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ABSTRACT 

In this thesis, the ground state energies of the hydrogen molecular ion H2
+ 

and the hydrogen molecule H2 are numerically evaluated using the 

variational Monte Carlo method. The Case of the hydrogen molecular ion 

H2
+ and the hydrogen molecule H2 compressed by spherical hard wall is 

studied. Our study were extended also to include the 𝐻𝑒𝐻++ molecular 

ion. Finally, we have calculated the total energies, the dissociation 

energies, and the binding energies for the hydrogen molecular ion 𝐻2
+ and 

the hydrogen molecule 𝐻2 in the presence of external magnetic field in 

the framework of a variational Monte Carlo (VMC) method. All cases of 

our results exhibit good accuracy comparing with previous values using 

different methods and different forms of the trial wave functions. In this 

way we conclude that the applications of VMC method can be extended 

successfully to cover other characteristics of molecules. 
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SUMMARY 

The aim of this thesis is to investigate the ground state characteristics of 

the hydrogen molecule, the confined hydrogen molecule, the hydrogen 

molecular ion and the confined hydrogen molecular ion in the absence 

and in the presence of aligned magnetic field. For these purposes we have 

applied the variational Monte Carlo method, which has been previously 

applied successfully for the ground and excited states of the helium and 

lithium atoms. The Metropolis algorithm has been adopted in our 

calculations with the well known Born-Oppenheimer approximation.   

Accurate and compact trial wave functions have been used for this 

purpose.  

The present thesis consists of five chapters and is organized as follows:       

 

Chapter One 

In this chapter we introduced the essential outlines of the topics 

investigated in the present thesis, especially the history of the Monte 

Carlo methods which are dealing with the atomic and molecular systems. 

Also, we presented a historical review about the Schrödinger equation 

and its applications in these two branches. This chapter is ended by the 

literature review.   

 

Chapter Two     

In chapter two we have introduced the formulation of the variational 

Monte Carlo (VMC) method which is based on a combination of the 

variational principle and the Monte Carlo evaluation of integrals, using 

importance sampling based on the Metropolis algorithm. Furthermore, we 

have explained the Metropolis algorithm, its logical steps and its 

acceptance and rejection ideas. Also, we have introduced the important 
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role of the trial wave function in the variational method generally and in 

the variational Monte Carlo method especially.  

 

Chapter Three 

In this chapter we have used the variational Monte Carlo method to 

calculate the ground state energies of the hydrogen molecular ion H2
+ and 

the hydrogen molecule H2 at different interproton separation distance. 

The calculations were carried out in framework of the principles of the 

Born-Oppenheimer approximation, the approximation which considers 

the case of an infinitely heavy nucleus. We also presented in this chapter 

a survey of the trial wave functions which are used in our calculations of 

the energy eigenvalues of the different molecular systems tackled in this 

thesis. Our calculations gave good results in comparison with the most 

recent data and the comparison showed that the accuracy and efficiency 

of the VMC method in calculating different molecular properties of 

hydrogen molecule 𝐻2 and its molecular ion H2
+ are very clear.  

 

Chapter Four 

This chapter is devoted to investigate the applications of the variational 

Monte Carlo method to the calculations of the ground state energy of the 

hydrogen molecule 𝐻2 and the hydrogen molecular ion 𝐻2
+ confined by a 

hard prolate spheroidal cavity. In these investigations the case where the 

nuclear positions are clamped at the foci (on-focus case) is considered. 

Also, the case of off-focus nuclei in which the two nuclei are not clamped 

to the foci is studied. Accurate trial wave functions depending on many 

variational parameters are used for these purposes. The results were 

extended also to include the 𝐻𝑒𝐻++ molecular ion. The obtained results 

are in good agreement with the most recent results. In all cases our results 

http://en.wikipedia.org/wiki/Hydrogen_molecule
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exhibit a good accuracy comparing with previous values using different 

methods and different forms of the trial wave functions. 

  

Chapter Five     

In chapter five we have applied the variational Monte Carlo method to 

calculate the 1𝑠𝜎𝑔 state energies, the dissociation energies, and the 

binding energies of the hydrogen molecular ion 𝐻2
+ and the hydrogen 

molecule 𝐻2 in the presence of an aligned magnetic field regime between 

0 a.u. and 10 a.u. Our calculations are based on using compact and 

accurate trial wave functions. The obtained results are compared with the 

most recent accurate values and have shown excellent agreement with 

these results.  
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Chapter 1 

Introduction 

The history of Monte Carlo methods goes back a long time. The generic 

idea of random, or "stochastic", sampling is straightforward and 

appealing in its elegance and has been used for centuries. Possibly the 

first systematic application of statistical sampling techniques in science 

and engineering was by Enrico Fermi in the early 1930's to predict the 

results of experiments related to the properties of the neutron [1] which 

had recently been discovered by James Chadwick in 1932.  

    In 1947, Stanislaw Ulam suggested to John Von Neumann that the 

newly developed ENIAC computer would give them the means to carry 

out calculations based on statistical sampling with hitherto unattained 

efficiency and comparative ease [2]. Their coworker Nicholas Metropolis 

dubbed the numerical technique "the Monte Carlo method" parly inspired 

by Ulam's anecdotes of his gambling uncle who just had to go to Monte 

Carlo. Since the deployment of the ENIAC which could do about 5000 

additions or 400 multiplications per second and occupied the size of a 

large room, computing power has grown dramatically. 

    In the early 1970's, a computer design was introduced that had at its 

heart an electronic component first introduced in 1958, a so-called 

"integrated circuit". All of a sudden, a computer's Central Processing Unit 

shrank from the size of a domestic refrigerator to that of a fingernail. The 

number of transistors in a single integrated circuit kept growing at an 

almost constant exponential rate since then, and with it grew the 

computing power of the computer. In addition to that, miniaturization and 
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the introduction of new materials allowed for equally dramatic increases 

in computer's clock speeds. 

    For the recent CPU-computer devices, 2 billion double precision 

floating point multiplications can be carried out per second which means 

that the kind of hardware used these days as a word processor can do in 

one second what used to take the ENIAC over two months. It is no 

surprise, then, that by now the use of Monte Carlo (MC) methods has 

become ubiquitous in science, technology and business.  

    Simulation techniques are used in: oil well exploration; stellar 

evolution; electronic chip design; reactor design; quantum chromo 

dynamics; material sciences; physical chemistry; nanostructure, protin, 

and polymer research; operations research, e. g., when designing the 

relationships and control mechanisms between raw materials input, 

manufacturing, and delivery; ground and air traffic control systems 

design; communication and computer system design and testing, e.g., 

network theory; bimolecular research, e. g., cancer drug design; all areas 

of finance and insurance; weather forecasting (where it is referred to as 

"ensemble forecasting"); and local authorities planning and 

commissioning site.  

    Recently, Quantum Monte Carlo (QMC) have become a powerful tool 

in Quantum Mechanics calculations because it provides a practical 

method for solving the many-body Schrödinger equation. It is commonly 

used in physics to simulate complex systems that are of random nature in 

statistical physics. The term QMC refers to group of methods in which 

physical or mathematical problems are simulated by using random 

numbers.     

    QMC methods are ones of the most accurate for computing the 

properties of liquids and solids for interacting Hamiltonians [3, 4]. These 
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methods do not require approximation, and can be used to solve 

Hamiltonians exactly.  

    MC methods can be used to simulate quantum mechanical systems, but 

are also well suited for calculating integrals, especially high-dimensional 

integrals.  

    There are many versions of the QMC methods that are used to solve 

the Schrödinger equation for the ground state energy of a quantum system 

including the diffusion Monte Carlo (DMC) method [5], which is used to 

solve the time-dependent Schrödinger equation. Another method is the 

Green’s function Monte Carlo which has been extended [6] to multiple 

states with the same quantum numbers. The simplest of QMC methods is 

the variational Monte Carlo (VMC) method which has become a valuable 

tool of the quantum chemist calculations.     

    Recently, VMC method was used widely to calculate both ground and 

excited states for atoms and molecules. The obtained results are of good 

agreement with the exact data. The major advantage of this method is the 

possibility of freely choose the analytical form of the trial wave function 

which may contain highly sophisticated term in such a way that electron 

correlation is explicitly taken into account.  

    In general, QMC methods use a stochastic integration method to 

evaluate expectation values for a chosen trial wave function. In a system 

of 1000 electrons the required integrals are 3000 dimensional and for 

such problems MC integration is much more efficient than conventional 

quadrature methods such as Simpson’s rule. The main drawback of QMC 

is that the accuracy of the result depends entirely on the accuracy of the 

trial wave function.  

    In general, MC methods are especially useful in studying systems with 

a large number of coupled degrees of freedom, such as liquids, strongly 

coupled solids, and cellular structure. Moreover, VMC method has been 
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widely applied not only to strongly interacting lattice systems, but also to 

realistic continuous models, such as electron gas [5], quantum dots [6], 

nanoclusters [7], solid hydrogen [8] and liquid helium.  

    The applications of VMC method are also extended to include some 

medical applications because it is the most accurate way to simulate 

radiation transport on a computer. Also, it will help doctor to choose a 

treatment that maximized the radiation dose to the tumor and minimizes 

the dose to normal tissues [9].  

    In telecommunications, when planning a wireless network, design must 

be proved to work for a wide variety of scenarios that depend mainly on 

the number of users, their locations and the services they want to use. MC 

methods are typically used to generate these users and their states. The 

network performance is then evaluated and, if results are not satisfactory, 

the network design goes through an optimization process.    

    MC methods are very important in computational physics, physical 

chemistry, and related applied fields, and have diverse applications from 

complicated quantum chromodynamics calculations to designing heat 

shields and aerodynamic forms as well as in modeling radiation transport 

for radiation dosimetry calculations. In statistical physics MC molecular 

modeling is an alternative to computational molecular dynamics, and MC 

methods are used to compute statistical field theories of simple particle 

and polymer systems.      

    MC methods solve the many-body problem for quantum systems. In 

experimental particle physics, MC methods are used for designing 

detectors, understanding their behavior and comparing experimental data 

to theory.  

     In astrophysics, they are used in such diverse manners as to model 

both the evolution of galaxies and the transmission of microwave 

http://en.wikipedia.org/wiki/Computational_physics
http://en.wikipedia.org/wiki/Physical_chemistry
http://en.wikipedia.org/wiki/Physical_chemistry
http://en.wikipedia.org/wiki/Quantum_chromodynamics
http://en.wikipedia.org/wiki/Heat_shield
http://en.wikipedia.org/wiki/Heat_shield
http://en.wikipedia.org/wiki/Aerodynamics
http://en.wikipedia.org/wiki/Statistical_physics
http://en.wikipedia.org/wiki/Statistical_physics
http://en.wikipedia.org/wiki/Monte_Carlo_molecular_modeling
http://en.wikipedia.org/wiki/Molecular_dynamics
http://en.wikipedia.org/wiki/Statistical_field_theory
http://en.wikipedia.org/wiki/Many-body_problem
http://en.wikipedia.org/wiki/Particle_physics
http://en.wikipedia.org/wiki/Particle_detector
http://en.wikipedia.org/wiki/Astrophysics
http://en.wikipedia.org/wiki/Galaxy
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radiation through a rough planetary surface. MC methods are also used in 

the ensemble models that form the basis of modern weather forecasting.  

     MC methods in finance are often used to evaluate investments in 

projects at a business unit or corporate level, or to evaluate financial 

derivatives. They can be used to model project schedules, where 

simulations aggregate estimates for worst-case, best-case, and most likely 

durations for each task to determine outcomes for the overall project.  

    In general, VMC method are used in mathematics to solve various 

problems by generating suitable random numbers (see also Random 

number generation) and observing that fraction of the numbers that obeys 

some property or properties. The method is useful for obtaining 

numerical solutions to problems too complicated to solve analytically. 

The most common application of the MC method is MC integration. 

    The Schrödinger equation is the name of the basic non-relativistic 

wave equation used in one version of quantum mechanics to describe the 

behavior of a particle in a field of force.  

    Schrödinger was the first person who set his mind on finding a wave 

equation for the electron. Closely following the electromagnetic 

prototype of a wave equation, and attempting to describe the electron 

relativistically, he first arrived at what we today know as the Klein-

Gordon-equation. To his annoyance, however, this equation, when 

applied to the hydrogen atom, did not result in energy levels consistent 

with Arnold Sommerfeld’s fine structure formula, a refinement of the 

energy levels according to Bohr. Schrödinger therefore retreated to the 

non-relativistic case, and obtained as the non-relativistic limit to his 

original equation the famous equation that now bears his name. He 

published his results in a series of papers in 1926 [10, 11].  

    Therein, he emphasizes the analogy between electrodynamics as a 

wave theory of light, which in the limit of small electromagnetic 

http://en.wikipedia.org/wiki/Ensemble_forecasting
http://en.wikipedia.org/wiki/Numerical_weather_prediction
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wavelength approaches ray optics, and his wave theory of matter, which 

approaches classical mechanics in the limit of small de Broglie 

wavelengths. His theory was consequently called wave mechanics. In a 

wave mechanical treatment of the hydrogen atom and other bound 

particle systems, the quantization of energy levels followed naturally 

from the boundary conditions. A year earlier, Werner Heisenberg had 

developed his matrix mechanics, which yielded the values of all 

measurable physical quantities as eigenvalues of a matrix. 

    Schrödinger succeeded in showing the mathematical equivalence of 

matrix and wave mechanics [12]. They are just two different descriptions 

of quantum mechanics. A relativistic equation for the electron was found 

by Paul Dirac [13]. It included the electron spin of 1/2, a purely quantum 

mechanical feature without classical analog. Schrödinger’s original 

equation was taken up by Klein and Gordon, and eventually turned out to 

be a relativistic equation for bosons, i.e. particles with integer spin. In 

spite of its limitation to non-relativistic particles, and initial rejection 

from Heisenberg and colleagues, the Schrödinger equation became 

eventually very popular. Today, it provides the material for a large 

fraction of most introductory quantum mechanics courses. 

    In the case of a few idealized scenarios, the Schrödinger equation may 

be solved analytically in order to describe the phenomenon of a quantum 

particle. For other systems the behavior of the quantum particle can 

become so complex that numerical techniques must be used in order to 

solve the Schrödinger equation and obtain its eigenfunctions and 

eigenvalues. The MC method provides a convenient way to solve the 

Schrödinger equation because of its success in obtaining a probability 

distribution.  

    The ground-state energy of a quantum particle may be obtained 

analytically by solving the Schrödinger equation if the problem is simple 
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enough for this to be possible. Alternatively, using a variational wave 

function for the quantum particle, the Schrödinger equation can be solved 

numerically within a MC method. The MC method makes use of an 

initial probability distribution to estimate the ground-state energy of the 

quantum particle. The exact minimum energy of the quantum particle is 

found by varying the trial wave function. The minimum ground-state 

energy as a function of the variational parameter identifies the ground 

state as well as the system’s eigenstate. The minimum of the energy must 

be accompanied by a minimum in the standard deviation.    
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Literature Review 

In this section, we will handle in details the previous work presented in 

frame work of the MC methods.  

    Manisa [14] investigated systematic nuclear matter. Total, kinetic and 

potential energies per particle were obtained for nuclear matter by VMC 

method. They had observed that the results were in good agreement with 

those obtained by various authors who used different potentials and 

techniques.  

    Ma et al. [15] presented all electron variational and diffusion (VMC 

and DMC) calculations for the noble gas atoms He, Ne, Ar, Kr, and Xe. 

The calculations were performed using Slater-Jastraw wave functions 

with Hartree-Fock single-particle orbitals. The quality of both the 

optimized factors and the nodal surfaces of the wave functions declines 

with increasing atomic number Z. They discussed the scaling of the 

computational cost of the DMC calculations with Z.  

    Chiesa et al. [16] reported that computation of ionic forces using QMC 

had long been a challenge. They introduced a simple procedure, based on 

known properties of physical electronic densities, to make the variance of 

the Hellmann-Feynman estimate finite. They obtained very accurate 

geometries for the molecules H2, LiH, CH4, NH3, H2o, and HF, with a 

Slater-Jastraw trial wave function. Harmonic frequencies for diatomic 

also are in good agreement with experiment. 

    Drummond et al. [17] reported all electron and pseudopotential 

calculations of the ground-state energies of the neutral Ne atom and the 

Ne+ ion using the variational and diffusion quantum Monte Carlo (VQMC 

and DQMC) methods. They investigated different levels of Slater-Jastraw 

trial wave function: (i) using Hartree- Fock orbitals, (ii) using orbitals 

optimized within a Monte Carlo procedure in the presence of a Jastraw 
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factor, and (iii) including backflow correlations in the wave function. 

Small reductions in the total energy were obtained by optimizing the 

orbitals, while more significant reductions were obtained incorporating 

backflow correlations. 

    Davis [18] used the VMC method to study the electronic structure of 

atomic hydrogen, helium, lithium, and beryllium. The trial functions were 

taken as products of hydrogenic orbitals for which Z is treated as a 

variable parameter. The variationally optimized values of these 

parameters are interpreted as effective nuclear charges. The results were 

used to explicate several features of many electron atoms, including 

electron shielding in the ground state of helium, singlet–triplet splitting in 

the first excited state of helium, the difference in 2s and 2p penetration in 

lithium, and the trends in ionization energies for Be, Be+, and Be2+. 

    Brown et al. [19] calculated the ground state energies of the first row 

atoms (Li to Ne) by using VQMC and DQMC calculations. They used 

trial wave functions of types: single determinant Slater-Jastraw wave 

functions; multi-determinant Slater-Jastraw wave functions with 

backflow transformations. 

    In Ref [20], the VMC method was used to study the linear and periodic 

chain of hydrogen atoms. The calculations were based on using a highly 

correlated Jastrow antisymmetrized geminal power variational wave 

function. It was proven that the accuracy of the calculations were 

comparable to that of benchmark density matrix renormalization-group 

calculations. Furthermore, the crossover between the weakly and strongly 

correlated regimes of this atomic chain was characterized using the so-

called “modern theory of polarization” and by studying the spin-spin and 

dimer-dimer correlations functions. The obtained results show that the 

VMC method provides an accurate and flexible alternative to highly 

correlated methods of quantum chemistry which, at variance with these 
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methods, can be also applied to a strongly correlated solid in low 

dimensions close to a crossover or a phase transition. 

    Barborini et al. [21] presented full structural optimizations of the 

ground state and of the low lying triplet state of the ethylene molecule by 

means of QMC methods. All of the calculations were done using an 

accurate and compact wave function based on Pauling's resonating 

valence band representation: the Jastraw Antisymmetrized Geminal 

Power (JAGP). Bond lengths and bond angles were calculated with a 

statistical error of about 0.1% and are in good agreement with the 

available experimental data. 

    In Ref [22], VMC method was used to describe spin-orbit splitting in 

heavy atoms. Calculations were tested first for the light C atom, and then 

extended to a set of heavier open p-shell atoms (Ti to Po). In frame of the 

presented results VMC approach introduced an efficient and very 

accurate way when spin orbit effects are included in the Hamiltonian 

describing the electronic structure. 

    In 2012, Mizusaki et al. [23] proposed a new VMC method with an 

energy variance extrapolation to study the large-scale shell-model 

calculations. Using this method, they could stochastically calculate 

approximated energies and electro-magnetic transition strengths. The 

exact shell-model energies were estimated by combining VMC method 

with energy variance extrapolation. 

    Elkahwagy et al. [24-26] have studied the VMC and the DMC methods. 

To allow the QMC calculations of the heavy atom, pseudopotential 

valence-only calculations have been performed, since the presence of the 

inert core electrons introduces a large fluctuation in the energies and this 

reduces the computational efficiency. The basic form of the wave 

function is the Slater-Jastrow wave function which is considered the most 

common and simplest one. 

http://publish.aps.org/search/field/author/Mizusaki_Takahiro
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    In paper [24] the authors perform QMC calculations for the ground 

state energies of both the neutral atoms and their corresponding cations 

for Ce to Eu in order to evaluate their first ionization potential.   

