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The Structure of Modules over Hereditary Rings

A. A. Tuganbaev UDC 512.55

Abstract. Let A be a bounded hereditary Noetherian prime ring. For an A -module MA , we prove

that M is a finitely generated projective A/r(M) -module if and only if M is a π -projective finite-dimensional

module, and either M is a reduced module or A is a simple Artinian ring. The structure of torsion or

mixed π -projective A -modules is completely described.
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All rings are assumed to be associative and with nonzero identity element. Expressions such as “a
Noetherian ring” mean that the corresponding right and left conditions hold. A module M is said to
be π -projective if for any two of its submodules U and V with U + V = M , there exists an endomor-
phism f of M such that f(M) ⊆ U and (1 − f)(M) ⊆ V (see [1, p. 359]). A module M is said to
be skew-projective if for every epimorphism h : M → M and every endomorphism f∗ of the module M ,
there exists an endomorphism f of M with f∗h = hf . A module is said to be reduced if it does not have
a nonzero injective direct summand. A module is said to be finite-dimensional (in the sense of Goldie) if
it does not contain an infinite direct sum of nonzero submodules. By rA(N) , we denote the annihilator in
the ring A of a subset N of a right module MA , with the subscript sometimes omitted when it is clear
what ring is meant. By Sing(M) , we denote the singular submodule of a module MA over the ring A
(i.e., the set of all of the elements m ∈M such that r(m) is an essential right ideal of A). A module MA
is said to be nonsingular (singular) if Sing(M) = 0 (Sing(M) = M).

In [2], the following theorem A is proved.

Theorem A [2, Theorem 4]. Assume that M is a module over a hereditary Noetherian prime ring A ,
and the ring A is not right primitive. Then M is a finitely generated projective module ⇐⇒ M is
a π -projective reduced finite-dimensional nonsingular module.

A ring A is said to be left (resp. right) bounded if every its essential left (resp. right) ideal contains a
nonzero ideal of A . Note that every hereditary prime nonprimitive ring is a bounded ring [3]. The main
results of this paper are Theorems 1, 2, and 3.

Theorem 1. Let M be a module over a bounded hereditary Noetherian prime ring A . Then M is a
finitely generated projective A/r(M) -module ⇐⇒ M is a π -projective finite-dimensional module, and
either M is a reduced module or A is a simple Artinian ring.

Theorem 2. Let M be a module over a bounded hereditary Noetherian prime ring A , and let M
satisfy Sing(M) �= 0 . Then M is a π -projective module ⇐⇒ M is a skew-projective module ⇐⇒ one
of the following conditions holds:

(i) M is a singular module such that every primary component of M is either an indecomposable
injective module or a projective module over the factor ring of A with respect to the annihilator of
this primary component ;

(ii) M = T ⊕ F , where F is a finitely generated projective module, and T is a singular injective
module such that every primary component of T is an indecomposable module.
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Theorem 3. Let M be a module over a bounded hereditary Noetherian prime ring A . Then M is
a π -projective nonsingular finite-dimensional module ⇐⇒ one of the following conditions holds:

(i) M is a finitely generated projective module;
(ii) A is a serial ring and M = T ⊕ F , where T is an injective indecomposable nonsingular module,
and F is a finitely generated projective module;

(iii) there exists a positive integer n such that the ring A is isomorphic to the ring of all of (n × n)
matrices over a complete uniserial Noetherian domain D and M = T ⊕F , where T is an injective
finite-dimensional nonsingular module and F is a finitely generated projective module.

The proofs of Theorems 1, 2, and 3 are decomposed into a series of lemmas. Let us present the necessary
notation and definitions. For a module M , we denote by End(M) and J(M) the endomorphism ring and
the Jacobson radical of M , respectively. A module is said to be hereditary (resp. semihereditary) if all its
submodules (resp. all its finitely generated submodules) are projective. A module is said to be uniserial if
any two of its submodules are comparable with respect to inclusion. A direct sum of uniserial modules is
called a serial module. A uniserial Noetherian domain A is said to be complete if the ring A is complete
with respect to the J(A) -adic topology. A module M is said to be projective with respect to a module N

