wave function.
Small reductions in the total energy were obtained by optimizing the
orbitals, while more significant reductions were obtained incorporating
backflow correlations.

Davis [18] used the VMC method to study the electronic structure of
atomic hydrogen, helium, lithium, and beryllium. The trial functions were
taken as products of hydrogenic orbitals for which Zis treated as a
variable parameter. The variationally optimized values of these
parameters are interpreted as effective nuclear charges. The results were
used to explicate several features of many electron atoms, including
electron shielding in the ground state of helium, singlet-triplet splitting in
the first excited state of helium, the difference in 2s and 2p penetration in
lithium, and the trends in ionization energies for Be, Be*, and Be?*.

Brown et al. [19] calculated the ground state energies of the first row
atoms (Li to Ne) by using VQMC and DQMC calculations. They used
trial wave functions of types: single determinant Slater-Jastraw wave
functions; multi-determinant Slater-Jastraw wave functions with
backflow transformations.

In Ref [20], the VMC method was used to study the linear and periodic
chain of hydrogen atoms. The calculations were based on using a highly
correlated Jastrow antisymmetrized geminal power variational wave
function. It was proven that the accuracy of the calculations were
comparable to that of benchmark density matrix renormalization-group
calculations. Furthermore, the crossover between the weakly and strongly
correlated regimes of this atomic chain was characterized using the so-
called “modern theory of polarization” and by studying the spin-spin and
dimer-dimer correlations functions. The obtained results show that the
VMC method provides an accurate and flexible alternative to highly
correlated methods of quantum chemistry which, at variance with these

9
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methods, can be also applied to a strongly correlated solid in low
dimensions close to a crossover or a phase transition.

Barborini et al. [21] presented full structural optimizations of the
ground state and of the low lying triplet state of the ethylene molecule by
means of QMC methods. All of the calculations were done using an
accurate and compact wave function based on Pauling's resonating
valence band representation: the Jastraw Antisymmetrized Geminal
Power (JAGP). Bond lengths and bond angles were calculated with a
statistical error of about 0.1% and are in good agreement with the
available experimental data.

In Ref [22], VMC method was used to describe spin-orbit splitting in
heavy atoms. Calculations were tested first for the light C atom, and then
extended to a set of heavier open p-shell atoms (Ti to Po). In frame of the
presented results VMC approach introduced an efficient and very
accurate way when spin orbit effects are included in the Hamiltonian
describing the electronic structure.

In 2012, Mizusaki et al. [23] proposed a new VMC method with an
energy variance extrapolation to study the large-scale shell-model
calculations. Using this method, they could stochastically calculate
approximated energies and electro-magnetic transition strengths. The
exact shell-model energies were estimated by combining VMC method
with energy variance extrapolation.

Elkahwagy et al. [24-26] have studied the VMC and the DMC methods.
To allow the QMC calculations of the heavy atom, pseudopotential
valence-only calculations have been performed, since the presence of the
inert core electrons introduces a large fluctuation in the energies and this
reduces the computational efficiency. The basic form of the wave
function is the Slater-Jastrow wave function which is considered the most

common and simplest one.

10
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In paper [24] the authors perform QMC calculations for the ground
state energies of both the neutral atoms and their corresponding cations
for Ce to Eu in order to evaluate their first ionization potential.

In paper [25] the authors have calculated the ground state energies of
La atom and its charged cations with the hope “achieving high accuracy”
by using VMC and DMC methods. In addition, they study the DMC
energies at different time steps and the accurate extrapolated value of the
ground state energy of La atom is derived.

In Ref [26] the authors have performed pseudopotential calculations of
the ground state energies of actinium and thorium neutral atoms and some
of their corresponding cations by using VMC and DMC methods. The
fluctuation of the local energy that has been obtained is found to be below
2 a.u. in all cases under study. Additionally, they study the dependence of
DMC energy on the size of the time step for actinium.

Recently, many studies have been presented by Doma et al. using the
VMC method for atoms. In Ref [27], they evaluated the energy of the
ground state of the helium atom where the relativistic effect was taken
into account. Also, they extended their study in Ref [28] to calculate the
lowest order relativistic corrections for the ground state energies of the
helium-like atoms, up to Z = 10, and also for some excited state energies
of the helium atom. These relativistic corrections include: mass-velocity
effect, orbit-orbit interaction, spin magnetic and dipole moments of the
two electrons and the Darwin effect. Moreover, correction due to the
nucleus motion has been also calculated.

In 2012, the case of compressed helium atom by spherical box was
studied. For various values of the spherical box radii, Doma et al. [29]
have calculated the energies for both helium and its isoelectronic ions, Li*
and Be?*. They considered the case of small values of ., which describe

the strong compression, as well as the case of large values of 7. In both
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cases, the results exhibit good accuracy compared with previous values
using different methods and different forms of trial wave functions.

For lithium atom, VMC presented an efficient technique for calculating
the ground state energy and its ion up to Z=10 [30]. Also, Doma in [31]
investigated the effect of an external magnetic field on the ground state
energies of the helium atom, and hydrogen negative ion. The obtained
results were in good agreement with the most recent previous accurate

values and also with the exact values.
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Chapter 2

The Variational Monte Carlo Method

2.1 Formulation of the Method
In this section we summarize the strategy used to calculate the
expectation value of any operator using variational Monte Carlo (VMC)
method. The term VMC is derived from the use of Monte Carlo type in
conjunction with the wvariational principle. VMC is based on a
combination of two ideas namely the variational principal and the Monte
Carlo evaluation of integrals using importance sampling based on the
Metropolis algorithm. During the last ten years it has become clear that
VMC can produce very accurate ground and excited states expectation
values for atoms and molecules. For a sufficiently high number of
variables in the integrand, VMC method are much more efficient than a
deterministic integration such as Simpson’s rule, and the many-body
systems are certainly the case. The VMC methods are used to compute
guantum expectation values of an operator with a given trial wave
function. In particular, if the operator is the Hamiltonian, its expectation
value is the varitional energy
Eype = <¢T A W’T} _J w%*(R) Hyr(R) dR
(Wrlpr) — JTvr® pr® dR
where y is a trial wave function and R is the 3N-dimensional vector of

(2.1)

the electron coordinates. According to the variational principle, a trial
wave function for a given state must produce an energy which is above
the exact value of that state; i.e. Eypc = Eoxqcr- 10 evaluate the integral
in Eqg. (2.1) we firstly construct a trial wave function, Y7 (R), depending

on a set of «-variational parameters «= (¢, X5, ..., Xy) and then vary

13
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the parameters to obtain minimum energy. The VMC method is a Monte
Carlo method for evaluating the multi-dimensional integral in Eq. (2.1).

This is achieved by rewriting Eq. (2.1) in the following form,

[lyr@®)2 LR g

_ Pr(R)
YME T [lyr®)IPaR (22)

VMC calculations determine Ey ;- by writing it as [7]
Eymc = fP(R) E (R) dR (2.3)

[r(R)|?

where P(R) = m

Is positive everywhere and interpreted as a

Hyr (R)
Y1 (R)

The value of E| is evaluated using a series of points R;; sampled from

probability distribution and E;, =

is the local energy function.

the probability density P(R). At each of these points the weighted

_ JY3(R) ELdR

average (E;) = V@ R is evaluated. After a sufficient number of
evaluations the VMC estimate of Ey,, Will be
. . 11
Eymec = (EL) = 11\}2100 Il\/}TooN ] Z?’=1 Z?L Ej (Rij) (2.4)

where M is the ensemble size of random numbers {R, R,, ..., R}, }, Which
may be generated using a variety of methods [32, 33] and N is the
number of ensembles. These ensembles so generated must reflect the
distribution function itself. A given ensemble is chosen according to the
Metropolis algorithm [34]. This method uses an acceptance and rejection
process of random numbers that have a frequency probability distribution
like 12. The acceptance and rejection method is performed by obtaining a
random number from the probability distribution, P(R), then testing its
value to determine if it will be acceptable for use in approximating the
local energy. After an ensemble of random numbers is generated, the
acceptance criterion is such that the probability of moving from an initial
random number of the ensemble, R;, to a new random number, R, is

defined according to the ratio

14
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%(Ry)
s

If A is larger than one, this trial step is accepted (i.e. we put R;,; = R;)
and the new R, is a member of the next ensemble. While if A is less than
one, the step is accepted with probability A.

If the trial step is not accepted, then it is rejected, and we put R;,; =
R;. This process is repeated for each member of an ensemble and is done
in order to broaden subsequent ensembles for a wider sampling range.
Any arbitrary point R, can be used as the starting point for the random
walk.

The accepted ensembles will be used to evaluate the VMC estimate for
the average energy according to Eg. (2.4). In our work the broadening of
the ensemble is achieved according to

Y = R(K) + DELTA * (RANDO (SEED) — 0.5) (2.6)
where Y is the new value R, to be tested and R(K) is the value R; of the
previously accepted ensemble for K = i.

The function RAND returns a uniform random number between 0 and
1, and is a nonintrinsic function. The range width is determined by
DELTA, adjusted to suit particular needs, and the value 0.5 ensures the
availability of negative numbers. The random number generator only
produces numbers between 0 and 1, so there will be an initial maximum
random value and an initial minimum random value. These maximum
and minimum values in the new accepted ensemble, {R(K)}, are kept as
subsequent ensemble grows in range. Finally, it is important to calculate

the standard deviation of the energy [7]

_ [(ER)-(EL)?
o= ’—L D (2.7)
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2.2 The Metropolis Algorithm

The Metropolis Algorithm has been the most successful and influential of
all the members of the computational species that called the Monte Carlo
Method. This method we have used to sample points from the chosen
probability distribution is the Metropolis algorithm. The Metropolis
algorithm was named after Nicholas Metropolis, who was an author along
with A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller and E. Teller of
the 1953 paper "Equation of State Calculations by Fast Computing
Machines" [34] which was the first that proposed algorithm for the
specific case of the canonical ensemble. It is well-known also that W. K.
Hastings [34] was the first who extended this algorithm to the more
general case in 1970.

Whereas the context in which it was invented is now largely irrelevant,
this powerful technique continues to be a versatile tool in a great many
numerical simulations in several different branches of science [35, 36].
The Metropolis algorithm is the most widely used algorithm for
generating a sequence of points that sample a given probability
distribution to sample physical quantities such as the total energy
efficiently.

In the QMC method each point in the phase space is a vector R =
(ry, 7y, ...,ry) in the 3N-dimensional space of the position coordinates of
all the N electrons, and the sequence of phase space points provides a
statistical representation of the ground state of the system. If we are to
build up a statistical picture of the overall system of electrons and nuclei,
it is necessary to move the electrons around to cover all possible positions
and hence all possible states of the system. As we move the electrons
around, we can keep track of physical quantities such as the total energy,
polarisation, etc., associated with the instantaneous state of the electron

configuration. The sequence of individual samples of these quantities can
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be combined to arrive at average values which describe the quantum
mechanical state of the system. Many pseudo-random numbers are used
to generate the sequence of states, which are collectively called a random
walk.

In Metropolis algorithm, a random walk is performed through the
configuration space of interest. The walk is designed so that the points on
the walk are distributed according to the required probability distribution.
At each point on the walk a random trial move from the current position
in configuration space is selected. This trial move is then either accepted
or rejected according to a simple probabilistic rule. If the move is
accepted then the "walker" moves to the new position in configuration
space; otherwise the "walker" remains where it is, (By a "walker" we
mean a point in the 3N-dimensional configuration space of the problem).

Another trial step is then chosen, either from the new accepted position
or from the old position if the first move was rejected, and the process is
repeated. In this way it should be possible for the "walker" to explore the
whole configuration space of the problem. The Metropolis algorithm
provides a prescription for choosing which moves in configuration space
to accept or reject. In this algorithm, a random walk is performed through
the configuration space of interest. The walk is designed so that the points
on the walk are distributed according to the required probability
distribution. At each point on the walk a random trial move from the
current position in configuration space is selected.