    In paper [25] the authors have calculated the ground state energies of 

La atom and its charged cations with the hope “achieving high accuracy” 

by using VMC and DMC methods. In addition, they study the DMC 

energies at different time steps and the accurate extrapolated value of the 

ground state energy of La atom is derived.  

    In Ref [26] the authors have performed pseudopotential calculations of 

the ground state energies of actinium and thorium neutral atoms and some 

of their corresponding cations by using VMC and DMC methods. The 

fluctuation of the local energy that has been obtained is found to be below 

2 a.u. in all cases under study. Additionally, they study the dependence of 

DMC energy on the size of the time step for actinium.  

    Recently, many studies have been presented by Doma et al. using the 

VMC method for atoms. In Ref [27], they evaluated the energy of the 

ground state of the helium atom where the relativistic effect was taken 

into account. Also, they extended their study in Ref [28] to calculate the 

lowest order relativistic corrections for the ground state energies of the 

helium-like atoms, up to Z = 10, and also for some excited state energies 

of the helium atom. These relativistic corrections include: mass-velocity 

effect, orbit-orbit interaction, spin magnetic and dipole moments of the 

two electrons and the Darwin effect. Moreover, correction due to the 

nucleus motion has been also calculated.  

    In 2012, the case of compressed helium atom by spherical box was 

studied. For various values of the spherical box radii, Doma et al. [29] 

have calculated the energies for both helium and its isoelectronic ions, Li+ 

and Be2+. They considered the case of small values of 𝑟𝑐, which describe 

the strong compression, as well as the case of large values of 𝑟𝑐. In both 
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cases, the results exhibit good accuracy compared with previous values 

using different methods and different forms of trial wave functions.  

    For lithium atom, VMC presented an efficient technique for calculating 

the ground state energy and its ion up to Z=10 [30]. Also, Doma in [31] 

investigated the effect of an external magnetic field on the ground state 

energies of the helium atom, and hydrogen negative ion. The obtained 

results were in good agreement with the most recent previous accurate 

values and also with the exact values. 
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Chapter 2 

The Variational Monte Carlo Method 

2.1 Formulation of the Method 

In this section we summarize the strategy used to calculate the 

expectation value of any operator using variational Monte Carlo (VMC) 

method. The term VMC is derived from the use of Monte Carlo type in 

conjunction with the variational principle. VMC is based on a 

combination of two ideas namely the variational principal and the Monte 

Carlo evaluation of integrals using importance sampling based on the 

Metropolis algorithm. During the last ten years it has become clear that 

VMC can produce very accurate ground and excited states expectation 

values for atoms and molecules. For a sufficiently high number of 

variables in the integrand, VMC method are much more efficient than a 

deterministic integration such as Simpson’s rule, and the many-body 

systems are certainly the case. The VMC methods are used to compute 

quantum expectation values of an operator with a given trial wave 

function. In particular, if the operator is the Hamiltonian, its expectation 

value is the varitional energy 

                    𝐸𝑉𝑀𝐶 =
⟨𝜓𝑇|𝐻̂|𝜓𝑇⟩

⟨𝜓𝑇|𝜓𝑇⟩
=

∫ 𝜓𝑇
∗ (𝑹) 𝐻̂ 𝜓𝑇(𝑹) 𝑑𝑹

∫ 𝜓𝑇
∗ (𝑹) 𝜓𝑇(𝑹) 𝑑𝑹

                            (2.1)  

where 𝜓𝑇 is a trial wave function and 𝑹 is the 3𝑁-dimensional vector of 

the electron coordinates. According to the variational principle, a trial 

wave function for a given state must produce an energy which is above 

the exact value of that state; i.e. 𝐸𝑉𝑀𝐶 ≥ 𝐸𝑒𝑥𝑎𝑐𝑡. To evaluate the integral 

in Eq. (2.1) we firstly construct a trial wave function, 𝜓𝑇
∝(𝑹), depending 

on a set of ∝-variational parameters ∝= (∝1, ∝2, … , ∝𝑁) and then vary 
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the parameters to obtain minimum energy. The VMC method is a Monte 

Carlo method for evaluating the multi-dimensional integral in Eq. (2.1). 

This is achieved by rewriting Eq. (2.1) in the following form,          

                            𝐸𝑉𝑀𝐶 =
∫| 𝜓𝑇(𝑹)|2 

𝐻̂ 𝜓𝑇(𝑹)

 𝜓𝑇(𝑹)
𝑑𝑹

∫| 𝜓𝑇(𝑹)|2𝑑𝑹
                                         (2.2) 

VMC calculations determine 𝐸𝑉𝑀𝐶  by writing it as [7] 

                              𝐸𝑉𝑀𝐶 = ∫ 𝑃(𝑹) 𝐸𝐿(𝑹) 𝑑𝑹                                      (2.3)     

where 𝑃(𝑹) =
|𝜓𝑇(𝑹)|2

∫|𝜓𝑇(𝑹)|2 𝑑𝑹
 is positive everywhere and interpreted as a 

probability distribution and 𝐸𝐿 =
𝐻̂ 𝜓𝑇 (𝑹)

𝜓𝑇 (𝑹)
 is the local energy function. 

    The value of 𝐸𝐿 is evaluated using a series of points 𝑹𝑖𝑗 sampled from 

the probability density 𝑃(𝑹) . At each of these points the weighted 

average 〈𝐸𝐿〉 =
∫ 𝜓𝑇

2(𝑹) 𝐸𝐿 𝑑𝑹

∫ 𝜓𝑇
2(𝑹)  𝑑𝑹

, is evaluated. After a sufficient number of 

evaluations the VMC estimate of 𝐸𝑉𝑀𝐶  will be  

              𝐸𝑉𝑀𝐶 = 〈𝐸𝐿〉 = lim 
𝑁→∞

 lim 
𝑀→∞

1

𝑁
 

1

𝑀
 ∑ ∑ 𝐸𝐿

𝑀
𝑖=1

𝑁
𝑗=1 (𝑹𝑖𝑗)                 (2.4)                                                  

where 𝑀 is the ensemble size of random numbers {𝑹1, 𝑹2, … , 𝑹𝑀}, which 

may be generated using a variety of methods [32, 33] and 𝑁  is the 

number of ensembles. These ensembles so generated must reflect the 

distribution function itself. A given ensemble is chosen according to the 

Metropolis algorithm [34]. This method uses an acceptance and rejection 

process of random numbers that have a frequency probability distribution 

like 𝜓2. The acceptance and rejection method is performed by obtaining a 

random number from the probability distribution, 𝑃(𝑹), then testing its 

value to determine if it will be acceptable for use in approximating the 

local energy. After an ensemble of random numbers is generated, the 

acceptance criterion is such that the probability of moving from an initial 

random number of the ensemble, 𝑹𝑖 , to a new random number, 𝑹𝑘 , is 

defined according to the ratio  
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                                         A =
𝜓2(𝑹𝒌)

𝜓2(𝑹𝒊)
                                                    (2.5)                                            

    If A is larger than one, this trial step is accepted (i.e. we put 𝑹𝑖+1 = 𝑹𝑘) 

and the new 𝑹𝑘 is a member of the next ensemble. While if A is less than 

one, the step is accepted with probability A.  

    If the trial step is not accepted, then it is rejected, and we put 𝑹𝑖+1 =

𝑹𝑖. This process is repeated for each member of an ensemble and is done 

in order to broaden subsequent ensembles for a wider sampling range. 

Any arbitrary point 𝑹0 can be used as the starting point for the random 

walk.  

    The accepted ensembles will be used to evaluate the VMC estimate for 

the average energy according to Eq. (2.4). In our work the broadening of 

the ensemble is achieved according to 

              𝒀 = 𝑹(𝐾) + 𝐷𝐸𝐿𝑇𝐴 ∗ (𝑅𝐴𝑁𝐷0 (𝑆𝐸𝐸𝐷) − 0.5)                    (2.6) 

where 𝒀 is the new value 𝑹𝑘 to be tested and 𝑹(𝐾) is the value 𝑹𝑖 of the 

previously accepted ensemble for 𝐾 = 𝑖.  

    The function 𝑅𝐴𝑁𝐷 returns a uniform random number between 0 and 

1, and is a nonintrinsic function. The range width is determined by 

𝐷𝐸𝐿𝑇𝐴, adjusted to suit particular needs, and the value 0.5 ensures the 

availability of negative numbers. The random number generator only 

produces numbers between 0 and 1, so there will be an initial maximum 

random value and an initial minimum random value. These maximum 

and minimum values in the new accepted ensemble, {𝑹(𝐾)}, are kept as 

subsequent ensemble grows in range. Finally, it is important to calculate 

the standard deviation of the energy [7] 

                                   𝜎 = √
〈𝐸𝐿

2〉− 〈𝐸𝐿〉2

𝐿 (𝑁−1)
                                                   (2.7) 
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2.2 The Metropolis Algorithm 

The Metropolis Algorithm has been the most successful and influential of 

all the members of the computational species that called the Monte Carlo 

Method. This method we have used to sample points from the chosen 

probability distribution is the Metropolis algorithm. The Metropolis 

algorithm was named after Nicholas Metropolis, who was an author along 

with A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller and E. Teller of 

the 1953 paper "Equation of State Calculations by Fast Computing 

Machines" [34] which was the first that proposed algorithm for the 

specific case of the canonical ensemble. It is well-known also that W. K. 

Hastings [34] was the first who extended this algorithm to the more 

general case in 1970. 

    Whereas the context in which it was invented is now largely irrelevant, 

this powerful technique continues to be a versatile tool in a great many 

numerical simulations in several different branches of science [35, 36]. 

The Metropolis algorithm is the most widely used algorithm for 

generating a sequence of points that sample a given probability 

distribution to sample physical quantities such as the total energy 

efficiently. 

    In the QMC method each point in the phase space is a vector 𝑹 =

(𝒓1, 𝒓2, … , 𝒓𝑁) in the 3N-dimensional space of the position coordinates of 

all the N electrons, and the sequence of phase space points provides a 

statistical representation of the ground state of the system. If we are to 

build up a statistical picture of the overall system of electrons and nuclei, 

it is necessary to move the electrons around to cover all possible positions 

and hence all possible states of the system. As we move the electrons 

around, we can keep track of physical quantities such as the total energy, 

polarisation, etc., associated with the instantaneous state of the electron 

configuration. The sequence of individual samples of these quantities can 

http://en.wikipedia.org/w/index.php?title=Arianna_W._Rosenbluth&action=edit&redlink=1
http://en.wikipedia.org/wiki/Marshall_N._Rosenbluth
http://en.wikipedia.org/w/index.php?title=Augusta_H._Teller&action=edit&redlink=1
http://en.wikipedia.org/wiki/Edward_Teller
http://en.wikipedia.org/wiki/Equation_of_State_Calculations_by_Fast_Computing_Machines
http://en.wikipedia.org/wiki/Equation_of_State_Calculations_by_Fast_Computing_Machines
http://en.wikipedia.org/wiki/Canonical_ensemble
http://en.wikipedia.org/wiki/W._K._Hastings
http://en.wikipedia.org/wiki/W._K._Hastings
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be combined to arrive at average values which describe the quantum 

mechanical state of the system. Many pseudo-random numbers are used 

to generate the sequence of states, which are collectively called a random 

walk.  

    In Metropolis algorithm, a random walk is performed through the 

configuration space of interest. The walk is designed so that the points on 

the walk are distributed according to the required probability distribution. 

At each point on the walk a random trial move from the current position 

in configuration space is selected. This trial move is then either accepted 

or rejected according to a simple probabilistic rule. If the move is 

accepted then the "walker'' moves to the new position in configuration 

space; otherwise the "walker'' remains where it is, (By a "walker'' we 

mean a point in the 3N-dimensional configuration space of the problem).    

    Another trial step is then chosen, either from the new accepted position 

or from the old position if the first move was rejected, and the process is 

repeated. In this way it should be possible for the "walker'' to explore the 

whole configuration space of the problem. The Metropolis algorithm 

provides a prescription for choosing which moves in configuration space 

to accept or reject. In this algorithm, a random walk is performed through 

the configuration space of interest. The walk is designed so that the points 

on the walk are distributed according to the required probability 

distribution. At each point on the walk a random trial move from the 

current position in configuration space is selected.  

    The metropolis algorithm is able to compute the averages over a 

sequence of sampling point (𝒓1, 𝒓2, … , 𝒓𝑁) generated by moving a single 

walker, according to the following rules: 

1- Start the walker at a random position 𝑅𝑛. 

2- Make a trial move to a new position 𝑅𝑛+1  chosen from some 

probability density function 𝑃𝑡𝑟𝑖𝑎𝑙(𝑅𝑛 → 𝑅́). 
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3- Accept the trial move to  𝑅́ with probability: 

𝑃𝑎𝑐𝑐𝑒𝑝𝑡(𝑅𝑛 → 𝑅́) = 𝑚𝑖𝑛 {1,
𝑃𝑡𝑟𝑖𝑎𝑙(𝑅́ → 𝑅𝑛)𝑃(𝑅́)

𝑃𝑡𝑟𝑖𝑎𝑙(𝑅𝑛 → 𝑅́)𝑃(𝑅𝑛)
} 

where  𝑃(𝑅𝑛) is the probability density of finding the electrons in the 

configuration 𝑅𝑛  and 𝑃𝑡𝑟𝑖𝑎𝑙(𝑅́ → 𝑅𝑛)  is the trial probability from 

configuration 𝑅́ to 𝑅𝑛. 

4- Calculate 𝐴 =
𝑃𝑡𝑟𝑖𝑎𝑙(𝑅́→𝑅𝑛)𝑃(𝑅́)

𝑃𝑡𝑟𝑖𝑎𝑙(𝑅𝑛→𝑅́)𝑃(𝑅𝑛)
. 

5- generate a random number 𝑟𝑛 between 0 and 1 and compare it with 

𝐴.  

6- If A≥ 𝑟𝑛 the trial move is accepted, otherwise reject it. If the trial 

move is accepted the point 𝑅́ become the next point on the walk 

(𝑅́ = 𝑅𝑛+1). If the trial move is rejected the point 𝑅𝑛 become the 

next point on the walk (𝑅𝑛 = 𝑅𝑛+1). 

7- collect averages using the configurations. 

8- calculate error bars. 

Figure-2.1 displays a flow chart illustrating the Metropolis algorithm and 

the method of acceptance and rejection. 
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Figure-2.1 Flow chart illustrating the Metropolis algorithm. 
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2.3 Random Numbers Generations 

In all Monte Carlo calculations we need to produce a long sequence of 

random numbers 𝑁𝑖 that are uniformly distributed over the interval [0, 1]. 

But no numerical algorithms can generate a truly random sequence of 

numbers; however, there exist algorithms which generate repeating 

sequences of 𝑀 (say) integers which, to a fairly good approximation, are 

randomly distributed in the range 0 to 𝑀 − 1. Here 𝑀 is a (hopefully) 

large integer. This type of sequence is termed pseudorandom numbers. 

Pseudorandom number generators (PRNGs) are algorithms that can 

automatically create long runs of numbers with good random properties 

but eventually the sequence repeats (or the memory usage grows without 

bound. The series of values generated by such algorithms is generally 

determined by a fixed number called a seed. One of the most common 

PRNG is the linear congruential generator, which uses the recurrence 

𝑁𝑖+1 = (𝑎 𝑁𝑖 + 𝑐) 𝑚𝑜𝑑 (𝑀) = remainder (
𝑎 𝑁𝑖+𝑐

𝑀
) 

One multiplies the previous random number 𝑁𝑖  by the constant 𝑎, add 

another constant 𝑐 , take the modulus by 𝑀  and then keep just the 

fractional part (remainder) as the next random number 𝑁𝑖+1 

    The number 𝑀 is called the period and it should be as large as possible 

and 𝑁1  is the starting value, or seed. The function 𝑚𝑜𝑑  means the 

remainder, that is if we were to evaluate (13) 𝑚𝑜𝑑 (9), the outcome is 

the remainder of the division 13/9, namely 4. The problem with such 

generators is that their outputs are periodic; they will start to repeat 

themselves with a period that is at most 𝑀. If however the parameters 𝑎 

and 𝑐 are badly chosen, the period may be even shorter. 

    The value for 𝑁1 (the seed) is frequently supplied by the user, and mod 

is a built-in function on the computer for remaindering (it may be called 

amod or dmod). This is essentially a bit-shift operation that ends up with 

http://en.wikipedia.org/wiki/Pseudorandom_number_generator
http://en.wikipedia.org/wiki/Algorithm
http://en.wikipedia.org/wiki/Linear_congruential_generator
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the least significant part of the input number and thus counts on the 

randomness of round-off errors to generate a random sequence.  

    As an example, if 𝑐 = 1, 𝑎 = 4, 𝑀 = 9, and one supplies 𝑁1 = 3, then 

he obtains the sequence  

𝑁1 = 3, 

𝑁2 = (4 × 3 + 1) 𝑚𝑜𝑑 9 = 13 𝑚𝑜𝑑 9 = 𝑟𝑒𝑚
13

9
= 4, 

𝑁3 = (4 × 4 + 1) 𝑚𝑜𝑑 9 = 17 𝑚𝑜𝑑 9 = 𝑟𝑒𝑚
17

9
= 8, 

𝑁4 = (4 × 8 + 1) 𝑚𝑜𝑑 9 = 33 𝑚𝑜𝑑 9 = 𝑟𝑒𝑚
33

9
= 6, 

𝑁5−10 = 7, 2, 0, 1, 5, 3. 

We get a sequence of length 𝑀 = 9 , after which the entire sequence 

repeats. If we want numbers in the range [0,1], we divide the 𝑁 's by 𝑀 =

9:  

0.333, 0.444, 0.889, 0.667, 0.778, 0.222, 0.000, 0.111, 0.555, 0.333.  

This is still a sequence of length 9 but is no longer a sequence of integers. 

 

2.4 The Trial Wave Function  

The exact wave function is a solution to the Schrodinger equation. Trial 

wave functions are of central importance in VMC calculations because 

they introduce importance sampling and control both the statistical 

efficiency and accuracy obtained. The trial wave function must 

approximate an exact eigenstate in order that accurate results are to be 

obtained. A good trial wave function should exhibit much of the same 

features as does the exact wave function. On one hand, the trial wave 

function must satisfy some basic conditions [3]: 

1) The value of (𝐻̂𝜓𝑇(R)) must be well defined everywhere. Hence both 

𝜓𝑇(R) and ∇𝜓𝑇(R) must be continuous wherever the potential is finite 

otherwise differentiating will give singular term. One must particularly 

careful at the edges of the periodic box and when two particles approach 
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each other. Otherwise, the variational energy  𝐸𝑉𝑀𝐶  could lie above or 

below the true energy. 

2) The integrals ∫ 𝜓𝑇
∗ (𝑹)𝐻̂𝜓𝑇(𝑹)𝑑,  ∫|𝜓𝑇(𝑹)|2𝑑𝑹  and ∫|𝜓𝑇(𝑹)𝐻̂|

2
𝑑𝑹 

must exist. The existence should be demonstrated analytically.  
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Chapter 3 

The Hydrogen Molecule and Its Molecular Ion 

3.1 Introduction 

Hydrogen is the smallest chemical element because it consists of only one 

proton in its nucleus and has only one electron. Its chemical symbol 

is 𝐻 and its atomic number is 1. It is the lightest element on the periodic 

table. At standard temperature and pressure hydrogen is a colorless, 

odorless, tasteless, non-toxic, nonmetallic, highly combustible diatomic 

gas with the molecular formula 𝐻2 . Molecules are systems consisting of 

electrons and nuclei. Two hydrogen atoms will each share their one electron 

to form a covalent bond and make a hydrogen molecule 𝐻2. The hydrogen 

molecular ion 𝐻2
+ can be formed from ionization of a neutral hydrogen 

molecule. The hydrogen molecular ion 𝐻2
+ is the simplest molecular ion. It 

consists of two hydrogen nuclei with a single electron. The 𝐻2
+ molecular 

ion and the 𝐻2  molecule are the two simplest molecular systems whose 

study has rendered important information in the understanding of the 

electronic and structural properties of larger molecules and constitute the 

cornerstones of the actual development of molecular physics.  