(or N -projective) if for every epimorphism h : N → N and each homomorphism f : M → N , there exists
a homomorphism f : M → N with hf = f . A module is said to be quasi-projective if it is projective
with respect to itself. For a module M , a submodule of a factor module of M is called a subfactor of M .
A module is said to be infinite-dimensional if it is not finite-dimensional. A right finite-dimensional ring
with the maximum condition on right annihilators is called a right Goldie ring. An element a of a ring A
is called a regular element if a is not a left or right zero-divisor. For a module M , we denote by T (M)
the set of all of the elements in M whose annihilators contain regular elements. A module M is said to
be torsion (resp. mixed, torsion-free) if T (M) = M (resp. 0 �= T (M) �= M , T (M) = 0). A module is
said to be uniform if any two of its nonzero submodules have nonzero intersection. A submodule N of a
module M is said to be essential (in M) if N has nonzero intersection with any nonzero submodule of the
module M . In this case, we say that M is an essential extension of the module N . A submodule V of a
right module U over a ring S is said to be a pure submodule in US if for every left S -module M , a natural
group homomorphism V ⊗SM → U ⊗SM is a monomorphism. A module XA is said to be pure-injective
if for every module MA and any pure submodule N of M , all homomorphisms N → X can be extended
to homomorphisms M → X . A module M is said to be finitely faithful if there exists a positive integer n
such that the module Mn contains a free cyclic submodule. A ring A is said to be right pure-semisimple
if all right A -modules are pure-injective. A ring A is said to be a ring of finite representation type if A
is a Artinian ring, and there exists only finitely many of nonisomorphic indecomposable finitely generated
(right or left) A -modules.

Let A be a ring with the classical ring of quotients Q , and let B be an ideal of A . The ideal B is
said to be invertible if there exists a subbimodule B−1 of the bimodule AQA with BB−1 = B−1B = A .
A maximal element of the set of all of the proper invertible ideals of the ring A is called a maximal
invertible ideal of A . The set of all of the maximal invertible ideals of a ring A is denoted by P(A) .
If M is a A -module and P ∈ P(A) , then the submodule {m ∈M | mPn = 0, n = 1, 2, . . . } is called the
P -primary component of M and is denoted by M(P ) .

1. Proof of Theorem 1

Lemma 1.1. Let M be a module over a ring A .

(1) M is a quasi-projective (π -projective; skew-projective) A -module ⇐⇒ M is a quasi-projective
(π -projective; skew-projective) A/r(M) - module.

(2) If M is a quasi-projective module, then M is skew-projective.
(3) If all idempotent endomorphisms of all of the factor modules of the module M can be lifted to
endomorphisms of M , then M is π -projective.

(4) If M is a skew-projective module, then M is π -projective.
(5) If M is a quasi-projective module, then M is π -projective.
(6) If M is a uniserial module, then M is π -projective.
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(7) If T is a submodule of M , then T is pure in M ⇐⇒ for any two positive integers n and k ,

the system of equations
∑k
j=1Xjaij = ti ( i = 1, . . . , n , aij ∈ A , ti ∈ T ), which has a solution

x1 , . . . , xk ∈M , also has a solution in T .

Proof. (1) The proof follows from the fact that any two of the subfactors N and P of M are
A/r(M) -modules and HomA/r(M)(N , P ) = HomA(N , P ) .

(2) Let h : M → M be an epimorphism, and let f∗ be an endomorphism of the module M . Set
f ≡ f∗h ∈ Hom(M,M) . Since M is a quasi-projective module, there exists an endomorphism f of M

such that hf = f = f∗h . Therefore, M is a skew-projective module.
(3) Let U and V be two submodules of M with U + V = M , M ≡M/(U ∩ V ) , and let h : M →M

be a natural epimorphism. Since M = h(U) ⊕ h(V ) , there exists a natural projection f : M → h(U)
with the kernel h(V ) . By assumption, there exists an endomorphism f of the module M with fh = hf .
Therefore, (1h(M)− f)h = h− fh = h(1M − f) . Then hf(M) = f(M) = h(U) and h(1− f)(M) = h(V ) .
Therefore, f(M) ⊆ U + U ∩ V = U , (1− f)(M) ⊆ V + U ∩ V = V , and M is a π -projective module.

(4) The proof follows from (3).
(5) The proof follows from (2) and (4).
(6) By (3), it is sufficient to prove that every nonzero idempotent endomorphism f∗ of any factor

module M of the uniserial module M can be lifted to an endomorphism of M . Since M is a uniserial
module, f∗ is the identity automorphism. Therefore, f∗ can be lifted to the identity automorphism of M .