The metropolis algorithm is able to compute the averages over a
sequence of sampling point (14,15, ..., Ty) generated by moving a single
walker, according to the following rules:

1- Start the walker at a random position R,,.

2- Make a trial move to a new position R,,.; chosen from some

probability density function P4 (R, = R).
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3- Accept the trial move to R with probability:

Ptrial(é - Rn)P(R) }

Piriat(Rn = R)P(Ry)

where P(R,,) is the probability density of finding the electrons in the

Paccept(Rn = R) = min {1,

configuration R, and P, (R » R,) is the trial probability from

configuration R to R,,.

4- Calculate A = LerialR2Rn)P(R)
Ptriail(Rn=R)P(Ry)

5- generate a random number r;, between 0 and 1 and compare it with
A.

6- If A= n, the trial move is accepted, otherwise reject it. If the trial
move is accepted the point R become the next point on the walk
(R = R,,,). If the trial move is rejected the point R,, become the
next point on the walk (R,, = R,,41).

7- collect averages using the configurations.

8- calculate error bars.

Figure-2.1 displays a flow chart illustrating the Metropolis algorithm and

the method of acceptance and rejection.
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Figure-2.1 Flow chart illustrating the Metropolis algorithm.
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2.3 Random Numbers Generations

In all Monte Carlo calculations we need to produce a long sequence of
random numbers N; that are uniformly distributed over the interval [0, 1].
But no numerical algorithms can generate a truly random sequence of
numbers; however, there exist algorithms which generate repeating
sequences of M (say) integers which, to a fairly good approximation, are
randomly distributed in the range 0 to M — 1. Here M is a (hopefully)
large integer. This type of sequence is termed pseudorandom numbers.
Pseudorandom number generators (PRNGs) are algorithms that can
automatically create long runs of numbers with good random properties
but eventually the sequence repeats (or the memory usage grows without
bound. The series of values generated by such algorithms is generally
determined by a fixed number called a seed. One of the most common

PRNG is the linear congruential generator, which uses the recurrence

N;,; = (a N; + ¢) mod (M) = remainder (a A}'\;“)

One multiplies the previous random number N; by the constant a, add
another constant ¢, take the modulus by M and then keep just the
fractional part (remainder) as the next random number N;, ;

The number M is called the period and it should be as large as possible
and N, is the starting value, or seed. The function mod means the
remainder, that is if we were to evaluate (13) mod (9), the outcome is
the remainder of the division 13/9, namely 4. The problem with such
generators is that their outputs are periodic; they will start to repeat
themselves with a period that is at most M. If however the parameters a
and c are badly chosen, the period may be even shorter.

The value for N; (the seed) is frequently supplied by the user, and mod
Is a built-in function on the computer for remaindering (it may be called

amod or dmod). This is essentially a bit-shift operation that ends up with
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the least significant part of the input number and thus counts on the
randomness of round-off errors to generate a random sequence.
As an example, ifc =1, a = 4, M = 9, and one supplies N; = 3, then
he obtains the sequence
N, =3,
N, =(4x3+1)mod9 = 13m0d9=rem1—93=4,
N; =4 x4+ 1)mod9 =17 mod 9 =rem%=8,
N, = (4><8+1)m0d9=33m0d9=rem3—93=6,
Ns_10=17,2,0,1,5,3.

We get a sequence of length M = 9, after which the entire sequence
repeats. If we want numbers in the range [0,1], we divide the N 'sby M =
9:

0.333, 0.444, 0.889, 0.667, 0.778, 0.222, 0.000, 0.111, 0.555, 0.333.

This is still a sequence of length 9 but is no longer a sequence of integers.

2.4 The Trial Wave Function

The exact wave function is a solution to the Schrodinger equation. Trial
wave functions are of central importance in VMC calculations because
they introduce importance sampling and control both the statistical
efficiency and accuracy obtained. The trial wave function must
approximate an exact eigenstate in order that accurate results are to be
obtained. A good trial wave function should exhibit much of the same
features as does the exact wave function. On one hand, the trial wave
function must satisfy some basic conditions [3]:

1) The value of (Hy(R)) must be well defined everywhere. Hence both
Y (R) and VY (R) must be continuous wherever the potential is finite
otherwise differentiating will give singular term. One must particularly

careful at the edges of the periodic box and when two particles approach
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each other. Otherwise, the variational energy Ey . could lie above or

below the true energy.

2) The integrals [ v (R) Ay (R)d, [|p7(R)?dR and [|y,(R)A| dR

must exist. The existence should be demonstrated analytically.
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Chapter 3

The Hydrogen Molecule and Its Molecular lon

3.1 Introduction

Hydrogen is the smallest chemical element because it consists of only one
proton in its nucleus and has only one electron. Its chemical symbol
Is H and its atomic number is 1. It is the lightest element on the periodic
table. Atstandard temperature and pressure hydrogen is a colorless,
odorless, tasteless, non-toxic, nonmetallic, highly combustible diatomic
gas with the molecular formula H,. Molecules are systems consisting of
electrons and nuclei. Two hydrogen atoms will each share their one electron
to form a covalent bond and make a hydrogen molecule H,. The hydrogen
molecular ion H; can be formed from ionization of a neutral hydrogen
molecule. The hydrogen molecular ion H; is the simplest molecular ion. It
consists of two hydrogen nuclei with a single electron. The H; molecular
ion and the H, molecule are the two simplest molecular systems whose
study has rendered important information in the understanding of the
electronic and structural properties of larger molecules and constitute the
cornerstones of the actual development of molecular physics.

Alexandr and Coldwell have used widely the variational Monte Carlo
method and simple explicitly correlated wave functions at different
internuclear distances to calculate molecular energies as well as several
energy derivatives at the equilibrium of the hydrogen molecular ion [37].
Also, they have computed the Born-Oppenheimer energy, the spectroscopic
constants, the electron density, several of the lowest vibrational-rotational

energies of all the hydrogen molecule isotopomers and many properties of
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the lowest rovibrational state of all the H, isotopomers for the ground state
of the hydrogen molecule H, [38-42].

Ishikawa et al. [43] have solved accurately the nonrelativistic Schrodinger
equation and the relativistic four-component Dirac equation of the hydrogen
molecular ion Hi in an analytical expansion form by the free iterative
complement interaction (ICl) method combined with the variational
principle. They calculated both ground and excited states in good
convergence, and not only the upper bound but also the lower bound of the
ground-state energy. The error bound analysis has assured that their result is
highly accurate.

Kurokawa et al. [44] has been applied the free ICI method based on the
scaled Schrodinger equation proposed previously to the calculations of very
accurate wave functions of the hydrogen molecule in an analytical expansion
form.

Suleiman et al. [45] calculated numerically the ground state energy of
hydrogen molecule at different interproton separation under the principles of
the Born-Oppenheimer approximation using Monte Carlo technique i.e. the
variational Quantum Monte Carlo [VQMC] technique. The results
demonstrated that VQMC is capable of approaching the precise ground-state
energy of the hydrogen molecule as it falls inside the error bars of previous
empirical and numerical calculations.

Our goal in this chapter is to use variational Monte Carlo (VMC) method
which introduced in details in the previous chapter to achieve several
purposes:

(@) Firstly, in frame of the Born-Oppenheimer (BO) approximation we

shall solve Schrddinger equation to calculate the ground state energy

of the hydrogen molecular ion H; and the hydrogen molecule H,. The
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calculations will be done using one trial wave function for the
hydrogen molecular ion H; and two different types of trial wave
functions for the hydrogen molecule H,. Then we will study the
accuracy of the results corresponding to each one.

(b) Secondly, to calculate some properties of the hydrogen molecule H,.

3.2 The Statement of the Problem

In our work, we assume that the nuclear mass is infinite so that the
calculations will be in frame of the Born—Oppenheimer approximation. The
Hamiltonian function for an arbitrary system (molecule as example) is
written in the form:

H=T+V (3.1)
where T is the kinetic energy of the system and V is the potential energy.
The potential energy function will contain for the hydrogen molecule terms
for the attraction of the electrons to each of the nuclei and a term for the
repulsion between the two nuclei as well as the repulsion between the two
electrons. Accordingly, the non-relativistic Hamiltonian A for the hydrogen

molecular system in atomic units (a. u.) can be written as:

—~ 1 Zq Z 1 1
A== 5V =S (B + ) 4o+ g (32)

r12 R
In the above equation, 7,y = |ria(b)| denotes the distance from electron
‘i’ (i=1,2) to nucleus a (b ) and we have used the fact that the charge
parameters Z, = Z, = 1. Also, V7 is the Laplacian with respect to the
electrons coordinates, r;, is the interelectronic distance and R is the
internuclear distance. The corresponding coordinates of the two electrons

and the two nuclei for the hydrogen molecule are shown in Figure-3.1
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Figure-3.1 Schematic illustration for the hydrogen molecule H,.

Then, the Schroédinger equation for any trial wave function ¥ (7, R) can be
written as follows
Hy(r,R) = EY(r,R) (3.3)
where r stands for all the coordinate vectors of the electrons with respect to
the center of mass of the nuclei.
Similarly in the case of the hydrogen molecular ion Hy , if v, and r,
denote the distances from the electron to the two nuclei a and b, then the
nonrelativistic Hamiltonian operator for the hydrogen molecular ion Hf

corresponding to the coordinates of the electron and the two nuclei is given

by

ﬁz_lv2_i_i+l (34)

2 raq Trp R
The corresponding coordinates of the electron and the two nuclei for the

hydrogen molecular ion are shown in Figure-3.2
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%b

Figure-3.2 Schematic illustration for the hydrogen molecular ion H .

With a chosen trial wave function ¥ explicit expression can be worked
out for the local energy E; (R) in terms of the values and derivatives of . In
our calculations we have used the nonrelativistic Hamiltonian of the
hydrogen molecule, given by Eq. (3.2) in Elliptic Coordinates which take the
form [44, 46, 47]

Ap=Talh, oy =TaZTih (3.9)
where i being 1 and 2.
The ranges of these variables are

1< 1< oo, -1<pu<1 (3.6)
In these coordinates, the kinetic-energy operator and the potential-energy

operator, for the hydrogen molecule, are written as [44, 46, 47]

12

3V T RO ) s e 37)
YA T S P
R o ) R (3.8)

respectively, where p = 21y, /R.
In the calculations of the ground-state energy of the hydrogen molecule
we have used the nonrelativistic general Hamiltonian for n-electrons and

N,-nuclei, which in Hylleraas Coordinates takes the form [48]
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Furthermore, we have used only radial coordinates in the trial wave function
so, we omit the spherical terms in Eqg. (3.9)

~ 1 d Z 1 02 1 0
H=- n12 ( +— +_”>_ 7i1<j<__z+_ >+
2 aT' Tiy 6rw Tiy 2 arij T'ij arij
n 1 Z TutTh TR 92 _1l¢n ZNu Tt 92 _
I<J 7y i=1 U<V riuriy 0Ty 0Ty I<J &pu TiuTij 0Ty 0Ty
2 2

Lgm yn UM O Y ity (3.10)
2 &< J<k TijTik 6rij orix u<v Ry

In the case of the hydrogen molecule n = 2 (electron 1 and electron 2),

N, = 2 (nucleus a and nucleus b) and we get
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291 v, 01y 0Ty TiuT12 0710712 Ry

3.3 The Trial Wave Functions

To calculate the ground state energy of the hydrogen molecular ion H5 and
the hydrogen molecule H,, we will use different types of trial wave
functions. The trial wave function for the ground state of the hydrogen
molecular ion H; used in this work is given by Ishikawa et al. [43]. This
trial wave function depends on the Slater type function 1y, as initial function
which takes the form:

Yo = exp(—wAl) (3.12)
where w is nonlinear parameter. In this choice, the trial wave function i, is
generated in the analytical expansion form of

Yy = X2 G AT p™ exp(—wl), (3.13)
where C; are the variational parameters and m; are positive or negative
integers. Since the 1sa,; ground-state has a gerade symmetry, n; should be
zero or a positive even integer. Applying the iterative complement
interaction (ICI) method, Ishikawa et al. [43] used this trial wave function to
calculate energies for the ground-state 1so, of H; at different orders and the
first excited state 1sa,, (ungerade) in the free case. They could obtain very
accurate results compared to the corresponding exact values.