    Alexandr and Coldwell have used widely the variational Monte Carlo 

method and simple explicitly correlated wave functions at different 

internuclear distances to calculate molecular energies as well as several 

energy derivatives at the equilibrium of the hydrogen molecular ion [37]. 

Also, they have computed the Born-Oppenheimer energy, the spectroscopic 

constants, the electron density, several of the lowest vibrational-rotational 

energies of all the hydrogen molecule isotopomers and many properties of 

https://en.wikipedia.org/wiki/Atomic_number
https://en.wikipedia.org/wiki/Periodic_table
https://en.wikipedia.org/wiki/Periodic_table
https://en.wikipedia.org/wiki/Standard_temperature_and_pressure
https://en.wikipedia.org/wiki/Gas
https://en.wikipedia.org/wiki/Molecular_formula
http://en.wikipedia.org/wiki/Hydrogen_molecule
http://en.wikipedia.org/wiki/Hydrogen_molecule
http://en.wikipedia.org/wiki/Molecular_ion
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the lowest rovibrational state of all the 𝐻2 isotopomers for the ground state 

of the hydrogen molecule 𝐻2 [38-42]. 

    Ishikawa et al. [43] have solved accurately the nonrelativistic Schrödinger 

equation and the relativistic four-component Dirac equation of the hydrogen 

molecular ion H2
+  in an analytical expansion form by the free iterative 

complement interaction (ICI) method combined with the variational 

principle. They calculated both ground and excited states in good 

convergence, and not only the upper bound but also the lower bound of the 

ground-state energy. The error bound analysis has assured that their result is 

highly accurate.  

    Kurokawa et al. [44] has been applied the free ICI method based on the 

scaled Schrödinger equation proposed previously to the calculations of very 

accurate wave functions of the hydrogen molecule in an analytical expansion 

form.  

    Suleiman et al. [45] calculated numerically the ground state energy of 

hydrogen molecule at different interproton separation under the principles of 

the Born-Oppenheimer approximation using Monte Carlo technique i.e. the 

variational Quantum Monte Carlo [VQMC] technique. The results 

demonstrated that VQMC is capable of approaching the precise ground-state 

energy of the hydrogen molecule as it falls inside the error bars of previous 

empirical and numerical calculations.  

    Our goal in this chapter is to use variational Monte Carlo (VMC) method 

which introduced in details in the previous chapter to achieve several 

purposes: 

(a) Firstly, in frame of the Born-Oppenheimer (BO) approximation we 

shall solve Schrödinger equation to calculate the ground state energy 

of the hydrogen molecular ion 𝐻2
+ and the hydrogen molecule 𝐻2. The 

http://en.wikipedia.org/wiki/Hydrogen_molecule
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calculations will be done using one trial wave function for the 

hydrogen molecular ion 𝐻2
+  and two different types of trial wave 

functions for the hydrogen molecule 𝐻2 . Then we will study the 

accuracy of the results corresponding to each one. 

(b) Secondly, to calculate some properties of the hydrogen molecule H2. 

 
3.2 The Statement of the Problem 

In our work, we assume that the nuclear mass is infinite so that the 

calculations will be in frame of the Born–Oppenheimer approximation. The 

Hamiltonian function for an arbitrary system (molecule as example) is 

written in the form:  

                                             𝐻̂ = 𝑇 + 𝑉                                                    (3.1) 

where 𝑇 is the kinetic energy of the system and 𝑉 is the potential energy. 

The potential energy function will contain for the hydrogen molecule terms 

for the attraction of the electrons to each of the nuclei and a term for the 

repulsion between the two nuclei as well as the repulsion between the two 

electrons. Accordingly, the non-relativistic Hamiltonian 𝐻̂ for the hydrogen 

molecular system in atomic units (a. u.) can be written as:                                                            

                            𝐻̂ = −
1

2
∑ 𝛻𝑖

22
𝑖=1 − ∑ (

𝑍𝑎

𝑟𝑖𝑎
+

𝑍𝑏

𝑟𝑖𝑏
)2

𝑖=1 +
1

𝑟12
+

1

𝑅
                  (3.2) 

In the above equation, 𝑟𝑖𝑎(𝑏) = |𝑟𝑖𝑎(𝑏)| denotes the distance from electron 

‘𝑖’ (𝑖 = 1, 2) to nucleus 𝑎 (𝑏 ) and we have used the fact that the charge 

parameters 𝑍𝑎 = 𝑍𝑏 = 1.  Also, 𝛻𝑖
2  is the Laplacian with respect to the 

electrons coordinates, 𝑟12  is the interelectronic distance and 𝑅  is the 

internuclear distance. The corresponding coordinates of the two electrons 

and the two nuclei for the hydrogen molecule are shown in Figure-3.1  

 

http://en.wikipedia.org/wiki/Hydrogen_molecule
http://en.wikipedia.org/wiki/Hydrogen_molecule
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Figure-3.1 Schematic illustration for the hydrogen molecule 𝐻2. 

    Then, the Schrödinger equation for any trial wave function 𝜓(𝒓, 𝑹) can be 

written as follows  

                                      𝐻̂𝜓(𝒓, 𝑅) = 𝐸𝜓(𝒓, 𝑅)                                         (3.3)   

where 𝒓 stands for all the coordinate vectors of the electrons with respect to 

the center of mass of the nuclei.  

    Similarly in the case of the hydrogen molecular ion 𝐻2
+ , if 𝑟𝑎  and 𝑟𝑏 

denote the distances from the electron to the two nuclei a and b, then the 

nonrelativistic Hamiltonian operator for the hydrogen molecular ion 𝐻2
+ 

corresponding to the coordinates of the electron and the two nuclei is given 

by     

                                       𝐻̂ = −
1

2
∇2 −

1

𝒓𝑎
−

1

𝒓𝑏
+

1

𝑅
                                   (3.4) 

    The corresponding coordinates of the electron and the two nuclei for the 

hydrogen molecular ion are shown in Figure-3.2 
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Figure-3.2 Schematic illustration for the hydrogen molecular ion 𝐻2
+. 

 

    With a chosen trial wave function 𝜓 explicit expression can be worked 

out for the local energy 𝐸𝐿(𝑹) in terms of the values and derivatives of 𝜓. In 

our calculations we have used the nonrelativistic Hamiltonian of the 

hydrogen molecule, given by Eq. (3.2) in Elliptic Coordinates which take the 

form [44, 46, 47] 

                                   𝜆𝑖 = 𝑟𝑖𝑎 + 𝑟𝑖𝑏
𝑅

 ,      𝜇𝑖 = 𝑟𝑖𝑎 − 𝑟𝑖𝑏
𝑅

                                   (3.5)          

where 𝑖 being 1 and 2. 

The ranges of these variables are 

                                  1 ≤ 𝜆 ≤ ∞,            −1 ≤ 𝜇 ≤ 1                              (3.6)        

In these coordinates, the kinetic-energy operator and the potential-energy 

operator, for the hydrogen molecule, are written as [44, 46, 47]                                                                                                          

                   −
1

2
∇𝑖

2= − 2

𝑅2 (𝜆𝑖
2

−𝜇𝑖
2)

 { 𝜕
𝜕𝜆𝑖

 (𝜆𝑖
2

−1) 
𝜕

𝜕𝜆𝑖
 + 

𝜕
𝜕𝜇𝑖

 (1−𝜇𝑖
2) 

𝜕
𝜕𝜇𝑖

}                     (3.7) 

                          𝑉 = −
4

𝑅
(

𝜆1

𝜆1
2−𝜇1

2 +
𝜆2

𝜆2
2−𝜇2

2 −
1

2𝜌
) +

1

𝑅
,                                 (3.8) 

respectively, where 𝜌 = 2𝑟12 𝑅⁄ . 

    In the calculations of the ground-state energy of the hydrogen molecule 

we have used the nonrelativistic general Hamiltonian for 𝑛-electrons and 

𝑁𝜇-nuclei, which in Hylleraas Coordinates takes the form [48] 

a
b

e

ar
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𝐻̂ = − ∑ ∑ (
1

2
 

𝜕2

𝜕𝑟𝑖𝜇
2 +

1

𝑟𝑖𝜇

𝜕

𝜕𝑟𝑖𝜇
+

𝑍𝜇

𝑟𝑖𝜇
) − ∑ (

1

2
 

𝜕2

𝜕𝑟𝑖𝑗
2 +

1

𝑟𝑖𝑗

𝜕

𝜕𝑟𝑖𝑗
)𝑛

𝑖<𝑗
𝑁𝜇

𝜇
𝑛
𝑖=1 +

∑
1

𝑟𝑖𝑗
−

1

2
∑ ∑

𝑟𝑖𝜇
2 +𝑟𝑖𝜈

2 −𝑟𝜇𝜈
2

𝑟𝑖𝜇𝑟𝑖𝜈

𝑁𝜇

𝜇<𝜈
𝑛
𝑖=1

𝜕2

𝜕𝑟𝑖𝜇 𝜕𝑟𝑖𝜈

𝑛
𝑖<𝑗 −

1

2
∑ ∑

𝑟𝑖𝜇
2 +𝑟𝑖𝑗

2 −𝑟𝑗𝜇
2

𝑟𝑖𝜇𝑟𝑖𝑗

𝑁𝜇

𝜇
𝑛
𝑖<𝑗

𝜕2

𝜕𝑟𝑖𝜇 𝜕𝑟𝑖𝑗
−

1

2
∑ ∑

𝑟𝑖𝑗
2 +𝑟𝑖𝑘

2 −𝑟𝑗𝑘
2

𝑟𝑖𝑗𝑟𝑖𝑘

𝑛
𝑗<𝑘

𝑛
𝑖<𝑗

𝜕2

𝜕𝑟𝑖𝑗 𝜕𝑟𝑖𝑘
+ ∑

𝑍𝜇𝑍𝜈

𝑅𝜇𝜈
 −

1

2
∑ ∑

1

𝑟𝑖𝜇
2

𝜕2

𝜕𝜃𝑖𝜇
2

𝑁𝜇

𝜇
𝑛
𝑖=1 −

𝑁𝜇

𝜇<𝜈

1

2
∑ ∑

𝑐𝑜𝑡𝜃𝑖𝜇

𝑟𝑖𝜇
2

𝜕

𝜕𝜃𝑖𝜇
−

1

2
∑ ∑

1

𝑟𝑖𝜇
2 𝑠𝑖𝑛2𝜃𝑖𝜇

𝜕2

𝜕𝜑𝑖𝜇
2

𝑁𝜇

𝜇
𝑛
𝑖=1 −

𝑁𝜇

𝜇
𝑛
𝑖=1

1

2
∑ ∑ (

1

2
𝑐𝑜𝑡𝜃𝑖𝜈

𝑟𝑖𝜇
2 +𝑟𝑖𝜈

2 −𝑟𝜇𝜈
2

𝑟𝑖𝜇𝑟𝑖𝜈
−

𝑐𝑜𝑠𝜃𝑖𝜇

𝑟𝑖𝜈𝑠𝑖𝑛𝜃𝑖𝜈
)

𝜕2

𝜕𝑟𝑖𝜇 𝜕𝜃𝑖𝜈

𝑁𝜇

𝜇≠𝜈
𝑛
𝑖=1 −

∑ ∑
𝑠𝑖𝑛𝜃𝑖𝜇

𝑟𝑖𝜇𝑟𝑖𝜈𝑠𝑖𝑛𝜃𝑖𝜈
𝑠𝑖𝑛(𝜑𝑖𝜇 − 𝜑𝑖𝜈)

𝜕2

𝜕𝑟𝑖𝜇 𝜕𝜑𝑖𝜈
 −

𝑁𝜇

𝜇≠𝜈
𝑛
𝑖=1

∑ ∑ (
1

2
𝑐𝑜𝑡𝜃𝑖𝜇𝑐𝑜𝑡𝜃𝑖𝜈

𝑟𝑖𝜇
2 +𝑟𝑖𝜈

2 −𝑟𝜇𝜈
2

𝑟𝑖𝜇
2 𝑟𝑖𝜈 

2 −
𝑐𝑜𝑠2𝜃𝑖𝜇+𝑐𝑜𝑠2𝜃𝑖𝜈

𝑟𝑖𝜇 𝑟𝑖𝜈 𝑠𝑖𝑛𝜃𝑖𝜇 𝑠𝑖𝑛𝜃𝑖𝜈
)

𝜕2

𝜕𝜃𝑖𝜇 𝜕𝜃𝑖𝜈
−

𝑁𝜇

𝜇<𝜈
𝑛
𝑖=1

∑ ∑
𝑐𝑜𝑠(𝜃𝑖𝜇−𝜃𝑖𝜈)

𝑟𝑖𝜇𝑟𝑖𝜈 𝑠𝑖𝑛𝜃𝑖𝜇 𝑠𝑖𝑛𝜃𝑖𝜈

𝜕2

𝜕𝜑𝑖𝜇 𝜕𝜑𝑖𝜈
− ∑ ∑

𝑐𝑜𝑠𝜃𝑖𝜇

𝑟𝑖𝜇𝑟𝑖𝜈𝑠𝑖𝑛𝜃𝑖𝜈
𝑠𝑖𝑛(𝜑𝑖𝜇 −

𝑁𝜇

𝜇≠𝜈
𝑛
𝑖=1

𝑁𝜇

𝜇<𝜈
𝑛
𝑖=1

𝜑𝑖𝜈)
𝜕2

𝜕𝜃𝑖𝜇 𝜕𝜑𝑖𝜈
− ∑ ∑ (

𝑟𝑗𝜇𝑐𝑜𝑠𝜃𝑗𝜇

𝑟𝑖𝑗𝑟𝑖𝜇𝑠𝑖𝑛𝜃𝑖𝜇
+

1

2
𝑐𝑜𝑡𝜃𝑖𝜇

𝑟𝑖𝑗
2 −𝑟𝑖𝜇

2 −𝑟𝑗𝜇
2

𝑟𝑖𝑗𝑟𝑖𝜇
) 

𝜕2

𝜕𝜃𝑖𝑗 𝜕𝜑𝑖𝜇

𝑁𝜇

𝜇
𝑛
𝑖<𝑗  −

∑ ∑
𝑟𝑗𝜇𝑠𝑖𝑛𝜃𝑗𝜇

𝑟𝑖𝑗𝑟𝑖𝜇𝑠𝑖𝑛𝜃𝑖𝜇
𝑠𝑖𝑛(𝜑𝑖𝜇 − 𝜑𝑗𝜇)

𝜕2

𝜕𝑟𝑖𝑗 𝜕𝜑𝑖𝜇
 

𝑁𝜇

𝜇≠𝜈
𝑛
𝑖=1                                          (3.9) 

 

Furthermore, we have used only radial coordinates in the trial wave function 

so, we omit the spherical terms in Eq. (3.9) 

𝐻̂ = − ∑ ∑ (
1

2
 

𝜕2

𝜕𝑟𝑖𝜇
2 +

1

𝑟𝑖𝜇

𝜕

𝜕𝑟𝑖𝜇
+

𝑍𝜇

𝑟𝑖𝜇
) − ∑ (

1

2
 

𝜕2

𝜕𝑟𝑖𝑗
2 +

1

𝑟𝑖𝑗

𝜕

𝜕𝑟𝑖𝑗
)𝑛

𝑖<𝑗
𝑁𝜇

𝜇
𝑛
𝑖=1 +

∑
1

𝑟𝑖𝑗
−

1

2
∑ ∑

𝑟𝑖𝜇
2 +𝑟𝑖𝜈

2 −𝑟𝜇𝜈
2

𝑟𝑖𝜇𝑟𝑖𝜈

𝑁𝜇

𝜇<𝜈
𝑛
𝑖=1

𝜕2

𝜕𝑟𝑖𝜇 𝜕𝑟𝑖𝜈

𝑛
𝑖<𝑗 −

1

2
∑ ∑

𝑟𝑖𝜇
2 +𝑟𝑖𝑗

2 −𝑟𝑗𝜇
2

𝑟𝑖𝜇𝑟𝑖𝑗

𝑁𝜇

𝜇
𝑛
𝑖<𝑗

𝜕2

𝜕𝑟𝑖𝜇 𝜕𝑟𝑖𝑗
−

1

2
∑ ∑

𝑟𝑖𝑗
2 +𝑟𝑖𝑘

2 −𝑟𝑗𝑘
2

𝑟𝑖𝑗𝑟𝑖𝑘

𝑛
𝑗<𝑘

𝑛
𝑖<𝑗

𝜕2

𝜕𝑟𝑖𝑗 𝜕𝑟𝑖𝑘
+ ∑

𝑍𝜇𝑍𝜈

𝑅𝜇𝜈

𝑁𝜇

𝜇<𝜈                                               (3.10) 

In the case of the hydrogen molecule 𝑛 = 2  (electron 1 and electron 2), 

𝑁𝜇 = 2 (nucleus 𝑎 and nucleus 𝑏) and we get   
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 𝐻̂ = − ∑ ∑ (
1

2
 

𝜕2

𝜕𝑟𝑖𝜇
2 +

1

𝑟𝑖𝜇

𝜕

𝜕𝑟𝑖𝜇
+

𝑍𝜇

𝑟𝑖𝜇
) − (

1

2
 

𝜕2

𝜕𝑟12
2 +

1

𝑟12

𝜕

𝜕𝑟12
)2

𝜇=1
2
𝑖=1 +

1

𝑟12
−

−
1

2
∑

𝑟𝑖1
2 +𝑟𝑖2

2 −𝑟12
2

𝑟𝑖1𝑟𝑖2

𝑛
𝑖=1

𝜕2

𝜕𝑟𝑖1 𝜕𝑟𝑖2
−

1

2
∑

𝑟1𝜇
2 +𝑟12

2 −𝑟2𝜇
2

𝑟1𝜇𝑟12

2
𝜇=1

𝜕2

𝜕𝑟1𝜇 𝜕𝑟12
+

1

𝑅12
 .             (3.11)  

                                              

3.3 The Trial Wave Functions 

To calculate the ground state energy of the hydrogen molecular ion 𝐻2
+ and 

the hydrogen molecule 𝐻2 , we will use different types of trial wave 

functions. The trial wave function for the ground state of the hydrogen 

molecular ion 𝐻2
+ used in this work is given by Ishikawa et al. [43]. This 

trial wave function depends on the Slater type function 𝜓0 as initial function 

which takes the form: 

                                   𝜓0 = 𝑒𝑥𝑝(−𝜔𝜆)                                                   (3.12)                

where 𝜔 is nonlinear parameter. In this choice, the trial wave function 𝜓1 is 

generated in the analytical expansion form of 

                            𝜓1 = ∑ 𝐶𝑖  𝜆𝑚𝑖  𝜇𝑛𝑖  𝑒𝑥𝑝(−𝜔𝜆)𝑖 ,                                   (3.13)                

where 𝐶𝑖  are the variational parameters and 𝑚𝑖  are positive or negative 

integers. Since the 1𝑠𝜎𝑔 ground-state has a gerade symmetry, 𝑛𝑖 should be 

zero or a positive even integer. Applying the iterative complement 

interaction (ICI) method, Ishikawa et al. [43] used this trial wave function to 

calculate energies for the ground-state 1𝑠𝜎𝑔 of 𝐻2
+ at different orders and the 

first excited state 1𝑠𝜎𝑢 (ungerade) in the free case. They could obtain very 

accurate results compared to the corresponding exact values.  

    For the ground state, the overlap and Hamiltonian integrals of 𝐻2
+  are 

easily done when the wave function is given by Eq. (3.13).   

    This wave function (3.13) constructed from 26 terms for the 𝐻2
+  with   

𝜔 = 1.2. We show this terms in Table-3.1.  

http://en.wikipedia.org/wiki/Hydrogen_molecule
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Table-3.1 The values of the parameters 𝑚, 𝑛 and 𝐶 appearing in the wave 

function 𝜓1 of Eq (3.13) and 𝜔 = 1.2 [43]. 