(7) The assertion is proved in [1, 34.5]. �
Lemma 1.2. Let M be a module over a ring A , and let {Yi}i∈I be a set of A -modules.
(1) If all the modules Yi are projective with respect to M , then the module ⊕i∈IYi is M -projective.
(2) Assume that Y is a subfactor of the module ⊕i∈IYi , X is a module which is projective with respect
to all of the modules Yi , and either I is a finite set or X is a finitely generated module. Then the
module X is Y -projective.

(3) If the module ⊕i∈IYi is π -projective, then Yi is Yj -projective for any distinct subscripts i, j ∈ I .
(4) If A is a right Artinian ring, then M is a quasi-projective module ⇐⇒ M is a projective

A/r(M) -module.

Proof. The proofs of (1), (2), and (3) follow from [1, 18.1, 18.2, 41.14].
The proof of (4) follows from [4, Theorem 2.3]. �
Lemma 1.3. Let a module M be a direct sum of finitely generated modules Mi ( i ∈ I ). The following

conditions are equivalent :

(1) M is a quasi-projective module;
(2) M is a π -projective module, and all the modules Mi are quasi-projective;
(3) Mi is a Mj -projective module for all subscripts i , j ∈ I .

Proof. The implication (1) =⇒ (2) follows from Lemma 1.1 (5) and the fact that direct summands of
quasi-projective modules are quasi-projective.

The implication (2) =⇒ (3) follows from the quasi-projectivity of the modules Mi and the fact that
by Lemma 1.2 (3), Mi is an Mj -projective module for any distinct subscripts i , j ∈ I .

The implication (3) =⇒ (1) follows from Lemmas 1.2 (1) and (2). �
Lemma 1.4.

(1) If M is a direct sum of finitely generated quasi-projective modules, then M is a quasi-projective
module ⇐⇒ the module M is π -projective.

(2) If X ⊕N is a π -projective module and Y is a subfactor of the module N , then the module X is
projective with respect to the module Y .

(3) If A is a serial Artinian ring, then A is a ring of finite representation type, and every A -module
is a direct sum of cyclic uniserial quasi-projective modules.

(4) If M is a module over a serial Artinian ring, then M is a π -projective module ⇐⇒ M is a
quasi-projective module ⇐⇒ M is a projective A/r(M) -module.
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Proof. The proof of (1) follows from Lemma 1.3.
The proof of (2) follows from Lemmas 1.2 (3) and (2).
The proof of (3) follows from [1, 55.16, 53.6].
The proof of (4) follows from (1), (3), and Lemma 1.2 (4). �
Lemma 1.5. Let A be a hereditary Noetherian prime ring.

(1) Every proper factor ring of A is a serial Artinian ring, and the ring A is either bounded or
primitive. (If A is a bounded primitive ring, then A is a simple Artinian ring.)

(2) If M is a right A -module and r(M) �= 0 , then M is a π -projective module ⇐⇒ M is a
quasi-projective module ⇐⇒ M is a projective A/r(M) -module.

Proof. The proof of (1) follows from [5, Theorem 25.5.1] and [3].
The proof of (2) follows from (1) and Lemmas 1.1 (1) and 1.4 (4). �
Lemma 1.6. Let A be a semiprime right Goldie ring.

(1) A is a right nonsingular ring, A has the semisimple Artinian classical right ring of quotients Q ,
QA is an injective hull of the module AA , and the set of all of the essential right ideals of A
coincides with the set of all of the right ideals of A containing regular elements. In addition, if
the module QA is Noetherian, then A = Q , whence A is a semisimple Artinian ring.

(2) The class of all of the singular right A -modules coincides with the class of all of the torsion
right A -modules, and the class of all of the nonsingular right A -modules coincides with the class
of all of the right torsion-free A -modules.

(3) Every essential extension of a torsion right A -module is a torsion module.
(4) If M is a right A -module, then Sing(M) is a singular torsion module and M/Sing(M) is a
nonsingular torsion-free module.

(5) If M is a right A -module and M is not torsion, then M contains a nonzero torsion-free submodule
which is isomorphic to a right ideal of the ring A .

(6) Every uniform right A -module is either a torsion-free module or a torsion module.

Proof. The proof of (1) follows from [6, 5.9, 5.48 (1), 5.31 (1)].
The proofs of (2), (3), and (4) follow from (1).
(5) By (1), there exists an element m ∈M \ Sing(M) . Then the right ideal r(m) of A is not essential.