For the ground state, the overlap and Hamiltonian integrals of H; are
easily done when the wave function is given by Eq. (3.13).

This wave function (3.13) constructed from 26 terms for the H; with
w = 1.2. We show this terms in Table-3.1.
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Table-3.1 The values of the parameters m, n and C appearing in the wave
function ¥, of Eq (3.13) and w = 1.2 [43].

No. {m|n C No. lm|n C
1 1| 2| -6.14854851224062E-04 | 14 |-4| O | -7.44380959774439E-03
2 1| 0| -8.72134862233988E-04 | 15 |-4| 2 | -1.10143056220481E-02
3 |-3| 4 | 6.49330072561502E-02 16 | -2 | 4 | -3.45048628383914E-02
4 | -4| 4 | -3.96590873312382E-02 17 | 0 | 2 | 1.46302680608681E-02
5 |-1]4 | 1.52822020322079E-03 18 |-5| 2 | 1.08079860246917E-02
6 | 0| 0| 244061495121818E-02 19 | -6| 2 | 1.73761624309944E-01
7 |-2] 0| -5.74894612410661E-02 | 20 |-5| 0 | 4.63828712981874E-03
8 |-3| 0| 5.49994904166429E-02 21 | -6 | 0 | -4.09990053189853E-02
9 |-2| 2| 1.99545888257851E-01 22 | -7 | 0 | 2.61468592559640E-02
10 | -3 | 2 | -2.16145726972879E-01 | 23 |-7 | 2 | -1.15084145925041E-01
11 | 2 | 0 | -7.85025721800686E-04 | 24 |-3| 6 | -1.11401171197032E-03
12 |-1| 0| 2.78206161933570E-02 25 |-5| 4 | 1.57204422348785E-02
13 |-1| 2 | -4.88622788195747E-02 | 26 | 3 | O | 7.58881756418373E-05

In the case of the hydrogen molecule H, we will use two different types of
trial wave functions:
1- The first type for the ground state of H, molecule, this wave function is
proposed firstly by Kurokawa et al. [44]. This trial wave function depends

on the Slater type functions which takes the form:

Y2 = Ti G(1+ i) expl—a(dy + )] A 'l iy’ oty (3.14)
where p,, is an electron exchange operator and C; are the variational
parameters which are calculated from the variational principle. This wave
function is very simple and similar to the original wave function due to
James and Coolidge [49]. James-Coolidge wave function and this wave

function differ only in the powers m; and n; of the variables 1, and 1,: m;
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and n; are always positive in the James-Coolidge wave function, but they
can be even negative in this free wave function.

This wave function was constructed from 13 terms; 11 terms of James and
Coolidge plus 2 terms withintherangeof -1 <mn<1,|m—-n|<1,j =
0, k<2,0<1<1. The term No. 12 has positive m and n, but the term
No. 13 has negative m and n. This wave function was used with iterative-
complement-interaction (ICI) method to calculate the ground state energy of

free hydrogen molecule [44]. We show the 13 terms of ¥, in Table-3.2 with

3
a=-.
4

Table-3.2 The values of the parameters m, n, j, k, [ and C for the wave

function 1, of Eq. (3.14) with & = > [44].

c
1.000 000 000
0.650 858 318
—0.059 439 543
0.138 956 703
—0.041 545 078
—0.933 425 960
—0.018 305 773
0.015 613 455
—0.033 975 753
—0.404 443 002
0.337 386 255
0.071 193 197
0.031 686 115
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2-The second type of trial wave function of H, molecule is a product of
three items which takes the form [45]:

Y3(ry, 12, 112) = @(r) @ (r2) f (112) (3.15)
where @(r;) is the single-particle wave function for particle i, and f(ry,)
accounts for more complicated two-body correlations.
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Here, the first two factors are independent-particle wave functions, their
roles are to place each electron in a molecular orbital in which it is shared
equally between the two protons. A good choice for the molecular orbital is
the symmetric linear combination of atomic orbitals centered about each
proton,

A suitable choose for the trial wave function arises from the fact that two
electrons are in 1s state to calculate the ground state. A simple choice for
p(r;)is:

o) = exp(—Z 14) + exp(=Z 1), (3.16)
with the variational parameter Z to be determined. The final factor in the
trial wave function f expresses the correlation between the two electrons
due to their Coulomb repulsion. That is, we expect f to be small when r;, is
small and to approach a large constant value as the electrons become well

separated. A convenient and reasonable choice is

r

f@) = exp | ] (317)

where a and 8 are additional positive variational parameters. The variational

parameter £ controls the distance over which the trial wave function heals to
its uncorrelated value as the two electrons separate.
Then putting (3.16), (3.17) in (3.15) a collection of a justifiable trial wave

function is attained:
Y31, 1y, 115) = lexp(=Z ryg) + exp(=Z ryp)||exp(=Z 134) +
exp(—Z r2b)]exp[r1—2] (3.18)

a(1+p712)
The singularity of the coulomb potential at short distances places additional
constraints on the trial wave function. If one electron approaches the nuclei

while the other electron remains fixed then the potential term becomes large
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and negative, since r;,(,) becomes small. This must be cancelled by a
corresponding positive divergence in the kinetic energy term if we are to
keep the local energy E; smooth variance in the Monte Carlo quadrature.
Thus the orbital ¢(r;) should a cusp at r;,(;,y = 0, which means that the

wave function should satisfy the following relation [45]:

tim (= —=V2p0) -

LN e ria(b)) = finite terms. (3.19)
The above relation holds for ry4, 713, 24, 72 @and also for ry,. Using Eq.
(3.19) and a bit of algebra, it is easy to see that these constraints imply that «

satisfies the transcendental equation:

1

a=—n (3.20)
2
and that « = 2 a,, where a, = % is the Bohr radius i.e. @ = 2 in atomic

units. Thus g is the only variational parameter at our disposal.

3.4 Discussion of the Results of Chapter 3
In this chapter we have used VMC method which presented in Chapter 2 to
calculate both the ground state energies of the hydrogen molecular ion Hy
and the hydrogen molecule H, and also some properties of the hydrogen
molecule H,. All energies obtained in atomic units i.e. (h=e=m, =1)
with a set of 4 x 107 Monte Carlo integration points in order to make the
statistical error as small as possible. This section presents the results
obtained with different types of the trial wave functions for the H, molecule
proposed in the previous section.

In frame of the Born-Oppenheimer (BO) approximation, the ground state

energies of the hydrogen molecular ion H; and the hydrogen molecule H,
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were calculated using VMC method. For the ground state, our calculations
are based on using different types of trial wave functions.

On the first hand to gain some confidence on the adequacy of different
types trial wave functions given by Eq. (3.13), Eq. (3.14) and Eq. (3.18) for
our calculations in frame of VMC method, we first calculate the ground state
energy in the case of free hydrogen molecular ion H; for different values of
the internuclear distance R. We have used the nonrelativistic Hamiltonian
given by Eq. (3.5) using ¥, in Elliptic Coordinates.

In Table-3.3 we compare the results of our work for the behavior of the

total energy of the ground-state (1so,) of free H; ion at different values for

the internuclear distance R with the exact calculations by Madsen et al. [50]
and other accurate calculations by Zhang et al. [51]. Excellent quantitative
agreement is obtained compared to the corresponding exact values and other
previous results.

The results of accurate calculations of the electronic ground-state (1say)
energy of Hy with R = 2.0 a.u. are summarized in Table-3.4. We report the
results obtained in Table-3.4 here as the electronic energy where the total

electronic energy of the molecular ion H; is defined as the total energy Er

ZaZ
“R 2 We show

minus the repulsive energy between the nuclei, E,;, = E; —

the ground state energy in the Born-Oppenheimer approximation to compare

our results with the results of previous authors and we got good agreement.
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Table-3.3 Total energy of the free H5 ion for the trial wave function i, for

various internuclear distance R compared with the exact values by Madsen

et al. [50] and other accurate calculations by Zhang et al. [51]. In

parentheses, we show the statistical error in the last figure.

R Ernis work E® Egxact

1 -0.451590(2) - -0.4517863133781°
2 -0.602634(5) —0.60263414 -0.6026342145P
3 -0.57749866(3) - -0.577562864"

4 -0.79594490(2) —0.79608445 —0.79608488°

6 -0.67821670(6) —0.67863445 —0.67863572°

8 -0.626574200(3) | —0.62756682 —0.62757039°
10 -0.600191600(2) | —0.60057303 —0.60057873¢
aRef [51] P Ref[50] ¢ The exact Results taken from Ref [51]

Table-3.4 History of accurate calculations of the electronic energy of Hy

with R = 2.0 a.u.

The Type References Total energy (a.u.)
Exact wave function? J. M. Peek —1.102 634 214 494 9
IC1 method® Atsushi Ishikawa - Hiroyuki Nakashima —1.102 634 20
- Hiroshi Nakatsuji

Correlated wave function® F. Weinhold - A. B. Chinen -1.102 6237

Finite element method® W. Schulze - D. Kolb -1.102 6327
Finite difference method® L. Laaksonen - P. Pyykko - D. —1.102 634 214 497

Sundholm
VMC method Present -1.102 6340
aRef [52] P Ref[43] °¢Ref[53] ¢9Ref[54] ¢ Ref [55]
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Secondly, we calculate the ground state energy in the case of free
hydrogen H, molecule using ¥, and Y5 for different values of the
internuclear distance R. We have used the nonrelativistic Hamiltonian given
by Eg. (3.4) using ¥, in Elliptic Coordinates and 5 in Hylleraas
Coordinates. In Table-3.5 we compare the results of our work for the
behavior of the total energy of the ground state of free H, molecule with
other pervious calculations for a wide set of internuclear distances. For
internuclear distances in the range 0.6 < R < 3.2 it was sufficient to
compare our values with the available single-configuration Hartree—Fock
SCF in Ref [56], whereas for 4.0 < R < 8.0 we compare with results of Ref
[57]. Also, the results obtained by Rodriguez et al. [46] are introduced. The
results presented in Table-3.5 indicate clearly that when R increases the
interaction between the electrons become less and less, particularly around
the nuclei. Each nucleus has an electron and the probability for both being
around the same nucleus is small, as one would expect. When R increases,
the H, molecule tends to separate to two hydrogen atoms in their ground
state therefore the ground state energy decreases. A good quantitative
agreement is obtained using ¥, and Y5 compared to the corresponding

accurate values.
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Table-3.5 Ground-state energy of the free H, molecule as function of the

internuclear distance. In parentheses, we show the statistical error in the last

figure.

R Y2 Y3 Escr E€
0.2 2.2474800(1) 2.233774(7) - 2.2478
0.4 | -0.0749825(1) | -0.075675(1) -0.078 6932 -0.0756
0.6 | -0.7247206(1) | -0.727725(3) -0.7299902 -0.7278
1.0 -1.084500(1) | -1.085004(1) -1.085138? -1.0843
1.2 -1.124541(2) | -1.124815(2) -1.125029? -1.1244
1.3 -1.131293(1) | -1.131506(2) -1.1320242 -1.1315
1.35 | -1.135239(4) | -1.132803(2) - -1.1329

1.375 | -1.133103(1) | -1.133636(2) -1.133642% | -1.133(180)

1.4 -1.137474(9) | -1.133509(2) -1.133630% | -1.133(181)

1.425 | -1.134544(5) | -1.133294(1) -1.1333792 -1.1329
1.45 | -1.136994(5) | -1.132784(1) -1.132908? -1.1325

1.5 -1.130748(5) | -1.131130(1) -1.131375? -1.1310
1.6 -1.125689(5) | -1.128542(8) -1.1263522 -1.1259
2.0 -1.091085(1) | -1.087710(9) -1.0916482 -1.0911
2.4 -1.044736(3) | -1.049354(8) -1.0493312 -1.0488
3.2 -0.978582(7) | -0.970015(1) -0.9715122 -0.9704
4.0 -0.916097(6) | -0.900654(4) -0.909130° -0.9102
6.0 | -0.8208544(7) | -0.818213(4) -0.819032° -0.8214
8.0 | -0.7850081(1) | -0.778321(5) -0.779582° -0.7827

2 Ref [56]. b Ref [57]. ° Ref [46].
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It is interesting to compare the ground state energy for the hydrogen
molecular ion, H5, and the hydrogen molecule, H,. Note that the ground
state energy of the H, molecule is lower than that of the H; ion as shown in
Table-3.3 and Table-3.5. This should make sense, since in order to get Hy
from H, we need to ionize the molecule, which takes substantial energy. We
note also that the H, molecule is stabler than the H; molecular ion. Finally,
we note that when we break the bond we get different products. When we
break apart the H,, we get two H atoms. When we break apart H;, we get H
atom and a proton. The difference in energy between the two sets of

products is the ionization energy of the H atom.