No. 𝑚 𝑛 𝐶 No. 𝑚 𝑛 𝐶 

1 1 2 -6.14854851224062E-04 14 -4 0 -7.44380959774439E-03 

2 1 0 -8.72134862233988E-04 15 -4 2 -1.10143056220481E-02 

3 -3 4 6.49330072561502E-02 16 -2 4 -3.45048628383914E-02 

4 -4 4 -3.96590873312382E-02 17 0 2 1.46302680608681E-02 

5 -1 4 1.52822020322079E-03 18 -5 2 1.08079860246917E-02 

6 0 0 2.44061495121818E-02 19 -6 2 1.73761624309944E-01 

7 -2 0 -5.74894612410661E-02 20 -5 0 4.63828712981874E-03 

8 -3 0 5.49994904166429E-02 21 -6 0 -4.09990053189853E-02 

9 -2 2 1.99545888257851E-01 22 -7 0 2.61468592559640E-02 

10 -3 2 -2.16145726972879E-01 23 -7 2 -1.15084145925041E-01 

11 2 0 -7.85025721800686E-04 24 -3 6 -1.11401171197032E-03 

12 -1 0 2.78206161933570E-02 25 -5 4 1.57204422348785E-02 

13 -1 2 -4.88622788195747E-02 26 3 0 7.58881756418373E-05 

 

    In the case of the hydrogen molecule 𝐻2 we will use two different types of 

trial wave functions: 

1- The first type for the ground state of 𝐻2 molecule, this wave function is 

proposed firstly by Kurokawa et al. [44]. This trial wave function depends 

on the Slater type functions which takes the form:          

     𝜓2 = ∑ 𝐶𝑖(1 + 𝑝12) 𝑒𝑥𝑝[−𝛼(𝜆1 + 𝜆2)]𝑖  𝜆1
𝑚𝑖  𝜆2

𝑛𝑖  𝜇1
𝑗𝑖  𝜇2

𝑘𝑖  𝜌𝑙𝑖 ,            (3.14) 

where 𝑝12  is an electron exchange operator and 𝐶𝑖  are the variational 

parameters which are calculated from the variational principle. This wave 

function is very simple and similar to the original wave function due to 

James and Coolidge [49]. James-Coolidge wave function and this wave 

function differ only in the powers 𝑚𝑖 and 𝑛𝑖 of the variables 𝜆1 and 𝜆2: 𝑚𝑖 
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and 𝑛𝑖  are always positive in the James-Coolidge wave function, but they 

can be even negative in this free wave function.  

    This wave function was constructed from 13 terms; 11 terms of James and 

Coolidge plus 2 terms within the range of −1 ≤ 𝑚, 𝑛 ≤ 1, |𝑚 − 𝑛| ≤ 1, 𝑗 ≥

0,  𝑘 ≤ 2, 0 ≤ 𝑙 ≤ 1. The term No. 12 has positive m and n, but the term 

No. 13 has negative m and n. This wave function was used with iterative-

complement-interaction (ICI) method to calculate the ground state energy of 

free hydrogen molecule [44]. We show the 13 terms of 𝜓2 in Table-3.2 with 

𝛼 =
3

4
.  

Table-3.2 The values of the parameters 𝑚 , 𝑛 , 𝑗 , 𝑘 , 𝑙  and 𝐶  for the wave 

function 𝜓2 of  Eq. (3.14) with 𝛼 =
3

4
 [44]. 

No. 𝑚 𝑛 𝑗 𝑘 𝑙 𝐶 

1 0 0 0 0 0 1.000 000 000 

2 0 0 0 0 1 0.650 858 318 

3 0 0 0 0 2 −0.059 439 543 

4 0 0 0 2 0 0.138 956 703 

5 0 0 1 1 0 −0.041 545 078 

6 1 0 0 0 0 −0.933 425 960 

7 1 0 0 2 0 −0.018 305 773 

8 1 0 1 1 0 0.015 613 455 

9 1 0 2 0 0 −0.033 975 753 

10 1 0 0 0 1 −0.404 443 002 

11 2 0 0 0 0 0.337 386 255 

12 1 1 0 0 1 0.071 193 197 

13 -1 -1 0 2 1 0.031 686 115 
 

2-The second type of trial wave function of 𝐻2  molecule is a product of 

three items which takes the form [45]: 

                 𝜓3(𝑟1, 𝑟2, 𝑟12) = 𝜑(𝑟1)𝜑(𝑟2)𝑓(𝑟12)                                        (3.15) 

where 𝜑(𝑟𝑖)  is the single-particle wave function for particle 𝑖, and 𝑓(𝑟12) 

accounts for more complicated two-body correlations.  
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    Here, the first two factors are independent-particle wave functions, their 

roles are to place each electron in a molecular orbital in which it is shared 

equally between the two protons. A good choice for the molecular orbital is 

the symmetric linear combination of atomic orbitals centered about each 

proton,       

    A suitable choose for the trial wave function arises from the fact that two 

electrons are in 1𝑠 state to calculate the ground state. A simple choice for 

𝜑(𝑟𝑖) is: 

                              𝜑(𝑟𝑖) = 𝑒𝑥𝑝(−Z̀  𝑟𝑖𝑎) + 𝑒𝑥𝑝(−Z̀  𝑟𝑖𝑏),                     (3.16) 

with the variational parameter Z̀ to be determined. The final factor in the 

trial wave function 𝑓 expresses the correlation between the two electrons 

due to their Coulomb repulsion. That is, we expect 𝑓 to be small when 𝑟12 is 

small and to approach a large constant value as the electrons become well 

separated. A convenient and reasonable choice is  

                             𝑓(𝑟) = 𝑒𝑥𝑝 [
𝑟

𝛼(1+𝛽𝑟)
],                                                 (3.17) 

where 𝛼 and 𝛽 are additional positive variational parameters. The variational 

parameter 𝛽 controls the distance over which the trial wave function heals to 

its uncorrelated value as the two electrons separate.  

    Then putting (3.16), (3.17) in (3.15) a collection of a justifiable trial wave 

function is attained:  

𝜓3(𝑟1, 𝑟2, 𝑟12) = [𝑒𝑥𝑝(−Z̀  𝑟1𝑎) + 𝑒𝑥𝑝(−Z̀  𝑟1𝑏)][𝑒𝑥𝑝(−Z̀  𝑟2𝑎) +

                               𝑒𝑥𝑝(−Z̀  𝑟2𝑏)]𝑒𝑥𝑝[
𝑟12

𝛼(1+𝛽𝑟12)
]                                       (3.18)                                             

The singularity of the coulomb potential at short distances places additional 

constraints on the trial wave function. If one electron approaches the nuclei 

while the other electron remains fixed then the potential term becomes large 
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and negative, since 𝑟𝑖𝑎(𝑏)  becomes small. This must be cancelled by a 

corresponding positive divergence in the kinetic energy term if we are to 

keep the local energy 𝐸𝐿  smooth variance in the Monte Carlo quadrature. 

Thus the orbital 𝜑(𝑟𝑖) should a cusp at 𝑟𝑖𝑎(𝑏) = 0, which means that the 

wave function should satisfy the following relation [45]: 

                   𝑙𝑖𝑚
𝑟𝑖𝑎(𝑏)→0

(−
1

𝜑(𝑟𝑖)
𝛻𝑖

2𝜑(𝑟𝑖) −
1

𝑟𝑖𝑎(𝑏)
) = 𝑓𝑖𝑛𝑖𝑡𝑒 𝑡𝑒𝑟𝑚𝑠.             (3.19) 

    The above relation holds for 𝑟1𝑎, 𝑟1𝑏 , 𝑟2𝑎, 𝑟2𝑏 and also for 𝑟12. Using Eq. 

(3.19) and a bit of algebra, it is easy to see that these constraints imply that 𝛼 

satisfies the transcendental equation: 

                                    𝛼 =
1

1+𝑒−𝑅 𝑎⁄                                                           (3.20) 

and that  𝛼 = 2 𝑎0, where 𝑎0 =
ℏ2

𝑚𝑒2
 is the Bohr radius i.e. 𝛼 = 2 in atomic 

units. Thus 𝛽 is the only variational parameter at our disposal. 

 

3.4 Discussion of the Results of Chapter 3 

In this chapter we have used VMC method which presented in Chapter 2 to 

calculate both the ground state energies of the hydrogen molecular ion 𝐻2
+ 

and the hydrogen molecule 𝐻2  and also some properties of the hydrogen 

molecule 𝐻2. All energies obtained in atomic units i.e. (ℏ = 𝑒 = 𝑚𝑒 = 1) 

with a set of 4 × 107 Monte Carlo integration points in order to make the 

statistical error as small as possible. This section presents the results 

obtained with different types of the trial wave functions for the 𝐻2 molecule 

proposed in the previous section. 

    In frame of the Born-Oppenheimer (BO) approximation, the ground state 

energies of the hydrogen molecular ion 𝐻2
+ and the hydrogen molecule 𝐻2 

http://en.wikipedia.org/wiki/Hydrogen_molecule
http://en.wikipedia.org/wiki/Hydrogen_molecule
http://en.wikipedia.org/wiki/Hydrogen_molecule
http://en.wikipedia.org/wiki/Hydrogen_molecule
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were calculated using VMC method. For the ground state, our calculations 

are based on using different types of trial wave functions.      

    On the first hand to gain some confidence on the adequacy of different 

types trial wave functions given by Eq. (3.13), Eq. (3.14) and Eq. (3.18) for 

our calculations in frame of VMC method, we first calculate the ground state 

energy in the case of free hydrogen molecular ion 𝐻2
+ for different values of 

the internuclear distance 𝑅. We have used the nonrelativistic Hamiltonian 

given by Eq. (3.5) using 𝜓1 in Elliptic Coordinates. 

    In Table-3.3 we compare the results of our work for the behavior of the 

total energy of the ground-state (1𝑠𝜎𝑔) of free H2
+ ion at different values for 

the internuclear distance 𝑅 with the exact calculations by Madsen et al. [50] 

and other accurate calculations by Zhang et al. [51]. Excellent quantitative 

agreement is obtained compared to the corresponding exact values and other 

previous results.  

    The results of accurate calculations of the electronic ground-state (1𝑠𝜎𝑔) 

energy of 𝐻2
+ with 𝑅 = 2.0 a.u. are summarized in Table-3.4. We report the 

results obtained in Table-3.4 here as the electronic energy where the total 

electronic energy of the molecular ion 𝐻2
+ is defined as the total energy 𝐸𝑇 

minus the repulsive energy between the nuclei, 𝐸𝑒𝑙𝑒 = 𝐸𝑇 −
𝑍𝑎 𝑍𝑏

𝑅
. We show 

the ground state energy in the Born-Oppenheimer approximation to compare 

our results with the results of previous authors and we got good agreement. 
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Table-3.3 Total energy of the free 𝐻2
+ ion for the trial wave function 𝜓1 for 

various internuclear distance 𝑅 compared with the exact values by Madsen 

et al. [50] and other accurate calculations by Zhang et al. [51]. In 

parentheses, we show the statistical error in the last figure. 

 

𝑅 𝐸𝑇ℎ𝑖𝑠 𝑤𝑜𝑟𝑘 𝐸𝑎  𝐸𝐸𝑥𝑎𝑐𝑡 

1 -0.451590(2) - -0.4517863133781b 

2 -0.602634(5) −0.60263414 -0.6026342145b 

3 -0.57749866(3) - -0.577562864b 

4 -0.79594490(2) −0.79608445 −0.79608488c 

6 -0.67821670(6) −0.67863445 −0.67863572c 

8 -0.626574200(3) −0.62756682 −0.62757039c 

10 -0.600191600(2) −0.60057303 −0.60057873c 

 

a Ref [51]      b Ref [50]      c The exact Results taken from Ref [51] 

 

Table-3.4 History of accurate calculations of the electronic energy of  𝐻2
+ 

with 𝑅 = 2.0 a.u.    

The Type References Total energy (a.u.) 

Exact wave functiona J. M. Peek −1.102 634 214 494 9 

ICI methodb Atsushi Ishikawa - Hiroyuki Nakashima 

- Hiroshi Nakatsuji 

−1.102 634 20 

Correlated wave functionc F. Weinhold - A. B. Chinen −1.102 623 7 

Finite element methodd W. Schulze - D. Kolb −1.102 632 7 

Finite difference methode   L. Laaksonen -  P. Pyykko - D. 

Sundholm 

−1.102 634 214 497 

VMC method Present -1.102 634 0 

 

a Ref [52]    b Ref [43]    c Ref [53]    d Ref [54]  e Ref [55] 
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    Secondly, we calculate the ground state energy in the case of free 

hydrogen 𝐻2  molecule using 𝜓2  and 𝜓3  for different values of the 

internuclear distance 𝑅. We have used the nonrelativistic Hamiltonian given 

by Eq. (3.4) using 𝜓2  in Elliptic Coordinates and 𝜓3  in Hylleraas 

Coordinates. In Table-3.5 we compare the results of our work for the 

behavior of the total energy of the ground state of free 𝐻2 molecule with 

other pervious calculations for a wide set of internuclear distances. For 

internuclear distances in the range 0.6 ≤ 𝑅 ≤ 3.2  it was sufficient to 

compare our values with the available single-configuration Hartree–Fock 

SCF in Ref [56], whereas for 4.0 ≤ 𝑅 ≤ 8.0 we compare with results of Ref 

[57]. Also, the results obtained by Rodriguez et al. [46] are introduced. The 

results presented in Table-3.5 indicate clearly that when 𝑅  increases the 

interaction between the electrons become less and less, particularly around 

the nuclei. Each nucleus has an electron and the probability for both being 

around the same nucleus is small, as one would expect. When 𝑅 increases, 

the 𝐻2 molecule tends to separate to two hydrogen atoms in their ground 

state therefore the ground state energy decreases. A good quantitative 

agreement is obtained using 𝜓2  and 𝜓3  compared to the corresponding 

accurate values.  
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Table-3.5 Ground-state energy of the free 𝐻2  molecule as function of the 

internuclear distance. In parentheses, we show the statistical error in the last 

figure. 

 

a Ref [56].         b Ref [57].          c Ref [46]. 

𝑅 𝜓2 𝜓3 𝐸𝑆𝐶𝐹 𝐸𝑐 

0.2 2.2474800(1) 2.233774(7) - 2.2478 

0.4 -0.0749825(1) -0.075675(1) -0.078 693a -0.0756 

0.6 -0.7247206(1) -0.727725(3) -0.729990a -0.7278 

1.0 -1.084500(1) -1.085004(1) -1.085138a -1.0843 

1.2 -1.124541(2) -1.124815(2) -1.125029a -1.1244 

1.3 -1.131293(1) -1.131506(2) -1.132024a -1.1315 

1.35 -1.135239(4) -1.132803(2) - -1.1329 

1.375 -1.133103(1) -1.133636(2) -1.133642a -1.133(180) 

1.4 -1.137474(9) -1.133509(2) -1.133630a -1.133(181) 

1.425 -1.134544(5) -1.133294(1) -1.133379a -1.1329 

1.45 -1.136994(5) -1.132784(1) -1.132908a -1.1325 

1.5 -1.130748(5) -1.131130(1) -1.131375a -1.1310 

1.6 -1.125689(5) -1.128542(8) -1.126352a -1.1259 

2.0 -1.091085(1) -1.087710(9) -1.091648a -1.0911 

2.4 -1.044736(3) -1.049354(8) -1.049331a -1.0488 

3.2 -0.978582(7) -0.970015(1) -0.971512a -0.9704 

4.0 -0.916097(6) -0.900654(4) -0.909130b -0.9102 

6.0 -0.8208544(7) -0.818213(4) -0.819032b -0.8214 

8.0 -0.7850081(1) -0.778321(5) -0.779582b -0.7827 
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It is interesting to compare the ground state energy for the hydrogen 

molecular ion, 𝐻2
+ , and the hydrogen molecule, 𝐻2 . Note that the ground 

state energy of the 𝐻2 molecule is lower than that of the 𝐻2
+ ion as shown in 

Table-3.3 and Table-3.5. This should make sense, since in order to get 𝐻2
+ 

from 𝐻2 we need to ionize the molecule, which takes substantial energy. We 

note also that the 𝐻2 molecule is stabler than the 𝐻2
+ molecular ion. Finally, 

we note that when we break the bond we get different products. When we 

break apart the 𝐻2, we get two 𝐻 atoms. When we break apart 𝐻2
+, we get 𝐻 

atom and a proton. The difference in energy between the two sets of 

products is the ionization energy of the 𝐻 atom. 

    Finally, using VMC techniques we have computed 13 molecular 

properties of hydrogen molecule 𝐻2 at 24 internuclear distances. Here the 

permanent quadrupole moment is defined as 𝑄2 = (𝑅2 + 𝑟1𝑎
2 − 3𝑧1

2 + 𝑟2𝑎
2 −

3𝑧2
2)/2  and the permanent hexadecapole moment is defined as 𝑄4 =

(𝑅4 + 30 𝑟1𝑎
2 𝑧1

2 − 35 𝑧1
4 − 3 𝑟1𝑎

4 + 30 𝑟2𝑎
2 𝑧2

2 − 35 𝑧2
4 − 3 𝑟2𝑎

4 )/8 for a 

molecule oriented along the 𝑧-axis. As Tables-3.6 to 3.18 show, almost all of 

our properties are determined to several significant digits. Many of these 

properties have been calculated using other theoretical methods [58, 59]. We 

compare our values with Alexandr et al. [60]. Our values are in excellent 

agreement with these earlier results.   

    In Tables-3.6 to 3.18 we present selected values for the different 

internuclear distances 𝑅 for the 𝐻2 molecule. Previous results are also given 

in these tables. 
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Table-3.6 Values for 〈𝑟1𝑎〉 of the hydrogen molecule for selected values of 𝑅   

 

𝑅 Present Work Ref [60] 

0.2 1.5876 1.5880 

0.4 1.4281 1.4279 

0.6 1.2819 1.2820 

0.8 1.1615 1.1605 

1.0 1.0604 1.0612 

1.2 0.9802 0.9800 

1.4 0.9134 0.9128 

1.6 0.8548 0.8569 

1.8 0.8111 0.8103 

2.0 0.7710 0.7712 

2.2 0.7381 0.7385 

2.4 0.7118 0.7112 

2.6 0.6885 0.6886 

2.8 0.6706 0.6700 

3.0 0.6558 0.6548 

3.5 0.6293 0.6288 

4.0 0.6177 0.6136 

4.5 0.6042 0.6035 

5.0 0.5951 0.5954 

6.0 0.5821 0.5819 

7.0 0.5716 0.5707 

8.0 0.5625 0.5621 

9.0 0.5558 0.5553 

10.0 0.5494 0.5498 
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Table-3.7 Values for 〈𝑟1𝑎
−1〉 of the hydrogen molecule for selected values of 

𝑅. 