Therefore, there exists a nonzero right ideal B of A with B ∩ r(m) = 0. If f : AA → mA is a natural
epimorphism with the kernel r(m) , then B ∩ Ker(f) = 0, B ∼= f(B) ⊆ M and f(B) is a nonzero
torsion-free module.

(6) The proof follows from (5). �
Lemma 1.7. Let A be a hereditary Noetherian prime ring which is not right primitive, and let M be

a nonzero torsion right A -module.

(1) If M is a finitely generated module, then r(M) �= 0 and M is a finite direct sum of cyclic uniserial
modules of finite length.

(2) M has a nonzero uniserial countably generated direct summand.
(3) If the module M is not injective, then M has a nonzero cyclic uniserial direct summand of finite
length.

(4) If M is an indecomposable module, then either M is an injective uniserial module or M is a
cyclic uniserial module of finite length and r(M) �= 0 .

(5) If M is a finite-dimensional module, then M is a finite direct sum of uniserial modules.
(6) If M is a reduced finite-dimensional module, then r(M) �= 0 and M is a finite direct sum of cyclic
uniserial nonzero modules of finite length.

(7) If M is a reduced finite-dimensional module, then M is a π -projective module ⇐⇒ M is a
quasi-projective module ⇐⇒ M is a projective A/r(M) -module.

Proof. The proof of ((1) follows from [7, Lemma 2] and [8, Lemma 1].
The proofs of (2) and (3) follow from [8, Theorem 10, Lemma 1].
The proof of (4) follows from (2) and (3).

630



The proof of (5) follows from (4) and the fact that every finite-dimensional module is a finite direct
sum of indecomposable modules.

The proof of (6) follows from (4), (5), and (1).
The proof of (7) follows from (6) and Lemma 1.5 (2). �
Lemma 1.8. Let M be a right module over a ring A , and let X be a pure submodule in M .

(1) If Y is a pure submodule in X , then Y is a pure submodule in M .
(2) If X is a pure-injective module, then X is a direct summand of M .
(3) If B is a proper ideal of A and h : M →M/MB is a natural epimorphism, then h(X) is a pure
submodule of the A/B -module h(M) .

(4) X ∩MB = XB for every left ideal B of A .

Proof. The proofs of (1) and (2) are direct verifications.

(3) Let n and k be two positive integers, and let
∑k
j=1 h(mj)(aij + B) = h(xi) , where mj ∈ M ,

aij ∈ A , and xi ∈ X ( i = 1, . . . , n). There exist elements t1 , . . . , tn ∈MB such that

k∑
j=1

mjaij + ti = xi , i = 1, . . . , n.

It follows from Lemma 1.1 (7) that there exist elements yj ∈ X and zi ∈ XB for which we have

k∑
j=1

yjaij + zi = xi , i = 1, . . . , n.

Then
∑k
j=1 h(yj)aij = h(xi) ( i = 1, . . . , n). By Lemma 1.1 (7), h(X) is a pure submodule in h(M) .

The proof of (4) follows from [1, 34.5 and 34.9]. �
Lemma 1.9. Let B be a proper nonzero ideal of a ring A , X be a pure submodule right A -module M ,

XB = 0 , and let h : M →M/MB be a natural epimorphism.

(1) X ∩MB = 0 .
(2) If h(X) is a direct summand in h(M)A/B , then X is a direct summand in MA .
(3) If the ring A/B is right pure-semisimple, then X is a direct summand of the module MA .
(4) If A/B is a ring of finite representation type, then X is a direct summand of the module MA .

Proof. (1) Since X is a pure submodule in M , we see that X ∩MB = XB = 0 by Lemma 1.8 (4).
(2) By (1) X ∩MB = 0. Let h(M) = h(X) ⊕ h(Y ) , where MB ⊆ Y ⊆ M . Then M = X + Y and

X ∩ Y = X ∩MB = 0. Therefore, M = X ⊕ Y .
(3) By Lemma 1.8 (2), the pure-injective A/B -module h(X) is a direct summand of the A/B -module

h(M) . By (1), X is a direct summand of the A -module M .
(4) The proof follows from (3) and the fact that every ring of finite representation type is a pure-

semisimple ring [1, 54.3]. �
Lemma 1.10. Let N be a module, X be an N -projective module, and let Y be a subfactor of the

module N .