Finally, using VMC techniques we have computed 13 molecular
properties of hydrogen molecule H, at 24 internuclear distances. Here the
permanent quadrupole moment is defined as Q, = (R? + &, — 3z2 + 1}, —
3z2)/2 and the permanent hexadecapole moment is defined as Q, =
(R*+ 307122zt —352f —3r, +30r52z2 —352z; —31r),)/8 for a
molecule oriented along the z-axis. As Tables-3.6 to 3.18 show, almost all of
our properties are determined to several significant digits. Many of these
properties have been calculated using other theoretical methods [58, 59]. We
compare our values with Alexandr et al. [60]. Our values are in excellent
agreement with these earlier results.

In Tables-3.6 to 3.18 we present selected values for the different
internuclear distances R for the H, molecule. Previous results are also given

in these tables.
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Table-3.6 Values for (r;,) of the hydrogen molecule for selected values of R

R Present Work Ref [60]
0.2 1.5876 1.5880
0.4 1.4281 1.4279
0.6 1.2819 1.2820
0.8 1.1615 1.1605
1.0 1.0604 1.0612
1.2 0.9802 0.9800
1.4 0.9134 0.9128
1.6 0.8548 0.8569
1.8 0.8111 0.8103
2.0 0.7710 0.7712
2.2 0.7381 0.7385
2.4 0.7118 0.7112
2.6 0.6885 0.6886
2.8 0.6706 0.6700
3.0 0.6558 0.6548
3.5 0.6293 0.6288
4.0 0.6177 0.6136
4.5 0.6042 0.6035
5.0 0.5951 0.5954
6.0 0.5821 0.5819
7.0 0.5716 0.5707
8.0 0.5625 0.5621
9.0 0.5558 0.5553
10.0 0.5494 0.5498
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Table-3.7 Values for (r;;') of the hydrogen molecule for selected values of
R.

R Present Work Ref [60]
0.2 0.9670 0.9663
0.4 1.0421 1.0424
0.6 1.1341 1.1348
0.8 1.2346 1.2346
1.0 1.3379 1.3380
1.2 1.4426 1.4430
1.4 1.5480 1.5488
1.6 1.6556 1.6545
1.8 1.7590 1.7598
2.0 1.8647 1.8646
2.2 1.9671 1.9684
2.4 2.0718 2.0710
2.6 2.1758 2.1730
2.8 2.2731 2.2737
3.0 2.3701 2.3735
3.5 2.6121 2.619
4.0 2.8623 2.863
4.5 3.1032 3.104
5.0 3.3486 3.346
6.0 3.8257 3.832
7.0 4.3126 4.322
8.0 4.8177 4.812
9.0 5.2992 5.305
10.0 5.7289 5.799
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Table-3.8 Values for (ry, r1,) of the hydrogen molecule for selected values
of R

R Present Work Ref [60]
0.2 1.2721 1.2716
0.4 1.4352 1.4360
0.6 1.6448 1.6445
0.8 1.8828 1.8813
1.0 2.1426 2.140
1.2 2.4154 2.4146
1.4 2.7048 2.705
1.6 3.0015 3.005
1.8 3.3169 3.315
2.0 3.6358 3.632
2.2 3.9498 3.951
2.4 4.2766 4.270
2.6 4.5989 4.590
2.8 4.9077 4.904
3.0 5.2118 5.214
3.5 5.9533 5.955
4.0 6.6682 6.662
4.5 7.3470 7.348
5.0 8.0388 8.035
6.0 9.4375 9.433
7.0 10.8649 10.868
8.0 12.3251 12.320
9.0 13.7760 13.778

10.0 15.2511 15.250
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Table-3.9 Values for the interelectron distances (r;,) of the hydrogen

molecule for selected values of R

R Present Work Ref [60]
0.2 1.4690 1.4697
0.4 1.5650 1.5647
0.6 1.6733 1.6766
0.8 1.7957 1.7956
1.0 1.9175 1.9180
1.2 2.0434 2.0423
1.4 2.1696 2.1692
1.6 2.2998 2.2981
1.8 2.4308 2.4303
2.0 2.5685 2.5671
2.2 2.7099 2.7089
2.4 2.8592 2.8571
2.6 3.0155 3.013
2.8 3.1725 3.178
3.0 3.3549 3.352
3.5 3.8207 3.823
4.0 4.3264 4.327
4.5 4.8362 4.838
5.0 5.3497 5.340
6.0 6.3182 6.318
7.0 7.2804 7.283
8.0 8.2560 8.250
9.0 9.2247 9.222

10.0 10.2031 10.200
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Table-3.10 Values for (r3,) of the hydrogen molecule for selected values of
R.

R Present Work Ref [60]
0.2 2.6776 2.6798
0.4 3.0207 3.0202
0.6 3.4464 3.447
0.8 3.9265 3.929
1.0 4.4506 4.456
1.2 5.0240 5.023
1.4 5.6326 5.635
1.6 6.2796 6.289
1.8 6.9906 6.995
2.0 7.7698 7.762
2.2 8.5925 8.594
2.4 9.5002 9.503
2.6 10.5080 10.505
2.8 11.6057 11.607
3.0 12.8229 12.820
3.5 16.3675 16.362
4.0 20.5622 20.572
4.5 25.2987 25.29
5.0 30.3845 30.41
6.0 41.8144 41.81
7.0 54.9676 54.95
8.0 69.9512 69.99
9.0 86.9610 86.99
10.0 105.9670 105.99
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Table-3.11 Values for (r;;') of the hydrogen molecule for selected values of
R.

R Present Work Ref [60]
0.2 0.9109 0.9109
0.4 0.8486 0.8484
0.6 0.7834 0.7847
0.8 0.7264 0.7264
1.0 0.6736 0.6744
1.2 0.6281 0.6285
1.4 0.5869 0.5874
1.6 0.5502 0.5506
1.8 0.5181 0.5171
2.0 0.4869 0.4863
2.2 0.4570 0.4577
2.4 0.4309 0.4309
2.6 0.4057 0.4055
2.8 0.3815 0.3814
3.0 0.3583 0.3584
3.5 0.3060 0.3063
4.0 0.2631 0.2630
4.5 0.2291 0.22911
5.0 0.2032 0.20326
6.0 0.1671 0.16719
7.0 0.1428 0.14287
8.0 0.1249 0.12497
9.0 0.1110 0.11109
10.0 0.0999 0.09999
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Table-3.12 Values for (r2,) of the hydrogen molecule for selected values of
R.

R Present Work Ref [60]
0.2 1.2778 1.2782
0.4 1.4622 1.4622
0.6 1.7031 1.7031
0.8 1.9860 1.9857
1.0 2.3044 2.304
1.2 2.6559 2.654
1.4 3.0371 3.037
1.6 3.4480 3.447
1.8 3.8870 3.888
2.0 4.3588 4.359
2.2 4.8595 4.857
2.4 5.3869 5.384
2.6 5.9423 5.943
2.8 6.5317 6.533
3.0 7.1552 7.156
3.5 8.8644 8.865
4.0 10.8168 10.812
4.5 12.9985 12.995
5.0 15.4248 15.414
6.0 20.9736 20.96
7.0 27.4091 27.49
8.0 34.9249 34.98
9.0 43.4117 43.48

10.0 52.8949 52.98

45



Chapter 3

Table-3.13 Values for (ry, 1,,) of the hydrogen molecule for selected values
of R.

R Present Work Ref [60]
0.2 0.8952 0.8959
0.4 1.0461 1.0465
0.6 1.2421 1.2441
0.8 1.4730 1.4757
1.0 1.7345 1.7351
1.2 2.0161 2.0180
1.4 2.3211 2.3221
1.6 2.6410 2.6425
1.8 2.9760 2.977
2.0 3.3265 3.323
2.2 3.6704 3.675
2.4 4.0290 4.028
2.6 4.3787 4.380
2.8 47271 4.726
3.0 5.0632 5.061
3.5 5.8430 5.842
4.0 6.5556 6.551
4.5 7.2211 7.222
5.0 7.8981 7.896
6.0 9.2884 9.286
7.0 10.7254 10.728
8.0 12.2032 12.197
9.0 13.6742 13.670

10.0 15.1449 15.153
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Table-3.14 Values for (ry, 1,;) of the hydrogen molecule for selected values
of R.

R Present Work Ref [60]
0.2 0.8971 0.8964
0.4 1.0486 1.0485
0.6 1.2498 1.2497
0.8 1.4852 1.4877
1.0 1.7593 1.7578
1.2 2.0589 2.0570
1.4 2.3828 2.3855
1.6 2.7438 2.7417
1.8 3.1291 3.127
2.0 3.5443 3.543
2.2 3.9907 3.990
2.4 4.4706 4.470
2.6 4.9819 4.987
2.8 5.5413 5.543
3.0 6.1443 6.142
3.5 7.8356 7.833
4.0 9.8121 9.806
4.5 12.0361 12.032
5.0 14.4880 14.488
6.0 20.0310 20.08
7.0 26.6472 26.62
8.0 34.1596 34.12
9.0 42.7169 42.62

10.0 52.1086 52.12
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Table-3.15 Values for (x; x,) of the hydrogen molecule for selected values
of R.

R Present Work Ref [60]
0.2 -0.0230 -0.02348
0.4 -0.0268 -0.0278
0.6 -0.0333 -0.0329
0.8 -0.0380 -0.0383
1.0 -0.0449 -0.0440
1.2 -0.0485 -0.0498
1.4 -0.0551 -0.0550
1.6 -0.0600 -0.0600
1.8 -0.0640 -0.0635
2.0 -0.0661 -0.0663
2.2 -0.0690 -0.0682
2.4 -0.0680 -0.0689
2.6 -0.0689 -0.0682
2.8 -0.0662 -0.0663
3.0 -0.0630 -0.0631
3.5 -0.0503 -0.0519
4.0 -0.0386 -0.0383
4.5 -0.0274 -0.0271
5.0 -0.0190 -0.0190
6.0 -0.0108 -0.0101
7.0 -0.0056 -0.0053
8.0 -0.0032 -0.0036
9.0 -0.0025 -0.0027

10.0 -0.0017 -0.0019
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Table-3.16 Values for (z, z,) of the hydrogen molecule for selected values
of R

R Present Work Ref [60]
0.2 -0.0244 -0.02458
0.4 -0.0317 -0.0321
0.6 -0.0440 -0.0441
0.8 -0.0616 -0.0613
1.0 -0.0842 -0.0850
1.2 -0.1169 -0.1167
1.4 -0.1612 -0.1600
1.6 -0.2169 -0.2172
1.8 -0.2926 -0.2919
2.0 -0.3891 -0.3887
2.2 -0.5125 -0.5124
2.4 -0.6686 -0.6685
2.6 -0.8613 -0.8612
2.8 -1.0976 -1.0961
3.0 -1.3771 -1.3758
3.5 -2.2731 -2.271
4.0 -3.3974 -3.394
4.5 -4.6556 -4.655
5.0 -5.9911 -5.996
6.0 -8.7603 -8.9123
7.0 -12.2167 -12.220
8.0 -15.9881 -15.99
9.0 -20.2145 -20.24
10.0 -24.9899 -24.99
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Table-3.17 Values for (Q,) of the hydrogen molecule for selected values of
R.