𝑅 Present Work Ref [60] 

0.2 0.9670 0.9663 

0.4 1.0421 1.0424 

0.6 1.1341 1.1348 

0.8 1.2346 1.2346 

1.0 1.3379 1.3380 

1.2 1.4426 1.4430 

1.4 1.5480 1.5488 

1.6 1.6556 1.6545 

1.8 1.7590 1.7598 

2.0 1.8647 1.8646 

2.2 1.9671 1.9684 

2.4 2.0718 2.0710 

2.6 2.1758 2.1730 

2.8 2.2731 2.2737 

3.0 2.3701 2.3735 

3.5 2.6121 2.619 

4.0 2.8623 2.863 

4.5 3.1032 3.104 

5.0 3.3486 3.346 

6.0 3.8257 3.832 

7.0 4.3126 4.322 

8.0 4.8177 4.812 

9.0 5.2992 5.305 

10.0 5.7289 5.799 
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Table-3.8 Values for 〈𝑟1𝑎 𝑟1𝑏〉 of the hydrogen molecule for selected values 

of 𝑅 

 

𝑅 Present Work Ref [60] 

0.2 1.2721 1.2716 

0.4 1.4352 1.4360 

0.6 1.6448 1.6445 

0.8 1.8828 1.8813 

1.0 2.1426 2.140 

1.2 2.4154 2.4146 

1.4 2.7048 2.705 

1.6 3.0015 3.005 

1.8 3.3169 3.315 

2.0 3.6358 3.632 

2.2 3.9498 3.951 

2.4 4.2766 4.270 

2.6 4.5989 4.590 

2.8 4.9077 4.904 

3.0 5.2118 5.214 

3.5 5.9533 5.955 

4.0 6.6682 6.662 

4.5 7.3470 7.348 

5.0 8.0388 8.035 

6.0 9.4375 9.433 

7.0 10.8649 10.868 

8.0 12.3251 12.320 

9.0 13.7760 13.778 

10.0 15.2511 15.250 
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Table-3.9 Values for the interelectron distances 〈𝑟12〉  of the hydrogen 

molecule for selected values of 𝑅 

 

𝑅 Present Work Ref [60] 

0.2 1.4690 1.4697 

0.4 1.5650 1.5647 

0.6 1.6733 1.6766 

0.8 1.7957 1.7956 

1.0 1.9175 1.9180 

1.2 2.0434 2.0423 

1.4 2.1696 2.1692 

1.6 2.2998 2.2981 

1.8 2.4308 2.4303 

2.0 2.5685 2.5671 

2.2 2.7099 2.7089 

2.4 2.8592 2.8571 

2.6 3.0155 3.013 

2.8 3.1725 3.178 

3.0 3.3549 3.352 

3.5 3.8207 3.823 

4.0 4.3264 4.327 

4.5 4.8362 4.838 

5.0 5.3497 5.340 

6.0 6.3182 6.318 

7.0 7.2804 7.283 

8.0 8.2560 8.250 

9.0 9.2247 9.222 

10.0 10.2031 10.200 
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Table-3.10 Values for 〈𝑟12
2 〉 of the hydrogen molecule for selected values of 

𝑅.  

𝑅 Present Work Ref [60] 

0.2 2.6776 2.6798 

0.4 3.0207 3.0202 

0.6 3.4464 3.447 

0.8 3.9265 3.929 

1.0 4.4506 4.456 

1.2 5.0240 5.023 

1.4 5.6326 5.635 

1.6 6.2796 6.289 

1.8 6.9906 6.995 

2.0 7.7698 7.762 

2.2 8.5925 8.594 

2.4 9.5002 9.503 

2.6 10.5080 10.505 

2.8 11.6057 11.607 

3.0 12.8229 12.820 

3.5 16.3675 16.362 

4.0 20.5622 20.572 

4.5 25.2987 25.29 

5.0 30.3845 30.41 

6.0 41.8144 41.81 

7.0 54.9676 54.95 

8.0 69.9512 69.99 

9.0 86.9610 86.99 

10.0 105.9670 105.99 
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Table-3.11 Values for 〈𝑟12
−1〉 of the hydrogen molecule for selected values of 

𝑅.  

𝑅 Present Work Ref [60] 

0.2 0.9109 0.9109 

0.4 0.8486 0.8484 

0.6 0.7834 0.7847 

0.8 0.7264 0.7264 

1.0 0.6736 0.6744 

1.2 0.6281 0.6285 

1.4 0.5869 0.5874 

1.6 0.5502 0.5506 

1.8 0.5181 0.5171 

2.0 0.4869 0.4863 

2.2 0.4570 0.4577 

2.4 0.4309 0.4309 

2.6 0.4057 0.4055 

2.8 0.3815 0.3814 

3.0 0.3583 0.3584 

3.5 0.3060 0.3063 

4.0 0.2631 0.2630 

4.5 0.2291 0.22911 

5.0 0.2032 0.20326 

6.0 0.1671 0.16719 

7.0 0.1428 0.14287 

8.0 0.1249 0.12497 

9.0 0.1110 0.11109 

10.0 0.0999 0.09999 
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Table-3.12 Values for 〈𝑟1𝑎
2 〉 of the hydrogen molecule for selected values of 

𝑅.  

𝑅 Present Work Ref [60] 

0.2 1.2778 1.2782 

0.4 1.4622 1.4622 

0.6 1.7031 1.7031 

0.8 1.9860 1.9857 

1.0 2.3044 2.304 

1.2 2.6559 2.654 

1.4 3.0371 3.037 

1.6 3.4480 3.447 

1.8 3.8870 3.888 

2.0 4.3588 4.359 

2.2 4.8595 4.857 

2.4 5.3869 5.384 

2.6 5.9423 5.943 

2.8 6.5317 6.533 

3.0 7.1552 7.156 

3.5 8.8644 8.865 

4.0 10.8168 10.812 

4.5 12.9985 12.995 

5.0 15.4248 15.414 

6.0 20.9736 20.96 

7.0 27.4091 27.49 

8.0 34.9249 34.98 

9.0 43.4117 43.48 

10.0 52.8949 52.98 
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Table-3.13 Values for 〈𝑟1𝑎 𝑟2𝑎〉 of the hydrogen molecule for selected values 

of 𝑅.  

𝑅 Present Work Ref [60] 

0.2 0.8952 0.8959 

0.4 1.0461 1.0465 

0.6 1.2421 1.2441 

0.8 1.4730 1.4757 

1.0 1.7345 1.7351 

1.2 2.0161 2.0180 

1.4 2.3211 2.3221 

1.6 2.6410 2.6425 

1.8 2.9760 2.977 

2.0 3.3265 3.323 

2.2 3.6704 3.675 

2.4 4.0290 4.028 

2.6 4.3787 4.380 

2.8 4.7271 4.726 

3.0 5.0632 5.061 

3.5 5.8430 5.842 

4.0 6.5556 6.551 

4.5 7.2211 7.222 

5.0 7.8981 7.896 

6.0 9.2884 9.286 

7.0 10.7254 10.728 

8.0 12.2032 12.197 

9.0 13.6742 13.670 

10.0 15.1449 15.153 
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Table-3.14 Values for 〈𝑟1𝑎 𝑟2𝑏〉 of the hydrogen molecule for selected values 

of 𝑅.  

𝑅 Present Work Ref [60] 

0.2 0.8971 0.8964 

0.4 1.0486 1.0485 

0.6 1.2498 1.2497 

0.8 1.4852 1.4877 

1.0 1.7593 1.7578 

1.2 2.0589 2.0570 

1.4 2.3828 2.3855 

1.6 2.7438 2.7417 

1.8 3.1291 3.127 

2.0 3.5443 3.543 

2.2 3.9907 3.990 

2.4 4.4706 4.470 

2.6 4.9819 4.987 

2.8 5.5413 5.543 

3.0 6.1443 6.142 

3.5 7.8356 7.833 

4.0 9.8121 9.806 

4.5 12.0361 12.032 

5.0 14.4880 14.488 

6.0 20.0310 20.08 

7.0 26.6472 26.62 

8.0 34.1596 34.12 

9.0 42.7169 42.62 

10.0 52.1086 52.12 
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Table-3.15 Values for 〈𝑥1 𝑥2〉 of the hydrogen molecule for selected values 

of 𝑅.  

 

𝑅 Present Work Ref [60] 

0.2 -0.0230 -0.02348 

0.4 -0.0268 -0.0278 

0.6 -0.0333 -0.0329 

0.8 -0.0380 -0.0383 

1.0 -0.0449 -0.0440 

1.2 -0.0485 -0.0498 

1.4 -0.0551 -0.0550 

1.6 -0.0600 -0.0600 

1.8 -0.0640 -0.0635 

2.0 -0.0661 -0.0663 

2.2 -0.0690 -0.0682 

2.4 -0.0680 -0.0689 

2.6 -0.0689 -0.0682 

2.8 -0.0662 -0.0663 

3.0 -0.0630 -0.0631 

3.5 -0.0503 -0.0519 

4.0 -0.0386 -0.0383 

4.5 -0.0274 -0.0271 

5.0 -0.0190 -0.0190 

6.0 -0.0108 -0.0101 

7.0 -0.0056 -0.0053 

8.0 -0.0032 -0.0036 

9.0 -0.0025 -0.0027 

10.0 -0.0017 -0.0019 
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Table-3.16 Values for 〈𝑧1 𝑧2〉 of the hydrogen molecule for selected values 

of 𝑅 

 

𝑅 Present Work Ref [60] 

0.2 -0.0244 -0.02458 

0.4 -0.0317 -0.0321 

0.6 -0.0440 -0.0441 

0.8 -0.0616 -0.0613 

1.0 -0.0842 -0.0850 

1.2 -0.1169 -0.1167 

1.4 -0.1612 -0.1600 

1.6 -0.2169 -0.2172 

1.8 -0.2926 -0.2919 

2.0 -0.3891 -0.3887 

2.2 -0.5125 -0.5124 

2.4 -0.6686 -0.6685 

2.6 -0.8613 -0.8612 

2.8 -1.0976 -1.0961 

3.0 -1.3771 -1.3758 

3.5 -2.2731 -2.271 

4.0 -3.3974 -3.394 

4.5 -4.6556 -4.655 

5.0 -5.9911 -5.996 

6.0 -8.7603 -8.9123 

7.0 -12.2167 -12.220 

8.0 -15.9881 -15.99 

9.0 -20.2145 -20.24 

10.0 -24.9899 -24.99 
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Table-3.17 Values for 〈𝑄2〉 of the hydrogen molecule for selected values of 

𝑅.  

 

𝑅 Present Work Ref [60] 

0.2 0.0114 0.0114 

0.4 0.0452 0.0451 

0.6 0.0990 0.0991 

0.8 0.1713 0.1706 

1.0 0.2558 0.2564 

1.2 0.3517 0.3538 

1.4 0.4561 0.4563 

1.6 0.5641 0.5638 

1.8 0.6627 0.6699 

2.0 0.7621 0.7689 

2.2 0.8574 0.858 

2.4 0.9337 0.931 

2.6 0.9804 0.985 

2.8 1.0144 1.013 

3.0 1.0119 1.015 

3.5 0.9185 0.905 

4.0 0.6972 0.689 

4.5 0.4540 0.464 

5.0 0.2893 0.287 

6.0 0.0734 0.094 

7.0 0.0279 0.026 

8.0 0.0463 0.008 

9.0 0.0036 0.004 

10.0 0.0029 0.003 
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Table-3.18 Values for 〈𝑄4〉 of the hydrogen molecule for selected values of 

𝑅.  

 

𝑅 Present Work Ref [60] 

0.2 0.0012 0.001 

0.4 0.0047 0.004 

0.6 0.0111 0.011 

0.8 0.0361 0.036 

1.0 0.0829 0.082 

1.2 0.1586 0.159 

1.4 0.2845 0.281 

1.6 0.4577 0.453 

1.8 0.6821 0.680 

2.0 0.9684 0.968 

2.2 1.3057 1.309 

2.4 1.6941 1.70 

2.6 2.1240 2.10 

2.8 2.5050 2.51 

3.0 2.9124 2.89 

3.5 3.4742 3.48 

4.0 3.4336 3.47 

4.5 2.9993 2.98 

5.0 2.4406 2.29 

6.0 1.3816 1.09 

7.0 0.5744 0.3 

8.0 0.1011 0.1 

9.0 0.2103 0.2 

10.0 0.2100 0.2 
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3.5 Conclusion 

In this chapter we have used the Variational Monte Carlo method to 

calculate the ground state energies of the hydrogen molecular ion 𝐻2
+ and 

the hydrogen molecule 𝐻2  at different internuclear separation. The 

calculations were carried out numerically under the principles of Born-

Oppenheimer approximation which deal with the case of an “infinitely 

heavy” nucleus. Also, we calculated 13 molecular properties of hydrogen 

molecule 𝐻2  at 24 internuclear distances. The calculations were based on 

using different types of trial wave functions. The trial wave functions 𝜓1, 𝜓2 

and 𝜓3  are compact and accurate. The obtained results were in good 

agreement with the corresponding exact and accurate results. Finally, our 

conclusion is that the variational Monte Carlo method provides accurate 

estimations for the ground state energy of  the two atoms molecules. 

  

http://en.wikipedia.org/wiki/Hydrogen_molecule
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Chapter 4 

Ground State Calculations of the Confined 

Hydrogen Molecule 𝑯𝟐, Molecular Ions 𝑯𝟐
+ and 

𝑯𝒆𝑯++ Using Variational Monte Carlo Method 

 

4.1 Introduction 

Recently, many studies concerning the problem of confined molecular 

systems have attracted the attention of both physicists and quantum chemists. 

This is due to the unusual physical and chemical properties observed in such 

systems when submitted to narrow spatial limitation as compared to their 

free cases. When atoms and molecules are confined in either penetrable or 

impenetrable boundaries their properties undergo significant changes. Also, 

confined systems are widely used to model a variety of problems in physics 

and chemistry. For example, the study of the synthesis of nanostructure 

materials such as carbon nanotubes [61], buckyballs and zeolitic 

nanochannels which serve as ideal containers for molecular insertion and 

storage with promising applications [62, 63].  

    The increasing pace at which research is being carried out in the 

aforementioned systems demands many powerful and sophisticated 

methodologies (Hartree–Fock, quantum chemical density functional theory, 

quantum molecular dynamics, to mention a few [61, 62]) and also, 

complementary exploratory models aimed at understanding the basic 

mechanisms of the changes in the electronic and structural properties of a 

confined molecules. Various theoretical models have been proposed in the 
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past to analyze confinement effects on the confined systems, particularly 

those based on boxed-in molecules.  

    Box models of confinement with hard and soft boundaries have been 

widely used to survey the effect of spatial limitation in the case of simple 

molecules such as 𝐻2
+  molecular ion, 𝐻2  molecule and some small 

polyatomics as 𝐻2𝑂 , 𝐶𝐻4 , 𝑁𝐻3  and 𝐿𝑖𝐹 . Since, the 𝐻2
+  molecular ion is 

considered as one of the first non-trivial quantum mechanical systems, many 

studies have been presented recently to investigate it under compression.  

    In Ref [64], Molinar-Tabares et al. studied the 𝐻2
+ confined by spheroids 

of size 𝜉0  using prolate spheroidal coordinates. In frame of Born–

Oppenheimer approximation, the Schrödinger equation was solved by the 

method of separation of variables to obtain the equilibrium distance between 

nuclei and the corresponding energy as functions of 𝜉0. Also, the vibrational 

energy of the nuclei, the pressure, the polarizability and the anisotropy were 

calculated.  

    A first successful attempt to uncouple the nuclear positions from the foci 

was made by Crus et al. [65] for 𝐻2
+ confined within impenetrable prolate 

spheroidal boxes. The non-separable Schrödinger problem was solved using 

the variational method with simple LCAO Dickinson type variational ansatz 

wave function to obtain the ground state energies of the enclosed 𝐻2
+ and 

𝐻𝑒𝐻++  when the nuclear positions do not coincide with the foci. The 

pervious results were extended to cover case of 𝐻2 by Rodriguez et al. [46]. 

They considered the case of the 𝐻2  molecule confined by impenetrable 

spheroidal boxes when the nuclei do not coincide with the foci. It was shown 

that by making the cavity size and shape independent of the nuclear 

positions, optimum equilibrium bond lengths and energies are obtained as 
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compared with corresponding on-focus calculations. This procedure allows 

for a controlled treatment of molecular properties by selecting an arbitrary 

size and shape of the confining spheroidal box.  

    In Ref [47], a generalization of previous theoretical studies of molecular 

confinement based on the molecule-in-a-box model was presented. In 

contrast with previous box models of molecular confinement, this work 

introduced a new treatment allows for full control of cavity size and shape, 

internuclear positions and confining barrier height. The presented model 

adds more flexibility for dealing with the electronic and vibrational 

properties of electrons under compression which lead to more realistic 

comparison with experiment. Also, this study shows that as the cavity size is 

reduced, the limit of stability of the confined molecule is attained for a 

critical size.  

    One of the most and recent studies was presented by Sarsa et al. [66] 

where the 𝐻2
+  molecular ion confined by impenetrable spherical surfaces 

was studied beyond the Born–Oppenheimer approximation. The 

confinement of both electron and nuclei were considered and they could 

show that the electron constraint is much more efficient to increase the 

energy than the nuclei confinement.  

 

 4.2 Description of the Problem   

In this chapter we have studied the ground state energy of 𝐻2
+ molecular ion 

and 𝐻2  molecule confined by a hard prolate spheroidal cavity under 

compression effects using variational Monte Carlo method. Our results were 

extended also to include the 𝐻𝑒𝐻++ molecular ion. 

    We considered the 𝐻2 molecule and the 𝐻2
+ molecular ion confined within 

a prolate spheroidal cavity, defined by the geometric contour 𝜉0 as shown in 
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Figure-4.1 and Figure-4.2. Then, the Schrödinger equation for the confined 

molecules can be written as follows  

                                                 (𝐻̂ − 𝐸)𝜓 = 0,                                          (4.1)  

The Hamiltonian function in equation (4.1) is written in the form:   

                                                  𝐻̂ = 𝑇 + 𝑉                                                (4.2)    

In equation (4.2) the kinetic energy 𝑇 = −
1

2
∑ 𝛻𝑖

2𝑛
𝑖=1  is the sum of the kinetic 

energies of the two electrons and 𝛻𝑖
2 is the Laplacian with respect to the 

coordinates of the electron i. The potential energy 𝑉 is the total potential 

energy of the system.             

    Considering the origin is placed at the center of mass of the nuclei then 

the total potential energy of the confined hydrogen molecular system in 

atomic units (a. u.) can be written as:                                                          

                              𝑉 = − ∑ (
1

𝑟𝑖𝑎
+

1

𝑟𝑖𝑏
)𝑛

𝑖=1 +
1

𝑟12
+

1

𝑅
+ 𝑉𝑐                          (4.3)                                                                                                                                                                                                                     

In the above equation, 𝑟𝑖𝑎(𝑏) = |𝒓𝑖𝑎(𝑏)| denotes the distance from electron 

‘𝑖’ (𝑖 = 1, 2) to nucleus ‘𝑎’ (‘𝑏’ ), 𝑟12 is the interelectronic distance and 𝑅 is 

the internuclear distance. The index 𝑛 runs over the numbers of the electrons 

so that for the hydrogen molecule 𝑛 = 2. For the hydrogen molecular ion 

𝐻2
+ the index 𝑛 = 1. 