(1) If there exists an epimorphism h : Y → X , then Ker(h) is a direct summand of the module Y ,
and X is a quasi-projective module which is isomorphic to a direct summand of the module Y .

(2) Let X be a t -generated module, where t is a cardinal number. If there exists a positive integer n
such that the module Y n contains a free submodule F of rank t , then the module X is projective.

(3) If Y is a finitely faithful module, then the module X is projective with respect to any finitely
generated right A -module.

(4) If X is a finitely generated module and Y is a finitely faithful module, then the module X is
projective.

(5) Assume that Y is an indecomposable module, X �= 0 , and there exists an epimorphism f : Y → X .
Then f is an isomorphism.
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Proof. (1) Since X is projective with respect to Y , we see that for the epimorphism f and the identity
map 1X , there exists a homomorphism g : X → Y with 1X = fg . Therefore, Y = X ⊕ Ker(f) , where
X ∼= X . In addition, X is projective with respect to X . Therefore, the module X is quasi-projective.

(2) By Lemma 1.2 (2), the module X is F -projective. Since there exists an epimorphism h : F → X ,
the module X is isomorphic to a direct summand of the free module F by (1).

(3) There exists a positive integer n such that Y n contains a free cyclic submodule F . By (1), the
module X is Y -projective. By Lemma 1.2 (2), the module X is F -projective. By Lemma 1.2 (2), the
module X is projective with respect to any finitely generated free module. Since any finitely generated
module S is a homomorphic image of a finitely generated free module, X is projective with respect to
any finitely generated module by Lemma 1.2 (2).

(4) The proof follows from (2).
(5) The proof follows from (1). �
Lemma 1.11. Let A be a prime right Goldie ring, and let Q be the injective hull of the module AA .

(1) There exists a positive integer n such that for every nontorsion right A -module N , the module Nn

contains a free cyclic submodule.
(2) There exists a positive integer n such that for every infinite-dimensional torsion-free module YA ,
the module Y n contains a free submodule of infinite rank.

(3) If N is a nontorsion right A -module, then every finitely generated N -projective module X is
projective.

(4) If Y is an infinite-dimensional torsion-free right A -module, then every countably generated Y -pro-
jective module X is projective.

(5) If N is a nontorsion right A -module and X is a nonzero finitely generated torsion module, then
the module X ⊕N is not π -projective.

(6) If a right A -module N contains an infinite-dimensional torsion-free submodule Y and X is a
nonzero countably generated torsion module, then the module X ⊕N is not π -projective.

(7) For any injective nonsingular indecomposable nonzero right A -module E , all injective nonsingular
indecomposable nonzero right A -modules are isomorphic to the module E , and there exists a
positive integer n with Q ∼= En .

(8) If there exists a Noetherian injective nonsingular indecomposable nonzero right A -module E ,
then A is a simple Artinian ring.

Proof. (1) By Lemma 1.6 (5), the module N contains a torsion-free submodule which is isomorphic
to a nonzero right ideal B of A . By Lemma 1.6 (1), A is a right order in a semisimple Artinian ring Q .
Let n be the length of the composition series of the module QQ . In the ring Q , every properly descending
chain of right annihilators contains at most n inclusions. Therefore, every properly descending chain of
right annihilators in A contains at most n inclusions. Therefore, there exist elements b1 , . . . , bn ∈ B
such that r(B) = r(b1 , . . . , bn) = r(b1) ∩ · · · ∩ r(bn) . Therefore, the module Bn contains a free cyclic
submodule. Therefore, the module Nn contains a free cyclic submodule.

(2) By assumption, the module Y contains a submodule ⊕∞i=1Ni , where all the Ni are torsion-free
nonzero modules. By (1), there exists a positive integer n such that every module Nni contains a free
cyclic submodule Fi . Then the module Y n contains a free submodule ⊕∞i=1Fi of infinite rank.

(3) The proof follows from (1) and Lemma 1.10 (4).
(4) The proof follows from (2) and Lemma 1.10 (2).
(5), (6) Assume that the module X⊕N is π -projective. By Lemma 1.4 (2) the module X is projective

with respect to any subfactor of the module N . By (3) and (4), the module X is projective. Since every
submodule of a free module is a torsion-free module, the module X is torsion-free. Therefore, X is a
nonzero torsion torsion-free module; this is a contradiction.