R Present Work Ref [60]
0.2 0.0114 0.0114
0.4 0.0452 0.0451
0.6 0.0990 0.0991
0.8 0.1713 0.1706
1.0 0.2558 0.2564
1.2 0.3517 0.3538
1.4 0.4561 0.4563
1.6 0.5641 0.5638
1.8 0.6627 0.6699
2.0 0.7621 0.7689
2.2 0.8574 0.858
2.4 0.9337 0.931
2.6 0.9804 0.985
2.8 1.0144 1.013
3.0 1.0119 1.015
3.5 0.9185 0.905
4.0 0.6972 0.689
4.5 0.4540 0.464
5.0 0.2893 0.287
6.0 0.0734 0.094
7.0 0.0279 0.026
8.0 0.0463 0.008
9.0 0.0036 0.004
10.0 0.0029 0.003
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Table-3.18 Values for (Q,) of the hydrogen molecule for selected values of
R.

R Present Work Ref [60]
0.2 0.0012 0.001
0.4 0.0047 0.004
0.6 0.0111 0.011
0.8 0.0361 0.036
1.0 0.0829 0.082
1.2 0.1586 0.159
1.4 0.2845 0.281
1.6 0.4577 0.453
1.8 0.6821 0.680
2.0 0.9684 0.968
2.2 1.3057 1.309
2.4 1.6941 1.70
2.6 2.1240 2.10
2.8 2.5050 2.51
3.0 2.9124 2.89
3.5 3.4742 3.48
4.0 3.4336 3.47
4.5 2.9993 2.98
5.0 2.4406 2.29
6.0 1.3816 1.09
7.0 0.5744 0.3
8.0 0.1011 0.1
9.0 0.2103 0.2
10.0 0.2100 0.2
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3.5 Conclusion

In this chapter we have used the Variational Monte Carlo method to
calculate the ground state energies of the hydrogen molecular ion H; and
the hydrogen molecule H, at different internuclear separation. The
calculations were carried out numerically under the principles of Born-
Oppenheimer approximation which deal with the case of an “infinitely
heavy” nucleus. Also, we calculated 13 molecular properties of hydrogen
molecule H, at 24 internuclear distances. The calculations were based on
using different types of trial wave functions. The trial wave functions ¥, ¥,
and 5 are compact and accurate. The obtained results were in good
agreement with the corresponding exact and accurate results. Finally, our
conclusion is that the variational Monte Carlo method provides accurate

estimations for the ground state energy of the two atoms molecules.
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Chapter 4

Chapter 4

Ground State Calculations of the Confined
Hydrogen Molecule H,, Molecular lons H3 and
HeH** Using Variational Monte Carlo Method

4.1 Introduction

Recently, many studies concerning the problem of confined molecular
systems have attracted the attention of both physicists and quantum chemists.
This is due to the unusual physical and chemical properties observed in such
systems when submitted to narrow spatial limitation as compared to their
free cases. When atoms and molecules are confined in either penetrable or
impenetrable boundaries their properties undergo significant changes. Also,
confined systems are widely used to model a variety of problems in physics
and chemistry. For example, the study of the synthesis of nanostructure
materials such as carbon nanotubes [61], buckyballs and zeolitic
nanochannels which serve as ideal containers for molecular insertion and
storage with promising applications [62, 63].

The increasing pace at which research is being carried out in the
aforementioned systems demands many powerful and sophisticated
methodologies (Hartree—Fock, quantum chemical density functional theory,
guantum molecular dynamics, to mention a few [61, 62]) and also,
complementary exploratory models aimed at understanding the basic
mechanisms of the changes in the electronic and structural properties of a

confined molecules. Various theoretical models have been proposed in the
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past to analyze confinement effects on the confined systems, particularly
those based on boxed-in molecules.

Box models of confinement with hard and soft boundaries have been
widely used to survey the effect of spatial limitation in the case of simple
molecules such as H; molecular ion, H, molecule and some small
polyatomics as H,0, CH,, NH; and LiF. Since, the Hy molecular ion is
considered as one of the first non-trivial quantum mechanical systems, many
studies have been presented recently to investigate it under compression.

In Ref [64], Molinar-Tabares et al. studied the H5 confined by spheroids
of size &, using prolate spheroidal coordinates. In frame of Born—
Oppenheimer approximation, the Schrédinger equation was solved by the
method of separation of variables to obtain the equilibrium distance between
nuclei and the corresponding energy as functions of &,. Also, the vibrational
energy of the nuclei, the pressure, the polarizability and the anisotropy were
calculated.

A first successful attempt to uncouple the nuclear positions from the foci
was made by Crus et al. [65] for H; confined within impenetrable prolate
spheroidal boxes. The non-separable Schrdodinger problem was solved using
the variational method with simple LCAO Dickinson type variational ansatz
wave function to obtain the ground state energies of the enclosed H; and
HeH** when the nuclear positions do not coincide with the foci. The
pervious results were extended to cover case of H, by Rodriguez et al. [46].
They considered the case of the H, molecule confined by impenetrable
spheroidal boxes when the nuclei do not coincide with the foci. It was shown
that by making the cavity size and shape independent of the nuclear

positions, optimum equilibrium bond lengths and energies are obtained as
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compared with corresponding on-focus calculations. This procedure allows
for a controlled treatment of molecular properties by selecting an arbitrary
size and shape of the confining spheroidal box.

In Ref [47], a generalization of previous theoretical studies of molecular
confinement based on the molecule-in-a-box model was presented. In
contrast with previous box models of molecular confinement, this work
introduced a new treatment allows for full control of cavity size and shape,
internuclear positions and confining barrier height. The presented model
adds more flexibility for dealing with the electronic and vibrational
properties of electrons under compression which lead to more realistic
comparison with experiment. Also, this study shows that as the cavity size is
reduced, the limit of stability of the confined molecule is attained for a
critical size.

One of the most and recent studies was presented by Sarsa et al. [66]
where the H; molecular ion confined by impenetrable spherical surfaces
was studied beyond the Born—Oppenheimer approximation. The
confinement of both electron and nuclei were considered and they could
show that the electron constraint is much more efficient to increase the

energy than the nuclei confinement.

4.2 Description of the Problem
In this chapter we have studied the ground state energy of H; molecular ion
and H, molecule confined by a hard prolate spheroidal cavity under
compression effects using variational Monte Carlo method. Our results were
extended also to include the HeH** molecular ion.

We considered the H, molecule and the H; molecular ion confined within

a prolate spheroidal cavity, defined by the geometric contour &, as shown in
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Figure-4.1 and Figure-4.2. Then, the Schrodinger equation for the confined

molecules can be written as follows

(H-E)y =0, (4.1)
The Hamiltonian function in equation (4.1) is written in the form:

H=T+V (4.2)
In equation (4.2) the Kinetic energy T = —% " V?Z is the sum of the Kinetic

energies of the two electrons and 77 is the Laplacian with respect to the
coordinates of the electron i. The potential energy V is the total potential
energy of the system.

Considering the origin is placed at the center of mass of the nuclei then
the total potential energy of the confined hydrogen molecular system in

atomic units (a. u.) can be written as:

V=-Si () =4+, (4.3)

Tia  Tib 12 R
In the above equation, r4p) = |ria(b)| denotes the distance from electron
‘i’ (i=1,2)tonucleus ‘a’ (‘b’ ), ry, Is the interelectronic distance and R is
the internuclear distance. The index n runs over the numbers of the electrons
so that for the hydrogen molecule n = 2. For the hydrogen molecular ion
Hy the indexn = 1.

The potential V, is the confining barrier imposed by the spheroidal
boundary (S), which is infinitely high when the electron or one nucleus is at
the respective defined boundary surfaces—spheroidal or spherical—and
equals zero when the particles are inside the volume limited by the surfaces,
that is

_ (o (Tietip) €S
Ve = {0 (Tia, Tip) €S (44)
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From equation (4.3), at n = 1 the molecular Hamiltonian for the confined
H3 molecular ion may be conveniently written (in atomic units) as follows
[66]

1
=—5V2————+—+VC. (4.5)
In the above equation, r, and r;, denote the distances from the electron to

nuclei a, b

r, = sz + y2+ (z+ %R)2 , Ty = sz + y2+ (z— %R)z, (4.6)
From equation (4.3), atn = 2 it was easy to write down the Hamiltonian

operator corresponding to the coordinates of the two electrons and the two

nuclei for the confined H, molecule, as follows

A=V Vit -———— - —— 4=+, 4.7)

Tia Tib T2a T2p T12 R
In this thesis we have considered the case of prolate spheroidal confining
box so, we used prolate spheroidal coordinates. It is well known that such a
coordinate system consists of families of mutually orthogonal confocal
ellipsoids (1) and hyperboloids (i) of revolution. The prolate spheroidal

coordinates are defined as [46, 47]

A=1172, =1z (4.8)

The ranges of these variables are
1< 1<, —1<u<l. (4.9)
The different sets of coordinates (A,,u1,) and (A,,u,) are assigned,
respectively, to electrons characterized by the positions (ry,7,) and (17, 15)
relative to the foci as shown in Figure-4.2. In these coordinates, the Kinetic-

energy operator and the potential-energy operator are written as [46, 47]
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Vi o e ) g O ) (410)
S (S NI NS Y
V=-3 (Ai—u% T 2p) trtle 44

respectively, where p = 2r,,/D.

In Figure-4.1 and Figure-4.2 we presented the geometric characteristics of
the confined hydrogen molecular ion HS and the hydrogen molecule H,,
respectively, confined within a prolate spheroidal cavity defined by &,. In

the case of the hydrogen molecular ion H; the nuclear charges (Z, = Z, =
1) are both located at distancegfrom the origin. Also, the nuclear charges

(Z, = Z, = 1) for the hydrogen molecule H, are both located at distance d,
and d,, from the origin, respectively. D is the interfocal separation and R is
the internuclear distance, R =d, + d,. r, and r, are the distances from
electron to nuclei a(b), respectively. 1,y and r,4(p) are the distances from

electrons 1 and 2 to nuclei a(b), respectively, and ry(;), 74, are their

corresponding distances to the foci. r;, is the electron—electron distance.

Figure-4.1 Hydrogen molecular ion H5 confined within a prolate spheroidal

cavity.
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N"

Figure-4.2 Hydrogen molecule H, confined within a prolate spheroidal

cavity defined by &,.

Our calculations for the ground state of the confined H; molecular ion
and the H, molecule are based on using the trial wave functions ¥, and ¥,
which are introduced in chapter 3 and are used to calculate the ground state
energy for HY molecular ion and H, molecule. These wave functions are
highly compact and have clear physical meaning and satisfy all the boundary

conditions. As mentioned in chapter 3 the two functions are given by

Yy = 2 G A™ pi exp(—wA), (4.12)

where C; are the variational parameters and w = 1.2 and

W, = X Ci(1+ py) expl—a(Ay + A,)] A A5 i ki ph, (4.13)
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where p,, is an electron exchange operator, C; are the variational parameters
and a = 3/4.