    The potential 𝑉𝑐  is the confining barrier imposed by the spheroidal 

boundary (S), which is infinitely high when the electron or one nucleus is at 

the respective defined boundary surfaces—spheroidal or spherical—and 

equals zero when the particles are inside the volume limited by the surfaces, 

that is 

                           𝑉𝑐 = {
∞      (𝑟𝑖𝑎, 𝑟𝑖𝑏) ∈ 𝑆
0       (𝑟𝑖𝑎, 𝑟𝑖𝑏) ∉ 𝑆

                                                  (4.4)         
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From equation (4.3), at 𝑛 = 1 the molecular Hamiltonian for the confined 

𝐻2
+ molecular ion may be conveniently written (in atomic units) as follows 

[66] 

                             𝐻̂ = −
1

2
∇2 −

1

𝑟𝑎
−

1

𝑟𝑏
+

1

𝑅
+ 𝑉𝑐.                                      (4.5)   

In the above equation, 𝑟𝑎 and 𝑟𝑏  denote the distances from the electron to 

nuclei 𝑎, 𝑏 

  𝑟𝑎 = √𝑥2 + 𝑦2 + (𝑧 + 1

2
 𝑅)

2
 ,     𝑟𝑏 = √𝑥2 + 𝑦2 +  (𝑧 − 1

2
 𝑅)

2
,        (4.6)  

From equation (4.3), at 𝑛 = 2 it was easy to write down the Hamiltonian 

operator corresponding to the coordinates of the two electrons and the two 

nuclei for the confined 𝐻2 molecule, as follows 

  

             𝐻̂ = −
1

2
∇1

2 −
1

2
∇2

2 + −
1

𝒓1𝑎
−

1

𝒓1𝑏
−

1

𝒓2𝑎
−

1

𝒓2𝑏
+

1

𝒓12
+

1

𝑅
+ 𝑉𝑐           (4.7) 

    In this thesis we have considered the case of prolate spheroidal confining 

box so, we used prolate spheroidal coordinates. It is well known that such a 

coordinate system consists of families of mutually orthogonal confocal 

ellipsoids (𝜆) and hyperboloids (𝜇) of revolution. The prolate spheroidal 

coordinates are defined as [46, 47]  

 

                          𝜆 = 𝑟1 + 𝑟2
𝐷

 ,                 𝜇 = 𝑟1 − 𝑟2
𝐷

.                                       (4.8)   

The ranges of these variables are  

                         1 ≤ 𝜆 ≤ ∞,                −1 ≤ 𝜇 ≤ 1.                                    (4.9) 

    The different sets of coordinates (𝜆1, 𝜇1)  and (𝜆2, 𝜇2)  are assigned, 

respectively, to electrons characterized by the positions (𝑟1, 𝑟2) and (𝑟1
∗, 𝑟2

∗) 

relative to the foci as shown in Figure-4.2. In these coordinates, the kinetic-

energy operator and the potential-energy operator are written as [46, 47]  
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                     −
1

2
∇𝑖

2= − 2

𝐷2 (𝜆𝑖
2

−𝜇𝑖
2)

 { 𝜕
𝜕𝜆𝑖

 (𝜆𝑖
2

−1) 
𝜕

𝜕𝜆𝑖
 + 

𝜕
𝜕𝜇𝑖

 (1−𝜇𝑖
2) 

𝜕
𝜕𝜇𝑖

 }                 (4.10)                

                        𝑉 = −
4

𝐷
(

𝜆1

𝜆1
2−𝜇1

2 +
𝜆2

𝜆2
2−𝜇2

2 −
1

2𝜌
) +

1

𝑅
+ 𝑉𝑐,                         (4.11) 

respectively, where 𝜌 = 2𝑟12 𝐷⁄ . 

    In Figure-4.1 and Figure-4.2 we presented the geometric characteristics of 

the confined hydrogen molecular ion 𝐻2
+  and the hydrogen molecule 𝐻2 , 

respectively, confined within a prolate spheroidal cavity defined by 𝜉0. In 

the case of the hydrogen molecular ion 𝐻2
+ the nuclear charges (𝑍𝑎 = 𝑍𝑏 =

1) are both located at distance 
𝑅

2
 from the origin. Also, the nuclear charges 

(𝑍𝑎 = 𝑍𝑏 = 1) for the hydrogen molecule 𝐻2 are both located at distance 𝑑𝑎 

and 𝑑𝑏 from the origin, respectively. 𝐷 is the interfocal separation and 𝑅 is 

the internuclear distance, 𝑅 = 𝑑𝑎 + 𝑑𝑏 . 𝑟𝑎  and 𝑟𝑏  are the distances from 

electron to nuclei 𝑎(𝑏), respectively. 𝑟1𝑎(𝑏) and 𝑟2𝑎(𝑏) are the distances from 

electrons 1 and 2 to nuclei 𝑎(𝑏) , respectively, and 𝑟1(2) , 𝑟1(2)
∗  are their 

corresponding distances to the foci. 𝑟12 is the electron–electron distance. 

 

                                 𝜉0 

                                           

                                                                                                                          

                                                                             

Figure-4.1 Hydrogen molecular ion 𝐻2
+ confined within a prolate spheroidal 

cavity.    
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                                                     𝑥                                                                                                                

                                                                                                                           

               𝜉0             

                                                                                                                           

                                                                                                                           

                                                                                                           𝑧               

                                                                                                                            

                                      

                                          

Figure-4.2 Hydrogen molecule 𝐻2 confined within a prolate spheroidal 

cavity defined by 𝜉0. 

    Our calculations for the ground state of the confined 𝐻2
+ molecular ion 

and the 𝐻2 molecule are based on using the trial wave functions 𝜓1 and 𝜓2 

which are introduced in chapter 3 and are used to calculate the ground state 

energy for 𝐻2
+  molecular ion and 𝐻2  molecule. These wave functions are 

highly compact and have clear physical meaning and satisfy all the boundary 

conditions. As mentioned in chapter 3 the two functions are given by  

 

                       𝜓1 = ∑ 𝐶𝑖  𝜆𝑚𝑖  𝜇𝑛𝑖  𝑒𝑥𝑝(−𝜔𝜆)𝑖 ,                                         (4.12)                

where 𝐶𝑖 are the variational parameters and 𝜔 = 1.2 and 

  

      𝜓2 = ∑ 𝐶𝑖(1 + 𝑝12) 𝑒𝑥𝑝[−𝛼(𝜆1 + 𝜆2)]𝑖  𝜆1
𝑚𝑖  𝜆2

𝑛𝑖  𝜇1
𝑗𝑖  𝜇2

𝑘𝑖  𝜌𝑙𝑖 ,            (4.13) 
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where 𝑝12 is an electron exchange operator, 𝐶𝑖 are the variational parameters 

and 𝛼 = 3 4⁄ . 

    For the ground state, the overlap and Hamiltonian integrals of 𝐻2
+  are 

easily done when the wave functions 𝜓1 and 𝜓2 are given by Eq. (4.12) and 

Eq. (4.13), respectively. Here, we discuss the validity of using these compact 

wave functions to study the Compression effects in H2
+ ion and 𝐻2 molecule 

constrained by hard spherical walls. To study the case of H2
+  ion and 𝐻2 

molecule confined by a hard spherical boundary surface the wave functions 

must vanish at the spherical boundary surface, so a cut-off factor is 

employed to fulfill this condition and the wave functions become: 

 

     𝜓1 = {
∑ 𝐶𝑖 𝜆

𝑚𝑖  𝜇𝑛𝑖  𝑒𝑥𝑝(−𝜔𝜆) ×𝑖 [ (1 −
𝜆 – 1

𝜉0−1
)   𝑒𝑥𝑝 (

𝜆 – 1

𝜉0−1
)]     for 𝜆 < 𝜉0

0                                                                                                     for 𝜆 ≥ 𝜉0

.       (4.14)  

and 

𝜓2 = {
∑ 𝐶𝑖(1 + 𝑝12) 𝑒𝑥𝑝[−𝛼(𝜆1 + 𝜆2)]𝑖  𝜆1

𝑚𝑖 𝜆2
𝑛𝑖  𝜇1

𝑗𝑖  𝜇2
𝑘𝑖  𝜌𝑙𝑖  [(1 − 𝛾 𝜆𝑖 𝜉0⁄ )]     for 𝜆 < 𝜉0

      0                                                                                                                            for 𝜆 ≥ 𝜉0

(4.15)    

In Eq. (4.14) the last factor in parenthesis represents the cut-off factor 

[ (1 −
𝜆 – 1

𝜉0−1
)   𝑒𝑥𝑝 (

𝜆 – 1

𝜉0−1
)]  in terms of the elliptic coordinates and it 

guarantee that 𝜓1(𝜆 = 𝜉0, 𝜇) = 0 at the boundary. This type of cut-off 

function was introduced in [67] and it was found that it provides accurate 

results. Also, the presence of cut-off factor [(1 − 𝛾 𝜉𝑖 𝜉0⁄ )] in Eq. (4.15) in 

parenthesis represents the cut-off factor in terms of the elliptic coordinates 

and depends on the variational parameter 𝛾  is to guarantee that 𝜓2(𝜆 =

𝜉0, 𝜇) = 0 at the boundary. This factor has been successfully used in 

previous variational studies of atoms confined by padded spherical walls [68] 

and becomes the usual cut-off term for an infinitely hard wall when 𝛾 = 1, 
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as discussed in [46]. This type of cut-off function was found to provide 

accurate results. 

 

4.3 Discussion of the Results of Chapter 4 

The Variational Monte Carlo method has been employed for the ground state 

of the confined molecular ion 𝐻2
+  and the confined molecule 𝐻2 . The 

hydrogen molecular ion 𝐻2
+ and the hydrogen molecule 𝐻2 have the charge 

parameters 𝑍𝑎 = 𝑍𝑏 = 1 . All energies are obtained in atomic units i.e. 

(ℏ = 𝑒 = 𝑚𝑒 = 1) with set of 4 × 107  Monte Carlo integration points in 

order to make the statistical error as low as possible. This section presents 

the results obtained with the wave functions which were introduced in the 

previous section (to calculate the ground state energies of the hydrogen 

molecular ion 𝐻2
+ and 𝐻2 molecule) and also proposed in chapter 3. 

    Excellent quantitative agreement is obtained compared to the 

corresponding exact values. These results validate the accuracy of the wave 

functions to calculate the ground-state energy (1𝑠𝜎𝑔)  of H2
+  and 𝐻2 

molecule inside a hard prolate spheroidal box under compression. Since 

molecules when squeezed into a tiny space, they present different electronic 

and structural behavior in contrast to their free condition; then, knowledge of 

the way these changes take place as a function of cavity size, shape and 

composition is of paramount importance. 

    In the case of 𝐻2
+  we have studied the case in which the nuclei are 

clamped at the foci and the interfocal distance 𝐷 = 𝑅 = 2 a.u., and also 

studied other approximate calculations. The potential barrier parameter 𝑉𝑐 

can take values between zero and infinity representing walls with increasing 

confining strength. In Table-4.1 we displayed the results obtained for the 
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ground-state of the confined 𝐻2
+  molecular ion together with the 

corresponding results which are available in the literature and the most 

recent results. The obtained energies were calculated for wide range of 𝜉0. 

The small values of 𝜉0 describe the case of strong confinement where the 

large values represent the weak compression. It is clear that our results are of 

good agreement in comparison with previous data. The agreement with other 

data is found to be good even for relatively large values of the eccentricity 

1 𝜉0⁄ . We report the results obtained in Ref [66] here as the electronic 

energy where the total electronic energy of the molecular ion 𝐻2
+ is defined 

as the total energy 𝐸𝑇 minus the repulsive energy between the nuclei, 𝐸𝑒𝑙𝑒 =

𝐸𝑇 −
𝑍𝑎 𝑍𝑏

𝑅
. 

 

 

Figure-4.3 The ground-state energy of 𝐻2
+ versus 𝜉0. 

    Figure-4.3 shows the variation of the ground-state energy with respect to 

𝜉0. It is clear from Figure-4.3 that the energies increase when 𝜉0 decreases 

for strong compression at  𝜉0 < 2.9162 where for large values of  𝜉0 ≥
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2.9162, the compression effect becomes not noticeable and the energy is 

nearly stable and approaches to the corresponding exact value, i.e. when 𝜉0 

increases that leads to less energy to reach even the free state of 𝐻2
+. Also, 

Figure-4.3 insures the fact that the energy of the low-lying states in a 

confined quantum charged system is determined by a competition of 

confinement kinetic energy and Coulomb interaction energy. As the 

molecules are compressed, they become constrained in a diminishing 

spherical box so that according to the quantum mechanical uncertainty 

principle, the electrons increase their momentum and thereby leading to a 

net gathering of kinetic energy. In other meaning the smaller the confined 

potential spheroidal cavity 𝜉0 is, the higher the confinement kinetic energy is. 

When the increase in the confinement kinetic energy becomes predominant 

and cannot be compensated by the increase of the Coulomb attractive energy, 

the energies of the confined 𝐻2
+ increase.  

    On the other hand, Table-4.2 displays the results for the energy evolution 

of the (1𝑠𝜎𝑔)  state of the confined 𝐻2
+  molecular ion within a prolate 

spheroidal cavity with fixed major axis 𝐶 = 𝑅𝜉0 = 5  a.u. and different 

values for the internuclear distance 𝑅, compared to the corresponding exact 

calculations by Mateos et al. [69] and other approximate calculations. The 

agreement with other data is found to be good.   
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Table-4.1 The electronic energy of the ground state of 𝐻2
+ obtained using the 

wave function of Eq. (4.14) with a fixed internuclear distance 𝑅 = 𝑅0 =

2 a. u  and different sizes and  𝜉0  as compared with the exact and other 

approximate calculations. In parentheses, we show the statistical error in the 

last figure. 

 

 

 

   𝜉0 𝐸this work  𝐸𝑎  𝐸𝑏 𝐸𝑐 𝐸exact
𝑑  

5.6924 -1.1024920(1) -1.1022 -1.1022 - -1.1025 

4.4468 -1.099999(1) - - -1.099991 -1.1 

2.9162 -1.024930(5) - -1.0237 - -1.025 

2.4196 -0.8749254(6) - -0.8746 -0.875027 -0.875 

2.2237 -0.7497891(4) -0.7499 -0.75 - -0.75 

2.0917 -0.6249598(6) - - -0.624975 -0.625 

1.9934 -0.499707(8) -0.4999 -0.4999915 - -0.5 

1.9002 -0.347878(2) - - -0.3467505 -0.35 

1.8638 -0.274803(2) - - - -0.275 

1.8186 -0.174838(2) - - -0.1750125 -0.175 

1.7788 -0.072020(3) - - - -0.075 

1.7606 -0.024874(4) - - - -0.025 

1.7434 0.02568442(2) 0.0258 - - 0.025 

1.7270 0.07647589(4) - - - 0.075 

1.7115 0.1275443(3) - - - 0.125 

1.6690 0.2756515(1) - - - 0.275 
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Table-4.1 Continued 

 

a Ref [65]      b Ref [66]    c Ref [71]     d Ref [70] 

    Finally, our results were extended to include the 𝐻𝑒𝐻++ molecular ion 

which has the charge parameters 𝑍𝑎 = 2 , 𝑍𝑏 = 1 . Table-4.3 shows the 

results for the energy evolution of the (1𝑠𝜎𝑔) state of the confined 𝐻𝑒𝐻++ 

molecular ion confined by a hard prolate spheroid characterized by an 

internuclear distance 𝑅 = 2 a. u. with different sizes and eccentricities. Also, 

the corresponding exact calculations by Ley-Koo et al. [70] and accurate 

variational calculations from Ref [65] are presented for comparison. The 

comparison insures that our results are of good accuracy. It is clear that the 

obtained numerical results are in good agreement with the exact and other 

approximate calculations.  

 

 

 

 

   𝜉0 𝐸this work  𝐸𝑎  𝐸𝑏 𝐸𝑐 𝐸exact
𝑑  

1.6150 0.5012(3) 0.5025 0.5072 - 0.5 

1.5229 1.0095(4) - - - 1.0 

1.4555 1.541445(1) - - - 1.5 

1.4035 2.015272(1) - - - 2.0 

1.3621 2.544751(1) 2.5214 - - 2.5 
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Table-4.2 Total energy behavior of the ground state energy of 𝐻2
+ enclosed 

by a prolate spheroidal cavity with major axis 𝐶 = 𝑅𝜉0 = 5 a.u. and varying 

internuclear distances. In parentheses, we show the statistical error in the last 

figure. 

 

 

 

 

 

 

 

                                                

                                                           a Ref [65]      b Ref [69] 

 

 

 

 

 

 

 

𝑅 𝐸this work 𝐸𝑎 𝐸exact
𝑏  

1.1 -0.4190592(5) -0.4287 -0.429173 

1.4 -0.4705254(1) -0.4716 -0.471751 

1.5 -0.4710616(2) -0.4703 -0.471784 

1.6 -0.4657539(1) -0.4657 -0.466979 

1.9 -0.4301752(3) -0.4294 -0.430244 

2.2 -0.3669057(2) -0.3665 -0.366949 

2.5 -0.2790038(8) -0.2789 -0.279130 

2.8 -0.1631775(1) -0.1634 -0.163430 
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Table-4.3 The electronic energy of the (1𝑠𝜎𝑔)  of 𝐻𝑒𝐻++  with nuclear 

positions located at the foci of a confining prolate spheroidal cavity of 

internuclear distance 𝑅 = 2 a.u. with different sizes and 𝜉0. In parentheses, 

we show the statistical error in the last figure. 

 

 

 

 

 

 

 

 

 

 

 

 

a Ref [65]      b Ref [70] 

 

 

𝜉0 𝐸this work 𝐸𝑎 𝐸exact
𝑏  

1.7025 -1.49919(6) - -1.5 

1.6580 -1.324248(6) - -1.325 

1.6410 -1.248159(1) -1.2498 -1.25 

1.5914 -0.9999956(1) - -1.0 

1.5499 -0.749947(3) -0.7498 -0.75 

1.5424 -0.6991266(3) - -0.7 

1.5351 -0.6499709(4) - -0.65 

1.5211 -0.5487804(5) -0.5498 -0.55 

1.5144 -0.4995019(4) - -0.5 

1.4833 -0.2492223(8) - -0.25 

1.4558 0.000497736(7) - 0.0 

1.4313 0.2515458(8) 0.2519 0.25 

1.4091 0.5058985(1) - 0.5 

1.3705 1.056358(5) 1.0066 1.0 

1.3379 1.502523(5) - 1.5 
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Also, we have studied the case of hydrogen molecule confined by a hard 

prolate spheroidal cavity in two cases, when the nuclear positions are 

clamped at the foci (on-focus) and the case of off-focus nuclei in which the 

two nuclei are uncoupled from the foci (not clamped at the foci). 

    Firstly, we study the case in which the nuclei are clamped at the foci 𝑑𝑎 =

𝑑𝑏 = 𝐷 2⁄ , once a major axis (𝐷𝜉0, 𝐷 = 𝑅 = 𝑑𝑎 + 𝑑𝑏) is fixed, variation of 

the internuclear distance (𝑅 = 𝐷)  necessarily implies a change in 

eccentricity (1 𝜉0⁄ ) , which corresponds to a different cage geometry. In 

Table-4.4 we displayed the results obtained for the ground state of the 

confined 𝐻2 molecule within a prolate spheroidal cavity with various major 

axis 𝐶 = 𝑅𝜉0  and different values for the internuclear distance 𝑅  together 

with the corresponding accurate variational calculations by Lesar et al. [72, 

73], Cruz et al. [46] and exact QMC calculations by Pang [74]. The 

agreement with other data is found to be good even for relatively large 

values of the eccentricity, (1 𝜉0⁄ ).  
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Table-4.4 Ground-state energies obtained in this thesis for the 𝐻2 molecule 

confined within hard prolate spheroidal boxes with nuclear positions 

clamped at the foci for selected values of the major axis (𝑅𝜉0) as compared 

with the corresponding accurate calculations. In parentheses, we show the 

statistical error in the last figure. 

 

a Ref [56].       b Ref [75].       c Ref [46]. 

𝐸𝑐 𝐸𝑏 𝐸𝑎 𝐸this work 𝑅 𝑅𝜉0 

- - −1.1332 -1.133296(1) 1.388 
∞ 

-1.1746 - - -1.173397(1) 1.4010 

- - −1.1322 -1.132001 1.386 
12 

- −1.1685 - -1.156829 1.403 

- - −1.1292 -1.128147(4) 1.372 
10 

- −1.1638 - -1.162297(2) 1.395 

- - −1.1102 -1.11102(3) 1.321 
8 

−1.1533 - - -1.1500(3) 1.3503 

−1.0523 - - -1.0515(2) 1.1771 
6 

- −1.0441 - -1.040882(1) 1.208 

- - −0.4321 -0.431810(4) 0.885 

4 - −0.4749 - -0.4744763(6) 0.893 

−0.4790 - - -.4786076(1) 0.8949 

- - 0.6934 0.6932845(2) 0.683 
3 

- 0.6474 - 0.647240(1) 0.686 

4.5944 - - 4.595042(5) 0.4493 
2 

- - 4.6433 4.644851(5) 0.454 
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    Now, let the two nuclei are allowed to relax out of the focal positions 

along the major axis. This means that the internuclear distance 𝑅 and the 

interfocal distance 𝐷  have slightly different values from each other. The 

obtained results for this case are listed in Table-4.5. By comparing the 

results obtained in relaxation case (Table-4.5) and those of clamped case 

(Table-4.4) this reflects the effect of the relaxation of the on-focus nuclei. 

The comparison ensures that the optimum value of the energy can be 

obtained when the nuclei do not coincide with the foci. Also, the equilibrium 

internuclear distances increase relative to the on-focus case with 

corresponding lowering in the energy. The independence of confining box 

size and shape on the nuclear positions provide us with additional degree of 

freedom by controlling the shape and size of the confining box while 

varying the nuclear positions.   