(7) The proof follows from Lemma 1.6 (1) and [2, Lemma 1.19 (1)].
(8) By (7), there exists a positive integer n such that Q ∼= En . Therefore, the module Q is Noetherian.

By Lemma 1.6 (1), A is an Artinian prime ring. Therefore, A is a simple ring. �
Lemma 1.12. Let A be a semihereditary semiprime Goldie ring.

(1) Every torsion-free A -module is a flat module.
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(2) If M is a right A -module, then M/Sing(M) is a flat torsion-free module, and every pure sub-
module X of the module Sing(M) is a pure torsion submodule of M .

Proof. The proof of (1) follows from [9, p. 60].
(2) By Lemma 1.6 (3), X is a torsion module, and the module M/Sing(M) is torsion-free. By (1), the

module M/Sing(M) is flat. Therefore, Sing(M) is a pure submodule in M [9, p.37]. By Lemma 1.8 (1),
X is a pure submodule in M . �

Lemma 1.13. Let M be a module over a hereditary Noetherian prime ring A , and let B be a proper
nonzero ideal of A .

(1) If X is a pure submodule of M and XB = 0 , then X is a direct summand of M .
(2) If X is a pure submodule of the module Sing(M) and XB = 0 , then X is a direct summand
of M .

(3) If X is a direct summand of the module Sing(M) and XB = 0 , then X is a direct summand
of M .

Proof. (1) By Lemma 1.5 (1), A/B is a serial Artinian ring. By Lemma 1.4 (3), A/B is a ring of
finite representation type. Now the proof of (1) follows from Lemma 1.9 (4).

(2) The proof follows from (1) and the fact that X is a pure submodule in M by Lemma 1.12 (2).
(3) The proof follows from (2) and the fact that every direct summand is a pure submodule. �

Lemma 1.14. Let A be a hereditary Noetherian prime ring which is not right primitive, and let M
be a mixed A -module.

(1) Either M = T ⊕ F , where T is an injective torsion nonzero module and F is a torsion-free
nonzero module, or M = X ⊕N , where X is a cyclic uniserial torsion nonzero module and N is
a nontorsion module.

(2) M has a uniserial nonzero countably generated torsion direct summand which is either injective
or cyclic.

(3) If M is a reduced module, then M = X ⊕ N , where X is a cyclic uniserial torsion nonzero
module, and N is a nontorsion module.

(4) If M is a π -projective module, then M = T ⊕F = X⊕N , where T is a nonzero injective torsion
module, F is a nonzero torsion-free module, X is a nonzero uniserial injective countably generated
torsion module, N is a nontorsion module.

(5) If M is a reduced module, then the module M is not π -projective.

Proof. (1) Set T ≡ Sing(M) . Without loss of generality, it is sufficient to consider only the case in
which T is a noninjective nonzero torsion module. By Lemmas 1.7 (3) and (4), T has a nonzero cyclic
uniserial torsion nonzero direct summand X with r(X) �= 0. By Lemma 1.13 (3), there exists a direct
decomposition M = X ⊕N . Since the module M is mixed, N is a nontorsion module.

(2) and (3) The proofs follow from (1) and Lemma 1.7 (2).
(4) The proof follows from (1), (2), and Lemma 1.11 (5).
(5) The proof follows from (4). �

End of the proof of Theorem 1. We can assume that A is not a simple Artinian ring. By
Lemma 1.5 (1), A is not right primitive. By Lemma 1.6 (2), the following three cases are the only
possible cases: 1) the module M is nonsingular; 2) M is a torsion module; 3) the module M is mixed.
In the case 1) Theorem 1 follows from Theorem A. In the case 2) Theorem 1 follows from Lemma 1.7 (7).
The case 3) is impossible by Lemma 1.14 (5). �

2. Proof of Theorems 2 and 3

Lemma 2.1. Let A be a bounded hereditary Noetherian prime ring which is not a simple Artinian
ring, P(A) be the set of all of the maximal invertible ideals of A , X be a nonzero torsion A -module, and
let X(P ) ≡ {x ∈ X | xPn = 0 for some n} .

(1) The ring A is not right or left primitive.
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(2) X is a direct sum of its primary components X(P ) (P ∈ P(A) ).
(3) If X is an indecomposable injective module, then X = X(P ) for some P ∈ P(A) and every
injective indecomposable injective torsion module E , we see that either there exist epimorphisms
X → E and E → X or E = E(Q) , where Q ∈ P(A) and P �= Q .