For the ground state, the overlap and Hamiltonian integrals of H; are
easily done when the wave functions ¥, and 1, are given by Eq. (4.12) and
Eq. (4.13), respectively. Here, we discuss the validity of using these compact
wave functions to study the Compression effects in H3 ion and H, molecule
constrained by hard spherical walls. To study the case of HJ ion and H,
molecule confined by a hard spherical boundary surface the wave functions
must vanish at the spherical boundary surface, so a cut-off factor is

employed to fulfill this condition and the wave functions become:

A1-1

by = {21 C; XM ™ exp(—wl) X [ (1 — —) exp (%)] for A <&, . (4.14)

$o-1
0 ford > ¢,

and

0, = {zi Cil1 + pr) expl—a + 2] A7 231w 15" p!t [(L =y 2i/60)] for A <o (4 15)
0 forA = &,

In Eq. (4.14) the last factor in parenthesis represents the cut-off factor

[(1—;0'_11) exp (;0'_11)] in terms of the elliptic coordinates and it

guarantee that y¥,(1 = &,,u) = 0 at the boundary. This type of cut-off
function was introduced in [67] and it was found that it provides accurate
results. Also, the presence of cut-off factor [(1 —y &;/&,)] in Eq. (4.15) in
parenthesis represents the cut-off factor in terms of the elliptic coordinates
and depends on the variational parameter y is to guarantee that y¥,(1 =
¢o,u) = 0 at the boundary. This factor has been successfully used in
previous variational studies of atoms confined by padded spherical walls [68]

and becomes the usual cut-off term for an infinitely hard wall wheny =1,
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as discussed in [46]. This type of cut-off function was found to provide

accurate results.

4.3 Discussion of the Results of Chapter 4

The Variational Monte Carlo method has been employed for the ground state
of the confined molecular ion H; and the confined molecule H,. The
hydrogen molecular ion H; and the hydrogen molecule H, have the charge
parameters Z, = Z, = 1. All energies are obtained in atomic units i.e.
(h = e =m, = 1) with set of 4 x 107 Monte Carlo integration points in
order to make the statistical error as low as possible. This section presents
the results obtained with the wave functions which were introduced in the
previous section (to calculate the ground state energies of the hydrogen
molecular ion H; and H, molecule) and also proposed in chapter 3.

Excellent quantitative agreement is obtained compared to the
corresponding exact values. These results validate the accuracy of the wave
functions to calculate the ground-state energy (1so,) of HY and H,
molecule inside a hard prolate spheroidal box under compression. Since
molecules when squeezed into a tiny space, they present different electronic
and structural behavior in contrast to their free condition; then, knowledge of
the way these changes take place as a function of cavity size, shape and
composition is of paramount importance.

In the case of Hy we have studied the case in which the nuclei are
clamped at the foci and the interfocal distance D = R = 2 a.u., and also
studied other approximate calculations. The potential barrier parameter V.
can take values between zero and infinity representing walls with increasing

confining strength. In Table-4.1 we displayed the results obtained for the
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ground-state of the confined HS molecular ion together with the
corresponding results which are available in the literature and the most
recent results. The obtained energies were calculated for wide range of &,.
The small values of &, describe the case of strong confinement where the
large values represent the weak compression. It is clear that our results are of
good agreement in comparison with previous data. The agreement with other
data is found to be good even for relatively large values of the eccentricity
1/¢,. We report the results obtained in Ref [66] here as the electronic
energy where the total electronic energy of the molecular ion H; is defined
as the total energy E+ minus the repulsive energy between the nuclei, E,;, =

Zg Zp
E, — ==,
T R

2.5 -

1.5 -

0.5 A

Energy

-0.5 A

'1.5 T T T T 1

Figure-4.3 The ground-state energy of H; versus &,.

Figure-4.3 shows the variation of the ground-state energy with respect to
&o- It is clear from Figure-4.3 that the energies increase when &, decreases

for strong compression at &, < 2.9162 where for large values of &, >
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2.9162, the compression effect becomes not noticeable and the energy is
nearly stable and approaches to the corresponding exact value, i.e. when &,
increases that leads to less energy to reach even the free state of H; . Also,
Figure-4.3 insures the fact that the energy of the low-lying states in a
confined quantum charged system is determined by a competition of
confinement Kkinetic energy and Coulomb interaction energy. As the
molecules are compressed, they become constrained in a diminishing
spherical box so that according to the quantum mechanical uncertainty
principle, the electrons increase their momentum and thereby leading to a
net gathering of kinetic energy. In other meaning the smaller the confined
potential spheroidal cavity &, is, the higher the confinement kinetic energy is.
When the increase in the confinement kinetic energy becomes predominant
and cannot be compensated by the increase of the Coulomb attractive energy,
the energies of the confined H5 increase.

On the other hand, Table-4.2 displays the results for the energy evolution
of the (1sg,) state of the confined H; molecular ion within a prolate
spheroidal cavity with fixed major axis C = R¢, = 5 a.u. and different
values for the internuclear distance R, compared to the corresponding exact
calculations by Mateos et al. [69] and other approximate calculations. The

agreement with other data is found to be good.
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Table-4.1 The electronic energy of the ground state of H; obtained using the

wave function of Eq. (4.14) with a fixed internuclear distance R = R, =

2 a.u and different sizes and &, as compared with the exact and other

approximate calculations. In parentheses, we show the statistical error in the

last figure.

$o Ethis work E® E? E€ Edcact
5.6924 | -1.1024920(1) | -1.1022 | -1.1022 - -1.1025
4.4468 | -1.099999(1) - - -1.099991 -1.1
2.9162 | -1.024930(5) - -1.0237 - -1.025
2.4196 | -0.8749254(6) - -0.8746 -0.875027 | -0.875
2.2237 | -0.7497891(4) | -0.7499 -0.75 - -0.75
2.0917 | -0.6249598(6) - - -0.624975 | -0.625
1.9934 | -0.499707(8) | -0.4999 | -0.4999915 - -0.5
1.9002 | -0.347878(2) - - -0.3467505 | -0.35
1.8638 | -0.274803(2) - - - -0.275
1.8186 | -0.174838(2) - - -0.1750125 | -0.175
1.7788 | -0.072020(3) - - - -0.075
1.7606 | -0.024874(4) - - - -0.025
1.7434 | 0.02568442(2) | 0.0258 - - 0.025
1.7270 | 0.07647589(4) - - - 0.075
1.7115 | 0.1275443(3) - - - 0.125
1.6690 | 0.2756515(1) - - - 0.275
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Table-4.1 Continued

$o Ethis work E® E® E€ E&cact
1.6150 0.5012(3) 0.5025 0.5072 - 0.5
1.5229 1.0095(4) - - - 1.0
1.4555 1.541445(1) - - - 1.5
14035 | 2.015272(1) i i i 2.0
1.3621 2.544751(1) 2.5214 - - 2.5

2Ref[65] P Ref[66] °Ref[71] ¢Ref[70]

Finally, our results were extended to include the HeH** molecular ion
which has the charge parameters Z, =2, Z, = 1. Table-4.3 shows the
results for the energy evolution of the (1so,) state of the confined HeH**
molecular ion confined by a hard prolate spheroid characterized by an
internuclear distance R = 2 a.u. with different sizes and eccentricities. Also,
the corresponding exact calculations by Ley-Koo et al. [70] and accurate
variational calculations from Ref [65] are presented for comparison. The
comparison insures that our results are of good accuracy. It is clear that the
obtained numerical results are in good agreement with the exact and other

approximate calculations.
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Table-4.2 Total energy behavior of the ground state energy of H, enclosed
by a prolate spheroidal cavity with major axis C = R¢, = 5 a.u. and varying
internuclear distances. In parentheses, we show the statistical error in the last

figure.

R Ethis work E® E2cact
11 | -0.4190592(5) | -0.4287 | -0.429173
1.4 -0.4705254(1) | -0.4716 -0.471751
1.5 -0.4710616(2) | -0.4703 -0.471784
1.6 -0.4657539(1) | -0.4657 -0.466979
1.9 |-0.4301752(3) | -0.4294 -0.430244
2.2 -0.3669057(2) | -0.3665 -0.366949
2.5 | -0.2790038(8) | -0.2789 -0.279130
28 | -0.1631775(1) | -0.1634 | -0.163430

2Ref [65] © Ref [69]
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Table-4.3 The electronic energy of the (1sg,) of HeH** with nuclear
positions located at the foci of a confining prolate spheroidal cavity of
internuclear distance R = 2 a.u. with different sizes and &,. In parentheses,

we show the statistical error in the last figure.

$o Ethis work E® Edcact
1.7025 -1.49919(6) i 15
1.6580 -1.324248(6) - -1.325
1.6410 1248159(1) | -12498 | -1.25
1.5914 -0.9999956(1) - -1.0
1.5499 -0.749947(3) -0.7498 -0.75
1.5424 -0.6991266(3) - -0.7
15351 | -0.6499709(4) : 20.65
1.5211 -0.5487804(5) -0.5498 -0.55
1.5144 -0.4995019(4) - -0.5
14833 | -0.2492223(8) : 0.25
14558 | 0.000497736(7) : 0.0
1.4313 0.2515458(8) 0.2519 0.25
1.4091 0.5058985(1) - 0.5
1.3705 1.056358(5) 1.0066 1.0
1.3379 1.502523(5) - 15

2Ref [65]  ° Ref [70]
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Also, we have studied the case of hydrogen molecule confined by a hard
prolate spheroidal cavity in two cases, when the nuclear positions are
clamped at the foci (on-focus) and the case of off-focus nuclei in which the
two nuclei are uncoupled from the foci (not clamped at the foci).

Firstly, we study the case in which the nuclei are clamped at the foci d, =
d, = D/2, once a major axis (D&,,D = R = d, + d,) is fixed, variation of
the internuclear distance (R = D) necessarily implies a change in
eccentricity (1/¢,), which corresponds to a different cage geometry. In
Table-4.4 we displayed the results obtained for the ground state of the
confined H, molecule within a prolate spheroidal cavity with various major
axis C = R&, and different values for the internuclear distance R together
with the corresponding accurate variational calculations by Lesar et al. [72,
73], Cruz et al. [46] and exact QMC calculations by Pang [74]. The
agreement with other data is found to be good even for relatively large

values of the eccentricity, (1/&,).
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Table-4.4 Ground-state energies obtained in this thesis for the H, molecule
confined within hard prolate spheroidal boxes with nuclear positions
clamped at the foci for selected values of the major axis (Ré,) as compared

with the corresponding accurate calculations. In parentheses, we show the

statistical error in the last figure.

R¢, R Ethis work E® E® E*
1388 | -1.133296(1) | -1.1332 | - -
* 14010 | -1.173397(1) - i -1.1746
1 1.386 -1.132001 —1.1322 - -
1.403 -1.156829 - —1.1685 -
1372 | -1.128147(4) | —-1.1292 i -
10 1.395 -1.162297(2) - —1.1638 -
1.321 -1.11102(3) —1.1102 - -
° 1303 21.1500(3) i ~ | -1.1533
11771 | -1.0515(2) - -~ [ —10523
° 1.208 -1.040882(1) - —1.0441 -
0.885 | -0431810(4) | —0.4321 | - i
4 | 0893 | -0.4744763(6) - —0.4749 | -
0.8949 -.4786076(1) - - —0.4790
0.683 0.6932845(2) 0.6934 - -
> o686 0.647240(1) - 0.6474 -
, | 04493 | 4505042(5) - - 45944
0.454 | 4.644851(5) | 4.6433 - -
aRef [56]. P Ref[75].  °Ref[46].

69




Chapter 4

Now, let the two nuclei are allowed to relax out of the focal positions
along the major axis. This means that the internuclear distance R and the
interfocal distance D have slightly different values from each other. The
obtained results for this case are listed in Table-4.5. By comparing the
results obtained in relaxation case (Table-4.5) and those of clamped case
(Table-4.4) this reflects the effect of the relaxation of the on-focus nuclei.
The comparison ensures that the optimum value of the energy can be
obtained when the nuclei do not coincide with the foci. Also, the equilibrium
internuclear distances increase relative to the on-focus case with
corresponding lowering in the energy. The independence of confining box
size and shape on the nuclear positions provide us with additional degree of
freedom by controlling the shape and size of the confining box while

varying the nuclear positions.

Figure-4.4 shows in more detail the evolution of the total energy behavior
of the ground state energy as a function of &, and the internuclear distance R
of H, molecule enclosed by a prolate spheroidal cavity with major axis D¢,
for the set of box sizes considered here after allowing for nuclear relaxation

in the corresponding on-focus calculations.
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Table-4.5 Total energy behavior of the ground state energy of H, molecule
enclosed by a prolate spheroidal cavity with major axis D¢, after allowing
for nuclear relaxation in the corresponding on-focus calculations. D is the
original equilibrium on-focus bond length. In parentheses, we show the

statistical error in the last figure.