    Figure-4.4 shows in more detail the evolution of the total energy behavior 

of the ground state energy as a function of 𝜉0 and the internuclear distance 𝑅 

of 𝐻2 molecule enclosed by a prolate spheroidal cavity with major axis 𝐷𝜉0 

for the set of box sizes considered here after allowing for nuclear relaxation 

in the corresponding on-focus calculations.  
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Table-4.5 Total energy behavior of the ground state energy of 𝐻2 molecule 

enclosed by a prolate spheroidal cavity with major axis 𝐷𝜉0 after allowing 

for nuclear relaxation in the corresponding on-focus calculations. 𝐷 is the 

original equilibrium on-focus bond length. In parentheses, we show the 

statistical error in the last figure. 

 

 

 

 

 

 

 

                                                                    a Ref [46]. 

 

 

 

𝐷𝜉0 𝐷 𝑅 𝐸this work 𝐸𝑎 

12 1.386 1.391 -1.1328(1) -1.1322 

10 1.372 1.376 -1.1230(1) -1.1292 

8 1.321 1.323 -1.1101(7) -1.1102 

6 1.177 1.187 -1.0069(7) -1.0081 

4 0.885 0.913 -0.4337252(1) -0.4333 

3 0.683 0.726 0.6875051(1) 0.6878 

2 0.454 0.508 4.622613(7) 4.6142 
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Figure-4.4 Total energy behavior of the ground state energy as a function of 

𝜉0  and the internuclear distance 𝑅  of 𝐻2  molecule enclosed by a prolate 

spheroidal cavity with major axis 𝐷𝜉0 after allowing for nuclear relaxation 

in the corresponding on-focus calculations.  

    On the other hand, we have considered the case of off-focus nuclear 

positions with fixed eccentricity 𝑒 =
1

𝜉0
= 0.5. In this case the shape of the 

cavity will kept fixed where the size is variable. Consider the case in which 

𝐻2 molecule is compressed within a prolate spheroidal cavity with variable 

sizes for different values of major axis 𝐶 = 𝐷𝜉0 = 2, 3, 4, 6, 12 and different 

values for the internuclear distance 𝑅. The results describing this case are 

displayed in Table-4.6. In this technique, all boxes keep the same aspect 

ratio as the volume changes. In this table we compare our results with the 

first results obtained previously for this case by Cruz et al. [46]. It is clear 

that our results exhibit a good accuracy compared to previous data. The 

obtained results are presenting for the case of off-focus nuclear relaxation 

for a fixed confining geometry leading to new energies as compared to the 

corresponding on-focus calculation.  
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Table-4.6 Total energy behavior of the ground state energy of 𝐻2 molecule 

enclosed by a prolate spheroidal cavity with varying major axis 𝐶 = 𝐷𝜉0 =

2, 3, 4, 6, 12 and fixed eccentricity 𝑒 =
1

𝜉0
= 0.5. In parentheses, we show 

the statistical error in the last figure. 

  

 

 

 

 

 

 

                                                      a Ref [46]. 

    Figure-4.5 represents the variation of the energy versus the internuclear 

distance R for the free and confined 𝐻2 molecule. It is clear that the energy 

increases in both free and confined cases under decrease of the internuclear 

distance R.  

    Now, we will introduce a simple chemical analysis concerning the 

catalytic role of enzyme. Enzymes are macromolecular biological catalysts 

which play a central role in life due to their catalytic properties. The 

molecules at the beginning of the process are called substrates and the 

enzyme converts these into different molecules, called products. The active 

site is always a non-rigid polar cavity, or crevice, where the substrate will be 

rearranged in products. There are two cases for converting from the confined 

state to the free state. Considering a confined molecule with the energy 

given in point A. In the first case, let us assume a sudden release of the 

 𝐷𝜉0 𝑅 𝐸this work 𝐸𝑎 

12 1.381 -1.126886(4) -1.1268 

6 1.153 -0.9311808(2) -0.9392 

4 0.880 -0.1938857(1) -0.1938 

3 0.704 1.212303(2) 1.2141 

2 0.490 5.989710(1) 5.9899 

http://en.wikipedia.org/wiki/Macromolecular
http://en.wikipedia.org/wiki/Biological
http://en.wikipedia.org/wiki/Catalyst
http://en.wikipedia.org/wiki/Substrate_%28chemistry%29
http://en.wikipedia.org/wiki/Product_%28chemistry%29
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constraint, this will relax the bonding electron into the free state with similar 

internuclear distance R. In this hypothesis, the vertical transition of the 

electrons from A → B (or from confined to unconfined state) leads to change 

the free molecule state and leaves it in a vibrational excited state. In the 

second case, if the switch-off of the constraint is slower, the relaxation 

pathway becomes A → C. In this relaxation pathway the nuclei have time to 

move and so they gain kinetic energy. Hence, the chemical bond is left in a 

vibrational excited state. In case of strong compression, then molecular bond 

scission might be obtained however, we can stat that in all cases the 

molecular bond of the free molecule on its electronic ground state is left, at 

least, in a vibrational excited state. As a result, one can consider the behavior 

of the vibrational excitation (or bond breaking) to be like the effect of 

increasing the temperature of the substrate which leads to easier a 

subsequent atomic rearrangement to give the products. This is a fundamental 

property, essential for the catalytic role of enzyme. 
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Figure-4.5 Change of the ground state energy of a confined 𝐻2 molecule 

when the confinement is removed. Two different situations are illustrated. 

 

4.4 Conclusion 

In frame of the Variational Monte Carlo method we calculated the 𝐻2
+ 

molecular ion and 𝐻2  molecule confined within hard prolate spheroidal 

boxes. We have calculated the energies for both confined 𝐻2
+ molecular ion 

and 𝐻2 molecule. In the case of 𝐻2
+ molecular ion, we considered the case of 

small values of 𝜉0 which describe the strong compression as well as the case 

of large values of 𝜉0. Our results were extended also to include the 𝐻𝑒𝐻++ 

molecular ion. The energy was plotted as a function of 𝜉0  to show 

graphically the effect of compression on the total energy. The graphs 

indicate that the values of the energy are affected significantly at small 

values of 𝜉0 , where at large values the energy tends to be constant and 

approaches to its uncompressed value. In the case of 𝐻2 molecule, ground-

state energies obtained for the 𝐻2  molecule confined within hard prolate 
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spheroidal boxes with nuclear positions clamped at the foci for selected 

values of the major axis (𝑅𝜉0) as compared with corresponding accurate 

calculations. It was shown also here that, when the nuclear positions are 

allowed to relax out of the foci for a fixed cage size and shape, different 

energies are obtained. Also, the case of off-focus nuclei in which the two 

nuclei are uncoupled from the foci is studied. In all cases our results exhibit 

good accuracy comparing with previous values obtained by using different 

methods and different forms of trial wave functions. Finally, we conclude 

that the applications of VMC method can be extended successfully to cover 

the case of compressed molecules.   
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Chapter 5 

Ground States of the Hydrogen Molecule and Its 

Molecular Ion in the Presence of Magnetic Field 

Using the Variational Monte Carlo Method 

 

5.1 Introduction 

The influence of a magnetic field on the properties of molecules is of great 

interest. The simplest molecules (the hydrogen molecular ion 𝐻2
+and the 

hydrogen molecule 𝐻2) allow for the studying of their properties in strong 

magnetic fields with high accuracy. These molecule–field systems have an 

essential importance not only in atomic and molecular physics but also in 

astrophysics, semiconductor physics, solid state and plasma physics [76].            

    The behaviour of the 𝐻2
+ molecular ion and the hydrogen molecule 𝐻2 

under strong magnetic field conditions has been studied by many authors. 

Most of them deal with the hydrogen molecular ion 𝐻2
+ and little is known 

about the hydrogen molecule 𝐻2. Research on the behaviour of molecules 

in strong fields is more complicated than that of atoms because of the multi-

center characteristics of the molecules.  

    The total energies and the equilibrium internuclear separations of 𝐻2
+ 

molecular ion in states 𝜎𝑔 , 𝜋𝑢 , 𝛿𝑔 , 𝜙𝑢 , 𝛾𝑔 , 𝜂𝑢  in strong magnetic fields 

have been calculated using the adiabatic approximation and adiabatic 

variational approximation with an effective potential by Yong et. al [77].    

    Using the two-dimensional pseudospectral method the ground and low-

lying states of the 𝐻2
+  molecular ion in a strong magnetic field are 

calculated in Ref [78]. The hydrogen molecular ion 𝐻2
+  aligned with a 

magnetic field has been studied with the Lagrange-mesh method which 

allows obtaining highly accurate results under various field strengths and 
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for various quantum numbers [79]. Turbiner et al. [80] studied the 

qualitative and quantitative consideration of the one-electron molecular 

systems such as 𝐻2
+, 𝐻3

2+ and 𝐻4
3+ in the presence of a magnetic field.  

    Using an accurate one center method with a technique that combining 

the spheroidal coordinate and B-spline, Zhang et al. [81-83] have 

calculated the equilibrium distances and the hydrogen molecular ion 𝐻2
+ in 

both ground and low-lying states in the presence of a magnetic field. Also, 

the hydrogen molecular ion in a strong magnetic field has been studied for 

arbitrary orientations of the molecular axis in the non-aligned case by using 

the Lagrange-mesh method to obtain highly accurate results under these 

assumptions at various field strengths [84].  

    Using the time-dependent density functional theory the variations in 

electron density and bonding have been investigated for the lowest 1𝜎𝑔 

state of the hydrogen molecule under strong magnetic fields [85]. Song et 

al. [86] calculated the electronic structure and properties of the hydrogen 

molecule 𝐻2 for the lowest 1𝜎𝑔 and 1𝜎𝑢 state in parallel magnetic fields 

using a full configuration-interaction (CI) method which is based on the 

Hylleraas-Gaussian basis set. 

    The aim of this chapter is to study the total energies, the dissociation 

energies and the binding energies for the hydrogen molecular ion 𝐻2
+ and 

the hydrogen molecule 𝐻2 in the presence of external magnetic field in 

framework of the variational Monte Carlo method. 

 

5.2 The Hamiltonian of the System 

In the present thesis, we assume that the nuclear mass is infinite so that the 

calculations will be one in frame of the Born–Oppenheimer approximation 

and the magnetic field is oriented along the 𝑧 -axis. The Schrödinger 

equation can be written as follows  
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                             𝐻̂𝜓(𝒓𝒊, 𝑅) = 𝐸𝜓(𝒓𝒊, 𝑅)                                            (5.1)   

where 𝒓𝒊 = (𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖) are the coordinates of each electron with respect to 

the center of mass of the nuclei, 𝑖 = 1, 2 and 𝑅 is the internuclear distance. 

The non-relativistic Hamiltonian 𝐻̂ for the hydrogen molecular system in 

a magnetic field can be written as                                                

   𝐻̂ = −
1

2
∑ 𝛻𝑖

2𝑛
𝑖=1 − ∑ (

𝑍𝑎

𝑟𝑖𝑎
+

𝑍𝑏

𝑟𝑖𝑏
)𝑛

𝑖=1 +
𝑍𝑎 𝑍𝑏

𝑟12
+ 𝑍𝑎 𝑍𝑏

𝑅
+ 𝐻𝑀                  (5.2) 

In the above equation, 𝑟𝑖𝑎(𝑏) = |𝒓𝑖𝑎(𝑏)| denotes the distance from electron 

‘𝑖’ (𝑖 = 1, 2) to nucleus ‘𝑎’ (‘𝑏’ ) , the charge parameters 𝑍𝑎 = 𝑍𝑏 = 1 , 

𝑟12 is the interelectronic distance and 𝐻𝑀 represents the magnetic part. The 

magnetic Hamiltonian term for a magnetic field of intensity 𝐵  directed 

towards the positive 𝑍 − 𝑎𝑥𝑖𝑠 takes the form 

                     𝐻𝑀 = {

𝛾

2
𝐿𝑧 +

𝛾2

8
 𝜌2,                         for 𝐻2

+   

𝛾2

2
𝜌2 + 𝛾(𝐿𝑧 + 2𝑆𝑍)              for  𝐻2

                     (5.3)       

where, 𝛾 =
𝐵

𝐵0
 ( 𝐵0 ≈ 2.35 × 105 T) is the magnetic field strength, Lz is 

the z-component of the total angular momentum, Sz is the 𝑧-component of 

the total spin and 𝜌2 = ∑ (𝑥𝑖
2 + 𝑦𝑖

2)n
i=1 . The index 𝑛 runs over the numbers 

of the electrons. Then, for the hydrogen molecule, 𝐻2 , 𝑛 = 2. For the 

hydrogen molecular ion, 𝐻2
+, 𝑛 = 1 and the term 

𝑍𝑎 𝑍𝑏

𝑟12
 is omitted. 

    Hence, the non-relativistic Hamiltonian 𝐻̂ for the hydrogen molecular 

ion 𝐻2
+ in a magnetic field can be written as [79, 83]: 

                       𝐻 = −
1

2
∇2 −

1

𝑟𝑎
−

1

𝑟𝑏
+ 1

𝑅
+ [

𝛾

2
𝐿𝑧 +

𝛾2

8
 𝜌2],                    (5.4) 

where 𝑟𝑎 = |𝒓𝑎|  and 𝑟𝑏 = |𝒓𝑏|  in which 𝒓𝑎  and 𝒓𝑏  denote the relative 

radius vectors of the electron with respect to the two nuclei 𝑎 and 𝑏 and 

𝜌2 = (𝑥2 + 𝑦2).  
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    Similarly, the molecular electronic Hamiltonian for the hydrogen 

molecule 𝐻2  under a magnetic field may be conveniently written (in 

atomic units) as follows [87] 

        𝐻 = −
1

2
∇1

2 −
1

2
∇2

2 −
1

𝑟1𝑎
−

1

𝑟1𝑏
−

1

𝑟2𝑎
−

1

𝑟2𝑏
+

1

𝑟12
+ 1

𝑅
 

               + [
𝛾2

2
𝜌2 + 𝛾(𝐿𝑧 + 2𝑆𝑍)]                                                         (5.5) 

In the above equation, 𝜌2 = (𝑥1
2 + 𝑦1

2) + (𝑥2
2 + 𝑦2

2).            

    Equation (5.2) is best treated in the system of prolate spheroidal 

coordinates (𝜆, 𝜇) where 𝜆 and 𝜇 are defined by 

             𝜆 = 𝑟𝑖𝑎 + 𝑟𝑖𝑏
𝑅

 ,                            𝜇 = 𝑟𝑖𝑎 − 𝑟𝑖𝑏
𝑅

                                  (5.6) 

In these coordinates, the kinetic-energy operator is written as                                                                                        

              −
1

2
∇𝑖

2= − 2

𝑅2 (𝜆𝑖
2

−𝜇𝑖
2)

 { 𝜕
𝜕𝜆𝑖

 (𝜆𝑖
2

−1) 
𝜕

𝜕𝜆𝑖
 + 

𝜕
𝜕𝜇𝑖

 (1−𝜇𝑖
2) 

𝜕
𝜕𝜇𝑖

 }                      (5.7) 

Our calculations for the ground state of 𝐻2
+ molecular ion and 𝐻2 molecule 

in the presence of external magnetic field are based on using the trial wave 

functions 𝜓1 and 𝜓2 which are introduced in Chapter 3 and they are given 

by equation (3.13) and equation (3.14). 

    Figure-5.1 and Figure-5.2 represent illustrations for the hydrogen 

molecular ion and the hydrogen molecule.                                                                                     

                                                𝑒− 

                                          

 

                                                             

                                                                

Figure-5.1 Geometrical setting for the hydrogen molecular ion 𝐻2
+ placed 

in a magnetic field directed along the 𝑧-axis. The protons are situated at a 

distance 𝑅 from each other.   
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Figure-5.2 Geometrical setting for the hydrogen molecule 𝐻2 placed in a 

magnetic field directed along the 𝑧-axis. The protons are situated at a 

distance R from each other.                                                                                                                   

5.3 Discussion of the Results of Chapter 5 

The variational Monte Carlo method has been employed to calculate the 

ground state of the hydrogen molecular ion 𝐻2
+ and the hydrogen molecule 

𝐻2 in the magnetic field regime between 0 a.u. and 10 a.u.. All energies are 

obtained in atomic units i.e. (ℏ = 𝑒 = 𝑚𝑒 = 1) with set of 4 × 107 Monte 

Carlo integration points in order to make the statistical error as low as 

possible. The magnetic field was taken in the parallel configuration, i.e. the 

angle between the molecular axis and the magnetic field direction is zero, 

𝜃 = 0𝜊 as shown in Figure-5.1 and Figure-5.2. In the absence of magnetic 

field, our results for the total energy of the hydrogen molecular ion 𝐻2
+ in 

the lowest state (1𝑠𝜎𝑔) equals -0.6023424 at the equilibrium distance of 

𝑅 = 1.9972 a.u, where for hydrogen molecule 𝐻2 the total energy equals 

-1.173427 at 𝑅 = 1.40 a.u.  

    In this thesis we have calculated the total energies, the binding energies 

and the dissociation energies of the (1𝑠𝜎𝑔)  state as functions of the 

magnetic field over various field-strength regimes (0 - 10 a.u.). The total 

energy 𝐸𝑇 of the hydrogen molecular ion 𝐻2
+ and the hydrogen molecule 
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𝐻2  is defined as the total electronic energy plus the repulsive energy 

between the nuclei, 𝐸𝑇 = 𝐸𝑒𝑙𝑒 +
𝑍𝑎 𝑍𝑏

𝑅
. The least energy required to 

produce a free electron and two nuclei, all infinitely far from each other in 

the presence of the field has been defined as the binding energy for the 

hydrogen molecular ion 𝐻2
+ : 𝐸𝑏 =

𝛾

2
− 𝐸𝑇  by Larsen in [88]. For the 

hydrogen molecular ion 𝐻2
+, the dissociation energy is defined as the least 

energy required to dissociate the molecule into one nucleus and one 

hydrogen atom in a magnetic field, 𝐸𝑑 = 𝐸𝐻 − 𝐸𝑇  where 𝐸𝐻  is the total 

energy of the hydrogen atom in a magnetic field, i.e. the product of the 

process 𝐻2
+ → 𝐻 + 𝑃+ [88].  

    In the case of the hydrogen molecule 𝐻2, the product is 𝐻2 → 𝐻(1𝑠) +

𝐻(1𝑠) which means that the energy in the dissociation limit corresponds 

to the energy of two hydrogen atoms in the lowest electronic state with 

positive 𝑧 parity i.e., the quantity 𝐸𝑑 = 𝐸𝑇 − lim
𝑅→∞

𝐸𝑇. The binding energy 

is equal to the ionization energy and is always greater than the dissociation 

energy. The presence of free electron in the orbitals of molecules will cause 

an induced magnetic field, to be produced, and also due to the spin motion 

of this free electron. We observe this in the hydrogen molecular ion 𝐻2
+ 

where, the presence of one electron in the 1𝑠 orbital will cause a weak 

induced magnetic field by the spin motion of this electron either clockwise 

or counterclockwise. Also, we showed that there is no induced magnetic 

field in the hydrogen molecule 𝐻2 as two electrons are paired in 1𝑠 orbital. 

The strength of the magnetic field is directly proportional to the odd 

number of free electron present in the orbitals. 

    The present calculations in the presence of a magnetic field are based on 

using the trial wave functions 𝜓1 and 𝜓2 which are introduced in Chapter 

3 and are given by Eq. (3.13) and Eq. (3.14), respectively. For hydrogen 

molecular ion, the total energies are obtained by solving the Schrödinger 
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equation given by Eq. (5.1) by using 𝜓1. Table-5.1 represents the obtained 

results for 𝐻2
+. In our calculations the values of 𝐸𝐻 are taken from Ref [78]. 

In a similar way, the total energies, and the dissociation energies as 

functions of the magnetic field over various field-strength regimes are 

presented in Table-5.2 for the ground 1𝑠𝜎𝑔 state of the hydrogen molecule 

𝐻2.  