(4) If X is a cyclic indecomposable module, then X is a uniserial module of finite length, X = X(P )
for some P ∈ P(A) , and there exists a positive integer n such that XPn = 0 and XPn ⊂
XPn−1 ⊂ · · · ⊂ XP ⊂ X is a unique composition series for the module X .

(5) If X is a cyclic indecomposable module, then r(X) �= 0 and X is a projective A/r(X) -module.
(6) Let Y and Z be two submodules of the module X , and let Y ⊆ Z . Then Y (P ) = Y ∩X(P ) for
every P ∈ P(A) , there exists a natural isomorphism

Z/Y →
⊕

P∈P(A)
Z(P )/Y (P ),

and we have

Hom

(
Z(P )/Y (P ),

⊕
P∈P(A)

Z(P )/Y (P )

)
= Hom

(
Z(P )/Y (P ), Z(P )/Y (P )

)

for all P ∈ P(A) . In particular, all Z(P )/Y (P ) are fully invariant submodules in the module⊕
P∈P(A) Z(P )/Y (P ) .

(7) X is a π -projective (resp. quasi-projective, skew-projective) module ⇐⇒ X(P ) is a π -projective
(resp. quasi-projective, skew-projective) module for every P ∈ P(A) .

Proof. (1) The proof follows from Lemma 1.5 (1).
(2), (3), and (4) See the proofs in [11].
(5) By (4), r(X) �= 0. By Lemma 1.5 (2), X is a projective A/r(X) -module.
(6) is verified with the use of (2).
(7) is verified with the use of (6). �

Lemma 2.2. Let A be a bounded hereditary Noetherian prime ring which is not a simple Artinian
ring, P ∈ P(A) , and let M be an injective indecomposable nonzero P -primary module.

(1) M is a uniserial noncyclic module, and all the proper submodules of M are cyclic, have finite
length, and form a countable chain 0 = X0 ⊂ X1 ⊂ · · · ⊂ Xk ⊂ · · · , where Xk/Xk−1 is a simple
module for every k and there exists a positive integer n such that Xj/Xj−1 ∼= Xk/Xk−1 ⇐⇒ j−k
is divided by n .

(2) If E is an injective torsion indecomposable nonzero A -module, then either there exist two epimor-
phisms M → E and E → M with nonzero kernels or 0 = Hom(M ′ , E) = Hom(E′ , M) for any
two submodules M ′ ⊆M and E′ ⊆ E .

(3) Let E be an injective indecomposable nonzero P -primary A -module. Then there exist two epimor-
phisms M → E and E →M with nonzero kernels, and the module M ⊕ E is not π -projective.

(4) Let X be a cyclic nonzero submodule of M of length k , and let Z be an arbitrary cyclic unise-
rial P -primary module of finite length d > k+n , where the integer n is taken from (1). Then there
exists an epimorphism Y → X with nonzero kernel, where Y is a submodule of the module Z .
If N is a A -module such that the module Z is isomorphic to a subfactor of the module N , then
the module X ⊕N is not π -projective.

(5) Let X be a nonzero submodule of M , and let E be an injective indecomposable nonzero P -primary
A -module. Then the module X ⊕ E is not π -projective.

(6) For every nonzero P -primary A -module N , the module M ⊕N is not π -projective.
(7) M is a skew-projective module which does not have nonzero finitely generated factor modules.

Proof. The proof of (1) follows from in [10].
The proof of (2) follows from (1) and Lemma 2.1 (3).
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(3) The existence of epimorphisms f : M → E and g : E → M with nonzero kernels follows from (1)
and (2). Assume that the module M ⊕ E is π -projective. By Lemmas 1.10 (5) and 1.4 (2) f is an
isomorphism; this is a contradiction.

(4) Let E be the injective hull of the module Z . It follows from (2) that there exist two epimorphisms
M → E and E → M . It follows from (1) that there exists an epimorphism f : Y → Xk with nonzero
kernel, where Y is a submodule of the module Z . Assume that Xk⊕N is a π -projective module. Since Y
is isomorphic to a subfactor of the module N , f is an isomorphism by Lemmas 1.10 (5) and 1.4 (2). This
contradicts the fact that Ker(f) �= 0.