D$y D R Ethis work E®
12 | 1386 | 1391 | -11328(1) | -1.1322
10 1.372 1.376 -1.1230(1) -1.1292
8 1.321 1.323 -1.1101(7) -1.1102
6 | 1177 | 1187 | -1.0069(7) | -1.0081
4 0.885 0.913 -0.4337252(1) -0.4333
3 0.683 0.726 0.6875051(1) 0.6878
2 | 0454 | 0508 | 4622613(7) | 46142

2 Ref [46].
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Figure-4.4 Total energy behavior of the ground state energy as a function of
&, and the internuclear distance R of H, molecule enclosed by a prolate
spheroidal cavity with major axis D&, after allowing for nuclear relaxation

in the corresponding on-focus calculations.

On the other hand, we have considered the case of off-focus nuclear

positions with fixed eccentricity e = El = 0.5. In this case the shape of the

0

cavity will kept fixed where the size is variable. Consider the case in which
H, molecule is compressed within a prolate spheroidal cavity with variable
sizes for different values of major axis C = D&, = 2, 3,4, 6,12 and different
values for the internuclear distance R. The results describing this case are
displayed in Table-4.6. In this technique, all boxes keep the same aspect
ratio as the volume changes. In this table we compare our results with the
first results obtained previously for this case by Cruz et al. [46]. It is clear
that our results exhibit a good accuracy compared to previous data. The
obtained results are presenting for the case of off-focus nuclear relaxation
for a fixed confining geometry leading to new energies as compared to the

corresponding on-focus calculation.
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Table-4.6 Total energy behavior of the ground state energy of H, molecule

enclosed by a prolate spheroidal cavity with varying major axis C = D&, =

2,3,4,6,12 and fixed eccentricity e = Ei = 0.5. In parentheses, we show
0

the statistical error in the last figure.

DSy R Ethis work E®
12 1.381 -1.126886(4) | -1.1268
1.153 -0.9311808(2) | -0.9392
0.880 -0.1938857(1) | -0.1938
0.704 | 1.212303(2) | 1.2141
0.490 5.989710(1) 5.9899

N W B~ O

2 Ref [46].

Figure-4.5 represents the variation of the energy versus the internuclear
distance R for the free and confined H, molecule. It is clear that the energy
increases in both free and confined cases under decrease of the internuclear

distance R.

Now, we will introduce a simple chemical analysis concerning the
catalytic role of enzyme. Enzymes are macromolecular biological catalysts
which play a central role in life due to their catalytic properties. The
molecules at the beginning of the process are called substrates and the
enzyme converts these into different molecules, called products. The active
site is always a non-rigid polar cavity, or crevice, where the substrate will be
rearranged in products. There are two cases for converting from the confined
state to the free state. Considering a confined molecule with the energy

given in point A. In the first case, let us assume a sudden release of the
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constraint, this will relax the bonding electron into the free state with similar
internuclear distance R. In this hypothesis, the vertical transition of the
electrons from A — B (or from confined to unconfined state) leads to change
the free molecule state and leaves it in a vibrational excited state. In the
second case, if the switch-off of the constraint is slower, the relaxation
pathway becomes A — C. In this relaxation pathway the nuclei have time to
move and so they gain Kkinetic energy. Hence, the chemical bond is left in a
vibrational excited state. In case of strong compression, then molecular bond
scission might be obtained however, we can stat that in all cases the
molecular bond of the free molecule on its electronic ground state is left, at
least, in a vibrational excited state. As a result, one can consider the behavior
of the vibrational excitation (or bond breaking) to be like the effect of
increasing the temperature of the substrate which leads to easier a
subsequent atomic rearrangement to give the products. This is a fundamental

property, essential for the catalytic role of enzyme.
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Figure-4.5 Change of the ground state energy of a confined H, molecule

when the confinement is removed. Two different situations are illustrated.

4.4 Conclusion

In frame of the Variational Monte Carlo method we calculated the Hj
molecular ion and H, molecule confined within hard prolate spheroidal
boxes. We have calculated the energies for both confined H; molecular ion
and H, molecule. In the case of H; molecular ion, we considered the case of
small values of &, which describe the strong compression as well as the case
of large values of &,. Our results were extended also to include the HeH**
molecular ion. The energy was plotted as a function of &, to show
graphically the effect of compression on the total energy. The graphs
indicate that the values of the energy are affected significantly at small
values of &,, where at large values the energy tends to be constant and
approaches to its uncompressed value. In the case of H, molecule, ground-

state energies obtained for the H, molecule confined within hard prolate
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spheroidal boxes with nuclear positions clamped at the foci for selected
values of the major axis (R&,) as compared with corresponding accurate
calculations. It was shown also here that, when the nuclear positions are
allowed to relax out of the foci for a fixed cage size and shape, different
energies are obtained. Also, the case of off-focus nuclei in which the two
nuclei are uncoupled from the foci is studied. In all cases our results exhibit
good accuracy comparing with previous values obtained by using different
methods and different forms of trial wave functions. Finally, we conclude
that the applications of VMC method can be extended successfully to cover

the case of compressed molecules.
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Chapter 5

Ground States of the Hydrogen Molecule and Its
Molecular lon in the Presence of Magnetic Field
Using the Variational Monte Carlo Method

5.1 Introduction

The influence of a magnetic field on the properties of molecules is of great
interest. The simplest molecules (the hydrogen molecular ion H; and the
hydrogen molecule H,) allow for the studying of their properties in strong
magnetic fields with high accuracy. These molecule—field systems have an
essential importance not only in atomic and molecular physics but also in
astrophysics, semiconductor physics, solid state and plasma physics [76].

The behaviour of the H; molecular ion and the hydrogen molecule H,
under strong magnetic field conditions has been studied by many authors.
Most of them deal with the hydrogen molecular ion H; and little is known
about the hydrogen molecule H,. Research on the behaviour of molecules
in strong fields is more complicated than that of atoms because of the multi-
center characteristics of the molecules.

The total energies and the equilibrium internuclear separations of H;
molecular ion in states g, m,,, 84, ¢y, ¥4, My IN strong magnetic fields
have been calculated using the adiabatic approximation and adiabatic
variational approximation with an effective potential by Yong et. al [77].

Using the two-dimensional pseudospectral method the ground and low-
lying states of the HF molecular ion in a strong magnetic field are
calculated in Ref [78]. The hydrogen molecular ion H; aligned with a
magnetic field has been studied with the Lagrange-mesh method which

allows obtaining highly accurate results under various field strengths and
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for various quantum numbers [79]. Turbiner et al. [80] studied the
qualitative and quantitative consideration of the one-electron molecular
systems such as H, H2* and H;™ in the presence of a magnetic field.

Using an accurate one center method with a technique that combining
the spheroidal coordinate and B-spline, Zhang et al. [81-83] have
calculated the equilibrium distances and the hydrogen molecular ion HJ in
both ground and low-lying states in the presence of a magnetic field. Also,
the hydrogen molecular ion in a strong magnetic field has been studied for
arbitrary orientations of the molecular axis in the non-aligned case by using
the Lagrange-mesh method to obtain highly accurate results under these
assumptions at various field strengths [84].

Using the time-dependent density functional theory the variations in
electron density and bonding have been investigated for the lowest 1a,
state of the hydrogen molecule under strong magnetic fields [85]. Song et
al. [86] calculated the electronic structure and properties of the hydrogen
molecule H, for the lowest 10, and 10, state in parallel magnetic fields
using a full configuration-interaction (CI) method which is based on the
Hylleraas-Gaussian basis set.

The aim of this chapter is to study the total energies, the dissociation
energies and the binding energies for the hydrogen molecular ion H; and
the hydrogen molecule H, in the presence of external magnetic field in

framework of the variational Monte Carlo method.

5.2 The Hamiltonian of the System

In the present thesis, we assume that the nuclear mass is infinite so that the
calculations will be one in frame of the Born—Oppenheimer approximation
and the magnetic field is oriented along the z-axis. The Schrodinger

equation can be written as follows
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Hy(r,R) = Ep(r;, R) (5.1)
where r; = (x;,y;, z;) are the coordinates of each electron with respect to
the center of mass of the nuclei, i = 1,2 and R is the internuclear distance.
The non-relativistic Hamiltonian A for the hydrogen molecular system in
a magnetic field can be written as

H\:_% 1i1=1‘7i2_ ?:1(Za+ﬁ)+ﬁ+%+HM (5'2)

Tia | T T2

In the above equation, 745y = |rl-a(b)| denotes the distance from electron
‘i’ (i=1,2) to nucleus ‘a’ (‘b’), the charge parameters Z, = Z, = 1,
11, 1S the interelectronic distance and H,, represents the magnetic part. The
magnetic Hamiltonian term for a magnetic field of intensity B directed

towards the positive Z — axis takes the form

2
gLZ + % P2, for H}
HM = % (53)
7,02 +y(L, + 25;) for H,

where, y = BE ( By = 2.35 x 10> T) is the magnetic field strength, L, is
0

the z-component of the total angular momentum, S, is the z-component of
the total spin and p? = X1, (x? + y7). The index n runs over the numbers

of the electrons. Then, for the hydrogen molecule, H,, n = 2. For the

hydrogen molecular ion, H, n = 1 and the term Za%b is omitted.

12

Hence, the non-relativistic Hamiltonian A for the hydrogen molecular

ion H; in a magnetic field can be written as [79, 83]:

1

Ta

__lyz_1_ 1 i fry ¥ 2
H=-3V rb+E+[2LZ+8p], (5.4)
where r, = |r,| and r, = |r,| in which r, and r, denote the relative
radius vectors of the electron with respect to the two nuclei a and b and

p? = (x* +y?).
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Similarly, the molecular electronic Hamiltonian for the hydrogen
molecule H, under a magnetic field may be conveniently written (in

atomic units) as follows [87]

H=_%V%_%V%_i_i_i_i+i+i

Tiq Tib T2 T2b Ti2 R
Y? 2
+[=p% +y(L, +25))] (5.5)
In the above equation, p? = (xZ + y?) + (x2 + y3).
Equation (5.2) is best treated in the system of prolate spheroidal

coordinates (A, u) where A and u are defined by

— Tig*t7i — Tia—Ti
A =TiatTip p = Ha_Tib (5.6)
In these coordinates, the kinetic-energy operator is written as
lo2_
=3V T ) O 57)

Our calculations for the ground state of H; molecular ion and H, molecule
in the presence of external magnetic field are based on using the trial wave
functions ¥, and y, which are introduced in Chapter 3 and they are given
by equation (3.13) and equation (3.14).

Figure-5.1 and Figure-5.2 represent illustrations for the hydrogen

molecular ion and the hydrogen molecule.

Figure-5.1 Geometrical setting for the hydrogen molecular ion H; placed
in a magnetic field directed along the z-axis. The protons are situated at a

distance R from each other.
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Figure-5.2 Geometrical setting for the hydrogen molecule H, placed in a
magnetic field directed along the z-axis. The protons are situated at a

distance R from each other.

5.3 Discussion of the Results of Chapter 5
The variational Monte Carlo method has been employed to calculate the
ground state of the hydrogen molecular ion H and the hydrogen molecule
H, in the magnetic field regime between 0 a.u. and 10 a.u.. All energies are
obtained in atomic unitsi.e. (h = e = m, = 1) with set of 4 x 107 Monte
Carlo integration points in order to make the statistical error as low as
possible. The magnetic field was taken in the parallel configuration, i.e. the
angle between the molecular axis and the magnetic field direction is zero,
6 = 0° as shown in Figure-5.1 and Figure-5.2. In the absence of magnetic
field, our results for the total energy of the hydrogen molecular ion H; in
the lowest state (1sa,) equals -0.6023424 at the equilibrium distance of
R = 1.9972 a.u, where for hydrogen molecule H, the total energy equals
-1.173427 at R = 1.40 a.u.