    From Table-5.1 and Table-5.2, we can observe that the binding energy, 

the dissociation energy and the total energy increase with the increase in 

the magnetic field strength. This is due to that the increase in the field 

strength leads to increases in the movement of the electron and the 

electronic spatial distribution will be strongly confined in a smaller space. 

The probability of finding the electron in the region confined by the two 

nuclei becomes larger under increase of the field strength. So, the changes 

in the electronic properties of the ground state should be attributed to the 

increased electron density in the region between the nuclei centered at 𝑧 =

0.  

    An interesting and general phenomenon for molecules is the decrease of 

the internuclear bond-length as the field strength increases. The decrease 

in the equilibrium internuclear distance originates from the simultaneous 

decrease of the electron clouds perpendicular and parallel to the magnetic 

field. This means that this state is the most tightly bound state for all 

magnetic field strengths because the electrons are in this state much closer 

to the nuclei than in the free-state. This increases the binding due to the 

attractive nuclear potential energy. Because the dissociation energy may 

be used to measure the stability of a molecular system in a magnetic fields, 

it is useful to explore the behaviour of this quantity with increasing field 

strength. There is an increase in the binding energy of molecular systems 

as the magnetic field strength gets larger. The increase in the binding 
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energy comes from the result of strong localization of the electrons around 

the nuclei. The electron-electron Coulomb repulsion is taken into account.  

    It is interesting to compare our results with the previous results which 

used different wave functions and different methods such as [78, 79, 89] 

for the ground state 1𝑠𝜎𝑔 of the 𝐻2
+ molecular ion and [86, 90, 91] for the 

ground state 1𝑠𝜎𝑔 of the hydrogen molecule 𝐻2. It is clear that our results 

are in good agreement with the pervious data. 

    Figure-5.3 and Figure-5.4 show the variation of the ground state energy 

of the 𝐻2
+ molecular ion and the hydrogen molecule 𝐻2 in the presence of 

a magnetic field from 𝛾 = 0.0  to 𝛾 = 10.0 , respectively, versus the 

internuclear distance 𝑅. These show that when the magnetic field strength 

increases the ground state energy increases as seen from the change in the 

values of the ground state energy from 𝛾 = 0.0  to 𝛾 = 10.0 . We can 

observe in both cases that at 𝛾 = 10.0 the value of the total energy is the 

highest energy. At 𝛾 = 0.0 the total energy of the hydrogen molecular ion 

𝐻2
+ is larger than the hydrogen molecule because of the induced magnetic  

field.  
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Table-5.1 Total energy 𝐸𝑇, binding energy 𝐸𝑏 and dissociation energy 𝐸𝑑 

of the ground state 1𝑠𝜎𝑔 of the 𝐻2
+ molecular ion in a parallel magnetic 

field from 𝛾 = 0.0  to 𝛾 = 10.0 . Note in Table-5.1 that the present 

definition for 𝐸𝑇 is equivalent to the definition of 𝐸𝑒 in Wille’s work [92]. 

In parentheses, we show the statistical error in the last figure. 

 

  

𝐸𝑑 𝐸𝑏  𝐸𝑇 References 𝑅𝑒𝑞 𝛾 

0.102501700 

- 

0.602501700 

- 

-0.602501700(4) 

 

  −0.6026346191066 

This work 

[79] 

1.9971934 

0.0 
0.102501700 

0.102634619 

0.602501700 

0.602634619 

-0.602501700(4) 

−0.602634619 

This work 

[78] 

1.997193 

0.102390800 

- 

0.602390800 

        0.602625 

-0.602390800(2) 

−0.602625 

This work 

[89] 

1.9971 

0.102509600 

0.10263498 

0.603508600 

0.60363398 

-0.602508600(1) 

−0.60263398 

This work 

[93] 

1.99719 0.002 

0.102493699 

0.102640360 

0.606477700 

0.606624361 

-0.602477700(2) 

−0.602624361 

This work 

[78] 

1.997162 

0.008 

0.102626499 

0.10264036 

0.606610500 

0.60662436 

-0.602610500(1) 

−0.60262436 

This work 

[93] 

1.99716 

0.102579656 

0.102670471 

0.612479700 

0.612570515 

-0.602479700(2) 

−0.602570515 

This work 

[78] 

1.996991 0.02 

0.10323792 

0.103511727 

        0.6507644 

0.651038207 

-0.600764400(0) 

−0.601038207 

This work 

[78] 

1.992212 

0.1 

0.10320772 

- 

0.6507342 

- 

-0.600734200(0) 

−0.6010382074075 

This work 

[79] 

1.9922107 

0.10315872 

0.10351172 

0.6506852 

0.65103820 

-0.600685200(0) 

−0.60103820 

This work 

[93] 

1.99221 
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 Table-5.1 Continued    

  

 

 

 

𝐸𝑑 𝐸𝑏  𝐸𝑇 References 𝑅𝑒𝑞 𝛾 

0.114587838 

- 

0.7877327 

0.788125 

-0.575015700(2) 

−0.575359 

This work 

[92] 

1.924 

0.425434 

0.114412938 

0.114942968 

0.787565 

0.788087830 

-0.574840800(1) 

−0.575370830 

This work 

[78] 

1.9234 

0.114343238 

0.114685 

0.7874881 

0.763412 

-0.574771100(3) 

−0.575075 

This work 

[94] 

1.9 

0.139068403 

- 

- 

0.9702373 

- 

- 

-0.470237300(5) 

−0.47054001262014 

−0.4705400126203 

This work 

[79] 

[82] 

 

2.0 

 

 

 

 

 

 

1.0 

0.137815603 

- 

- 

0.9689845 

- 

- 

-0.468984500(5) 

−0.474988245275 

−0.474988245275 

This work 

[82] 

[79] 

 

1.752084 

0.137815603 

- 

0.9689845 

- 

-0.468984500(5) 

−0.474988245275 

This work 

[79] 

1.7520838 

0.1373549033 

0.143819348 

0.9685238 

0.974988245 

-0.468523800(8) 

−0.474988245 

This work 

[78] 

1.7521 

0.137148803 

- 

0.9683177 

0.9749 

-0.468317700(7) 

−0.4749 

This work 

[88] 

1.752 

0.1952071163 

0.153634357 

1.2375156 

1.238495873 

-0.17393060(3) 

−0.174910873 

This work 

[78] 

1.5025  

2.12717 

0.1732912163 

0.2570 

1.2155997 

1.215835 

-0.1520147(1) 

−0.15225 

This work 

[95] 

1.448 
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Table-5.1 Continued 

 

 

 

 

 

 

 

 

𝐸𝑑 𝐸𝑏  𝐸𝑇 References 𝑅𝑒𝑞 𝛾 

0.2342417107 

- 

1.3987747 

1.39515 

0.10122530(7) 

0.10485 

This work 

[89] 

1.376  

3.0 

0.2342329107 

0.231011664 

1.3987659 

1.39554465 

0.10123410(7) 

0.104455347 

This work 

[78] 

1.3754 

0.2892954573 

0.274908594 

1.5967626 

1.582375737 

0.5304074(1) 

0.544794264 

This work 

[78] 

1.2465  

 

4.25434 0.2891859573 

- 

1.5966531 

1.5823 

0.5305169(1) 

0.544895 

This work 

[89] 

1.2464 

0.2887488573 

- 

1.596216 

1.582016 

0.530954(1) 

0.545154 

This work 

[92] 

1.246 

0.430107 

0.427196 

2.177897 

2.174986 

2.8221030(5) 

2.825014 

This work 

[78] 

0.957  

10.0 

0.42427 

0.41955 

- 

2.17206 

2.1673 

2.1750 

2.827940(4) 

2.8327 

2.8250 

This work 

[96] 

[92] 

 

0.950 
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Table-5.2 Total energy 𝐸𝑇, and dissociation energy 𝐸𝑑 of the ground state 

1𝑠𝜎𝑔 of the hydrogen molecule 𝐻2 in a parallel magnetic field from 𝛾 =

0.0 to 𝛾 = 10.0. In parentheses, we show the statistical error in the last 

figure. 

 

 

 

Ed ET References 𝑅𝑒𝑞 𝛾 

0.173429 

0.173438 

0.1744478 

-1.173427(1) 

−1.173436 

−1.1744477 

This work 

[90] 

[86] 

1.40 0.0 

0.173422 

0.173438 

-1.17342(1) 

−1.173436 

This work 

[90] 

1.40 0.001 

0.173301 

0.173440 

-1.173285(1) 

−1.173424 

This work 

[90] 

1.40 0.005 

0.1729171 

0.173450 

0.1744597 

-1.172867(1) 

−1.173396 

−1.1744096 

This work 

[90] 

[86] 

1.40 0.01 

0.1731047 

0.173658 

0.1747437 

-1.171858(1) 

−1.172407 

−1.173497 

This work 

[90] 

[86] 

1.40 0.05 

0.1754591 

0.1756088 

-1.170512(7) 

−1.1706617 

This work 

[86] 

1.40 

0.1 

0.171542 

0.174608 

-1.166586(5) 

−1.169652 

This work 

[90] 

1.39 

0.154469 

0.178001 

0.178816 

-1.135232(1) 

−1.158766 

−1.159579 

This work 

[90] 

[86] 

1.39 0.2 
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Table-5.2 Continued 

 

 

Ed ET References 𝑅𝑒𝑞 𝛾 

- 

-1.110247(2) 

−1.110362 

This work 

[90] 

1.349 

0.4254414 

 

- 

-1.079712(1) 

−1.0822 

This work 

[91] 

1.337 

0.183958 

0.194663 

0.195329 

-1.078379(2) 

−1.089082 

−1.089750 

This work 

[90] 

[86] 

1.33 0.5 

0.224262 

0.228846 

-0.8866(7) 

−0.891184 

This work 

[86] 

1.23 

 

1.0 

0.288972 

0.291170 

0.291808 

-0.3334(2) 

−0.335574 

−0.336236 

This work 

[90] 

[86] 

1.09 2.0 

- 

-0.2501(1) 

−0.255591 

This work 

[90] 

1.07 2.127207 

- 

1.2322(5) 

1.233808 

This work 

[90] 

0.898 

4.254414 

- 

1.3266(4) 

1.3326 

This work 

[91] 

0.859 

0.4459257 

0.438015 

0.438714 

1.8077(5) 

1.801212 

1.8004883 

This work 

[90] 

[86] 

0.86 5.0 

0.6105216 

0.615473 

0.6161638 

5.8826(3) 

5.889023 

5.8882422 

This work 

[90] 

[86] 

0.70 10.0 
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Figure-5.3 Ground-state energy of the hydrogen molecular ion 𝐻2
+ in the 

presence of a magnetic field from 𝛾 = 0.0 to 𝛾 = 10.0 versus the 

internuclear distance 𝑅 

 

 

Figure-5.4 Ground-state energy of the hydrogen molecule 𝐻2 in the 

presence of a magnetic field from 𝛾 = 0.0 to 𝛾 = 10.0 versus the 

internuclear distance 𝑅. 
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5.4 Conclusion  

In the present chapter, we have studied the hydrogen molecular ion 𝐻2
+ and 

the hydrogen molecule 𝐻2 in the presence of a magnetic field by using the 

well-known variational Monte Carlo method. In the present study, the 

molecular axis is usually aligned along the field axis. Accordingly, we have 

calculated the total energies, and the dissociation energies with respect to 

the magnetic field for both of the hydrogen molecular ion 𝐻2
+  and the 

hydrogen molecule 𝐻2  and the binding energies for the hydrogen 

molecular ion 𝐻2
+ only by using two accurate trial wave functions of the 

(1𝑠𝜎𝑔) state over various field-strength regimes. While increasing the field 

strength, the equilibrium distance 𝑅𝑒𝑞 decreases and the total energy, the 

dissociation energy, and binding energy 𝐸𝑏  increase monotonously. In 

both cases our results exhibit good accuracy under various field strengths 

comparing with previous values obtained by using different methods and 

different forms of trial wave functions. This is due to the fact that we have 

used two trial wave functions each of them takes into consideration the 

electron-electron correlation. Finally, we conclude that the applications of 

VMC method can be extended successfully to cover the case of molecules 

under the effect of the magnetic field. 
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 هـــه العربيــــص باللغــــالملخ

 ملخص الرسالة باللغة العربية

لتقديم دراسة  هو تطبيق طريقة مونت كارلو التقريبية للتغاير ساسى من هذه الرسالةالهدف الأ

كمثال على و .و ذلك عن طريق حل معادلة شرودنجر الجزيئات ثنائية الذراتمفصلة عن 

تم حساب طاقة حيث  أيون جزئ الهيدروجين و جزئ الهيدروجين.الجزيئات ثنائية الذرات قدمنا 

المستوى الأرضى و كذلك العديد من الخواص الهامة لكل من جزئ الهيدروجين و أيون جزئ 

دراسة أيون جزئ  أيضا تمهذا ولقد  .لتشمل أيون  الدراسة الهيدروجين. كما أمتدت

لكلية و طاقة أخيرا، درسنا الطاقة ا و .نضغاطالهيدروجين و جزئ الهيدروجين تحت تأثير الإ

 .خارجى مغناطيسىط و طاقة التفكك فى حالة وجود مجال الارتبا

و أربع فصول و قائمة  ةنظمت كالتالي : المقدم فصول خمسةتحتوي هذه الرسالة على و

 بالمراجع. 

 

 فصول الرسالة كالأتي

 

 الفصل الأول:

 العريضة للنقاط التالية:الخطوط علي  مقدمة شاملة احتوت تم تقديمفي الفصل الأول من الرسالة 

منشأ هذه الطرق و أهم  تعريف مفهوم طرق مونت كارلو بوجه عام و كذلك تقديم نبذة عن

قدمنا أيضا نبذة تاريخية عن منشأ وفة. تطبيقاتها فى ميكانيكا الكم و العديد من المجالات المختل

 معادلة شرودنجر.

  

 الفصل الثاني:

ونت كارلو للتغاير و التى هى محل الدراسة فى هذه طريقة م إستعراضفي هذا الفصل تم 

هذه الطريقة  حل التكاملات متعددة الأبعاد. من أهم طرق مونت كارلو التى تستخدم فىو الرسالة 

ق أختيارأعداد تعتمد بشكل أساسى على الجمع بين مبدأ التغاير و حساب التكاملات عن طري

التفصيلية لية لآاو قد أستعرضنا  المعقدة المسائلحل تقريبى لحل  وصولا إلىعشوائية 

( و الطريقة التى يتم بها ايجاد متسلسلات Metropolis algorithmلخوارزمية متروبوليس )

لية التى يتم بناءا عليها قبول أو رفض القيم التى سوف تستخدم فى لآالأعداد العشوائية و كذلك ا
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 لحدية التى يجب أن تحققها الدوال الموجيةالشروط اكذلك أستعرضنا بشئ من التفصيل  التكامل.

 .نجرو تستخدم فى حل معادلة شرود الحاكمة لحركة الإلكترون

 

 الفصل الثالث:

تم تطبيق طريقة مونت كارلو للتغاير لدراسة أيون جزئ الهيدروجين و جزئ  في هذا الفصل

بورن ــ )المستوى الأرضى و ذلك فى اطار نا بحساب طاقة و فى هذا النسق بدأ الهيدروجين

الذى يتجاهل التأثير الناتج عن حركة النواة نظرا لكتلتها الكبيرة مقارنة بكتلة  (اوبنهايمر

و كذلك ميلتونيان عند حل معادلة شرودنجر الالكترون و بالتالى يتم اهمال هذا الحد فى دالة الها

أشكال  اعتمدت الحسابات على استخدام جين.تم حساب بعض الخصائص الجزيئية لجزئ الهيدرو

تم عرض النتائج التى تم  لتى قدمت فى دراسات سابقة حديثة.مختلفة من الدوال الموجية و ا

الحصول عليها فى جداول مقترنة بالقيم المعملية المناظرة وكذلك القيم التى تم الحصول عليها فى 

الدراسة أنه يمكن وصف الخصائص  بالتالى يمكن أن نستخلص من هذهو دراسات سابقة.

 الجزيئية المختلفة بشكل دقيق و ذلك باستخدام طريقة مونت كارلو للتغاير.

 

 الفصل الرابع:

في هذا الفصل تم تطبيق طريقة مونت كارلو للتغاير لدراسة تأثير الانضغاط على أيون جزئ 

راسة الطاقة فى حالة تم د بجدران كروية الشكل. دروجين و جزئ الهيدروجين المحصورالهي

فى حالة  تم دراسة ايضا أيون  كذلكعدم ثبوتها.  حالةثبوت الأنوية عند البؤر و

التى تم استخدمها فى الفصل أعتمدت الحسابات على إستخدام الدوال الموجية ولقد  الانضغاط.

النتائج فى جداول  تم عرضو و لكن بعد إضافة الحد الذى يضمن تحقق الشروط الحدية. لثالثا

النتائج التى تم الحصول  أفضليةو لقد أوضحت المقارنة  دف المقارنةمقترنة بالنتائج السابقة به

 السابقة. ستخدام طريقة مونت كارلو للتغاير مع النتائج عليها بإ

 

 :خامسالفصل ال

توى الأرضى الطاقة الكلية و طاقة الارتباط و طاقة التفكك فى المس في هذا الفصل تم دراسة

فى الفترة من  تحت تأثير المجال المغناطيسىلأيون جزئ الهيدروجين و جزئ الهيدروجين 

 جداول مقترنة بالنتائج السابقة وتم عرض النتائج فى و. (القيمة )الصفرية إلى القيمة 

بمقارنة النتائج يمكننا القول بأن طريقة مونت كارلو للتغاير يمكن أن توظف بنجاح لدراسة 
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هذا ول على نتائج تحمل درجة عالية من الدقة. الجزيئات تحت تأثير المجال المغناطيسى و الحص

 باللغة العربية. املخصكما أحتوت على خُتمت الرسالة بعرض المراجع المُستخدمة وأولقد 

 

 



                                                                         

 

 

 

 ــومـكــليـة العـلـ      

  قسم الرياضيــات     
 

 تطبيقات طريقة مونت كارلو للتغاير علي الجزيئات ثنائية الذرات
      تطلبات الحصول علىلاستكمال م -جامعة المنوفية -كلية العلوم -رسالة مقدمة إلى قسم الرياضيات

  (الرياضيات التطبيقية) درجة الماجستير في العلوم شعبة

 
 

 مقدمة من

 العزيز عامر المغنى عبد أسماء عبد
 

 جامعة المنوفية -كلية العلوم -المعيد بقسم الرياضيات

 

 ـرافشـإــت تح 

 أ.د. صلاح الدين بدوي أحمد دومة                    
 قسم الرياضيات -طبيقية أستاذ الرياضيات الت

 جامعة الإسكندرية -كلية العلوم 

[                         ] 
 

 

 و المناقشة كملحلجنة ا
 

 محمد عمر شاكر/ .د.أ

 قسم الرياضيات –الرياضيات التطبيقيةستاذ أ

 طنطاجامعة –كلية العلوم 

[                         ] 

 نبيل توفيق الضبع/ .د.أ

 قسم الرياضيات –الرياضيات التطبيقيةأستـاذ 

 عين شمسجامعة  – التربيةكلية 
[                              ] 

 

 صلاح الدين بدوي دومه/ .د.أ

 قسم الرياضيات –أستاذ الرياضيات التطبيقية

 جامعة الأسكندرية–كلية العلوم 

[                         ]                  
 

 محمد أبوشادي محمد /.د

 قسم الرياضيات – المساعد أستاذ الرياضيات التطبيقية

 جامعة المنوفية – العلوم كلية

[                         ]                  
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 محمد أبوشادي محمد. د

 قسم الرياضيات – المساعد الرياضيات التطبيقيةأستاذ 

 جامعة المنوفية – العلوم كلية
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                           نجيب الجمال د. فاطمة الزهراء
 قسم الرياضيات  –الرياضيات التطبيقية مدرس

 جامعة المنوفية –كلية العلوم 
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