In this thesis we have calculated the total energies, the binding energies
and the dissociation energies of the (1so,) state as functions of the
magnetic field over various field-strength regimes (0 - 10 a.u.). The total

energy E; of the hydrogen molecular ion H; and the hydrogen molecule
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H, is defined as the total electronic energy plus the repulsive energy

Zg Zp
R

between the nuclei, E; = E., + . The least energy required to

produce a free electron and two nuclei, all infinitely far from each other in

the presence of the field has been defined as the binding energy for the
hydrogen molecular ion HS: E, =g— Er by Larsen in [88]. For the

hydrogen molecular ion H, the dissociation energy is defined as the least
energy required to dissociate the molecule into one nucleus and one
hydrogen atom in a magnetic field, E; = Ey — E; where Ey is the total
energy of the hydrogen atom in a magnetic field, i.e. the product of the
process Hy — H + P* [88].

In the case of the hydrogen molecule H,, the product is H, —» H(1s) +
H(1s) which means that the energy in the dissociation limit corresponds
to the energy of two hydrogen atoms in the lowest electronic state with

positive z parity i.e., the quantity E; = E — Igim Er. The binding energy

Is equal to the ionization energy and is always greater than the dissociation
energy. The presence of free electron in the orbitals of molecules will cause
an induced magnetic field, to be produced, and also due to the spin motion
of this free electron. We observe this in the hydrogen molecular ion H;
where, the presence of one electron in the 1s orbital will cause a weak
induced magnetic field by the spin motion of this electron either clockwise
or counterclockwise. Also, we showed that there is no induced magnetic
field in the hydrogen molecule H, as two electrons are paired in 1s orbital.
The strength of the magnetic field is directly proportional to the odd
number of free electron present in the orbitals.

The present calculations in the presence of a magnetic field are based on
using the trial wave functions y; and ¥, which are introduced in Chapter
3 and are given by Eq. (3.13) and Eq. (3.14), respectively. For hydrogen

molecular ion, the total energies are obtained by solving the Schrodinger
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equation given by Eq. (5.1) by using y,. Table-5.1 represents the obtained
results for H5 . In our calculations the values of E,,; are taken from Ref [78].
In a similar way, the total energies, and the dissociation energies as
functions of the magnetic field over various field-strength regimes are
presented in Table-5.2 for the ground 1sag,, state of the hydrogen molecule
H,.

From Table-5.1 and Table-5.2, we can observe that the binding energy,
the dissociation energy and the total energy increase with the increase in
the magnetic field strength. This is due to that the increase in the field
strength leads to increases in the movement of the electron and the
electronic spatial distribution will be strongly confined in a smaller space.
The probability of finding the electron in the region confined by the two
nuclei becomes larger under increase of the field strength. So, the changes
in the electronic properties of the ground state should be attributed to the
increased electron density in the region between the nuclei centered at z =
0.

An interesting and general phenomenon for molecules is the decrease of
the internuclear bond-length as the field strength increases. The decrease
in the equilibrium internuclear distance originates from the simultaneous
decrease of the electron clouds perpendicular and parallel to the magnetic
field. This means that this state is the most tightly bound state for all
magnetic field strengths because the electrons are in this state much closer
to the nuclei than in the free-state. This increases the binding due to the
attractive nuclear potential energy. Because the dissociation energy may
be used to measure the stability of a molecular system in a magnetic fields,
it is useful to explore the behaviour of this quantity with increasing field
strength. There is an increase in the binding energy of molecular systems

as the magnetic field strength gets larger. The increase in the binding
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energy comes from the result of strong localization of the electrons around
the nuclei. The electron-electron Coulomb repulsion is taken into account.

It is interesting to compare our results with the previous results which
used different wave functions and different methods such as [78, 79, 89]
for the ground state 1sa,, of the H; molecular ion and [86, 90, 91] for the
ground state 1sag, of the hydrogen molecule H,. It is clear that our results
are in good agreement with the pervious data.

Figure-5.3 and Figure-5.4 show the variation of the ground state energy
of the H; molecular ion and the hydrogen molecule H, in the presence of
a magnetic field from y = 0.0 to y = 10.0, respectively, versus the
internuclear distance R. These show that when the magnetic field strength
increases the ground state energy increases as seen from the change in the
values of the ground state energy from y = 0.0 to y = 10.0. We can
observe in both cases that at y = 10.0 the value of the total energy is the
highest energy. At y = 0.0 the total energy of the hydrogen molecular ion
H3 is larger than the hydrogen molecule because of the induced magnetic
field.
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Table-5.1 Total energy E, binding energy E, and dissociation energy E
of the ground state 1sa,, of the H; molecular ion in a parallel magnetic
field from y = 0.0 to y = 10.0. Note in Table-5.1 that the present
definition for E is equivalent to the definition of E, in Wille’s work [92].

In parentheses, we show the statistical error in the last figure.

y Req References Er E, E4
This work -0.602501700(4) 0.602501700 0.102501700
1.9971934
[79] —0.6026346191066 - -
This work -0.602501700(4) 0.602501700 0.102501700
0.0 1.997193
[78] -0.602634619 0.602634619 0.102634619
This work -0.602390800(2) 0.602390800 0.102390800
1.9971
[89] -0.602625 0.602625 -
This work -0.602508600(1) 0.603508600 0.102509600
0.002 1.99719
[93] ~0.60263398 0.60363398 0.10263498
This work -0.602477700(2) 0.606477700 0.102493699
1.997162
[78] —-0.602624361 0.606624361 0.102640360
0.008
This work -0.602610500(1) 0.606610500 0.102626499
1.99716
[93] ~0.60262436 0.60662436 0.10264036
This work -0.602479700(2) 0.612479700 0.102579656
0.02 1.996991
[78] -0.602570515 0.612570515 0.102670471
This work -0.600764400(0) 0.6507644 0.10323792
1.992212
[78] -0.601038207 0.651038207 0.103511727
This work -0.600734200(0) 0.6507342 0.10320772
0.1 1.9922107
[79] -0.6010382074075 - -
This work -0.600685200(0) 0.6506852 0.10315872
1.99221
[93] —0.60103820 0.65103820 0.10351172
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Table-5.1 Continued

y Req References Er Ep E4
This work -0.575015700(2) 0.7877327 0.114587838
1.924

[92] -0.575359 0.788125 -

This work -0.574840800(1) 0.787565 0.114412938
0.425434 1.9234
[78] -0.575370830 0.788087830 0.114942968
This work -0.574771100(3) 0.7874881 0.114343238
+ [94] —0.575075 0.763412 0.114685

This work -0.470237300(5) 0.9702373 0.139068403

2.0 [79] ~0.47054001262014 - -

[82] —0.4705400126203 - -
This work -0.468984500(5) 0.9689845 0.137815603

1.752084 [82] —0.474988245275 - -

[79] —0.474988245275 - -
1.0 1.7520838 | This work -0.468984500(5) 0.9689845 0.137815603

[79] —0.474988245275 - -
1.7521 This work -0.468523800(8) 0.9685238 0.1373549033
[78] —0.474988245 0.974988245 0.143819348
1.752 This work -0.468317700(7) 0.9683177 0.137148803

[88] -0.4749 0.9749 -
1.5025 This work -0.17393060(3) 1.2375156 0.1952071163
212717 [78] —0.174910873 1.238495873 0.153634357
1.448 This work -0.1520147(1) 1.2155997 0.1732912163

[95] ~0.15225 1.215835 0.2570
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Table-5.1 Continued

y Req References Er E, E4
1.376 This work 0.10122530(7) 1.3987747 0.2342417107
3.0 [89] 0.10485 1.39515 -
1.3754 This work 0.10123410(7) 1.3987659 0.2342329107
[78] 0.104455347 1.39554465 0.231011664
1.2465 This work 0.5304074(1) 1.5967626 0.2892954573
[78] 0.544794264 1.582375737 0.274908594
4.25434 1.2464 This work 0.5305169(1) 1.5966531 0.2891859573
[89] 0.544895 1.5823 -
1.246 This work 0.530954(1) 1.596216 0.2887488573
[92] 0.545154 1.582016 -
0.957 This work 2.8221030(5) 2.177897 0.430107
10.0 [78] 2.825014 2.174986 0.427196
This work 2.827940(4) 2.17206 0.42427
0.950 [96] 2.8327 2.1673 0.41955
[92] 2.8250 2.1750 -
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Table-5.2 Total energy E, and dissociation energy E, of the ground state

1sao, of the hydrogen molecule H, in a parallel magnetic field fromy =

0.0 to y = 10.0. In parentheses, we show the statistical error in the last

figure.
y Req References Er Eq
This work -1.173427(1) 0.173429
0.0 1.40 [90] —1.173436 0.173438
[86] —1.1744477 0.1744478
This work -1.17342(1) 0.173422
0.001 1.40
[90] —1.173436 0.173438
This work -1.173285(1) 0.173301
0.005 1.40
[90] -1.173424 0.173440
This work -1.172867(1) 0.1729171
0.01 1.40 [90] —-1.173396 0.173450
[86] —1.1744096 0.1744597
This work -1.171858(1) 0.1731047
0.05 1.40 [90] —1.172407 0.173658
[86] —1.173497 0.1747437
This work -1.170512(7) 0.1754591
1.40
[86] —-1.1706617 0.1756088
0.1
This work -1.166586(5) 0.171542
1.39
[90] —1.169652 0.174608
This work -1.135232(1) 0.154469
0.2 1.39 [90] —1.158766 0.178001
[86] —1.159579 0.178816
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Table-5.2 Continued

y Req References Er Eq
This work -1.110247(2)
1.349 -
0.4254414 [90] —1.110362
This work -1.079712(1)
1.337 -
[91] -1.0822
This work -1.078379(2) 0.183958
0.5 1.33 [90] —1.089082 0.194663
[86] —1.089750 0.195329
1.23 This work -0.8866(7) 0.224262
1.0
[86] —0.891184 0.228846
This work -0.3334(2) 0.288972
2.0 1.09 [90] —0.335574 0.291170
[86] —0.336236 0.291808
This work -0.2501(1)
2.127207 1.07 -
[90] —0.255591
This work 1.2322(5)
0.898 -
[90] 1.233808
4.254414
This work 1.3266(4)
0.859 -
[91] 1.3326
This work 1.8077(5) 0.4459257
5.0 0.86 [90] 1.801212 0.438015
[86] 1.8004883 0.438714
This work 5.8826(3) 0.6105216
10.0 0.70 [90] 5.889023 0.615473
[86] 5.8882422 0.6161638
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Figure-5.3 Ground-state energy of the hydrogen molecular ion H; in the
presence of a magnetic field from y = 0.0 to y = 10.0 versus the

internuclear distance R
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Figure-5.4 Ground-state energy of the hydrogen molecule H, in the
presence of a magnetic field from y = 0.0 to y = 10.0 versus the

internuclear distance R.
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5.4 Conclusion

In the present chapter, we have studied the hydrogen molecular ion H and
the hydrogen molecule H, in the presence of a magnetic field by using the
well-known variational Monte Carlo method. In the present study, the
molecular axis is usually aligned along the field axis. Accordingly, we have
calculated the total energies, and the dissociation energies with respect to
the magnetic field for both of the hydrogen molecular ion H5 and the
hydrogen molecule H, and the binding energies for the hydrogen
molecular ion Hy only by using two accurate trial wave functions of the
(1so,) state over various field-strength regimes. While increasing the field
strength, the equilibrium distance R, decreases and the total energy, the
dissociation energy, and binding energy E, increase monotonously. In
both cases our results exhibit good accuracy under various field strengths
comparing with previous values obtained by using different methods and
different forms of trial wave functions. This is due to the fact that we have
used two trial wave functions each of them takes into consideration the
electron-electron correlation. Finally, we conclude that the applications of
VMC method can be extended successfully to cover the case of molecules

under the effect of the magnetic field.
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