(5) By (3), the module M⊕E is not π -projective. Therefore, we can assume that X �= M . By (1), X is
a cyclic module of length k . It follows from (1) that the module E contains a cyclic uniserial P -primary
module Z of finite length d > k + n , where the integer n is taken from (1). By (4) there exists an
epimorphism f : Y → X with nonzero kernel, where Y is a submodule of the module Z ⊂ E . Assume
that the module X ⊕ E is π -projective. By Lemmas 1.10 (5) and 1.4 (2), f is an isomorphism. This is
a contradiction.

(6) By Lemmas 1.7 (2) and 2.1 (1), the module N has a nonzero uniserial direct summand X . Assume
that the module M⊕N is π -projective. Then the P -primary module M⊕X is π -projective. In addition,
the injective hull of the module X is indecomposable. By (5), the module M ⊕ X is not π -projective.
This is a contradiction.

(7) By (1), M is a uniserial noncyclic module, and all the proper submodules of M are cyclic and
form a countable chain 0 = X0 ⊂ X1 ⊂ · · · ⊂ Xk ⊂ · · · , where Xk/Xk−1 is a simple module for every k ,
and the module Xk has finite length k for every k . Then M does not have a nonzero finitely generated
factor module. Let f be an endomorphism of an arbitrary nonzero factor module M/Xs ≡ M of the
module M , and let h : M → M be a natural epimorphism inducing natural epimorphisms h | Xk ≡
hk : Xk → h(Xk) ≡ Xk . It can be verified directly that f(Xk) ⊆ Xk for all k . Therefore, f induces
endomorphisms fk of the modules Xk . By Lemma 2.1 (5), all the Xk are projective A/r(Xk) -modules.
Then all the Xk are skew-projective A -modules. Therefore, there exist endomorphisms fk of modules Xk
such that hkfk = fkhk for all k . We consider fi and fk with i > k > s . Then Xk ⊆ Xi , Xk ⊆ Xi ,
(f i | Xk−fk)(Xk) = 0. Therefore, (fi | Xk−fk)(Xk) ⊆ Xs for i > k . Let Nik ≡ Ker(fi | Xk−fk) ⊆ Xk ,
and let dik be the length of the module Nik . Since (fi | Xk − fk)(Xk) ∼= Xk/Nik and the length of the
module (fi | Xk − fk)(Xk) does not exceed s , we see that dik ≥ k − s . Therefore, Xk−s ⊆ Nik for
i > k > s . For k > s , we set Yk ≡ Xk−s . Then fi | Yk = fk | Yk for i > k . In addition, M =

⋃
k>s Yk .

This allows to define an endomorphism f of M such that f | Yk = fk . Then f | Xk = fk+s . If

m ∈ Xk+s , then hf(m) = hfk+s(m) = hk+sfk+s(m) = fk+shk+s(m) = fk+sh(m) = fh(m) . Therefore,

hf = fh and the module M is skew-projective. �

Lemma 2.3. Let A be a bounded hereditary Noetherian prime ring, P ∈ P(A) , and let M be a
nonzero P -primary A -module. Then the following conditions are equivalent :

(1) the module M is π -projective;
(2) the module M is skew-projective;
(3) M is either an indecomposable injective A -module or a projective A/r(M) -module;
(4) M is either an indecomposable A -module or a projective A/r(M) -module.

Proof. Since every simple Artinian ring does not have nonzero torsion modules, we can assume that A
is not a simple Artinian ring.

(1) =⇒ (4) Assume that the module M is π -projective module and is not indecomposable. By
Lemmas 1.7 (2) and 2.1 (1), M = X ⊕ N , where N is a nonzero module, X is a nonzero uniserial
module, and X is either a cyclic module of finite length k or an injective module. By Lemma 2.2 (6), the
module X is not injective. Therefore, X is a cyclic module of length k . By Lemma 2.1 (4), XP k = 0.
Let Z be a finitely generated submodule in N . By Lemmas 1.7 (1) and 2.1 (1), T is a finite direct sum
of cyclic uniserial modules Z1 , . . . , Zn . By Lemma 2.2 (4), there exists a positive integer d such that the
lengths of all of the modules Zi do not exceed d . By Lemma 2.1 (4), ZiP

d = 0 for all i . Therefore,
ZP d = 0. Then NP d = 0. Therefore, MP k+d = (X ⊕N)P k+d = 0 and r(M) �= 0. By Lemma 1.5 (2),
M is a projective A/r(M) -module.
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(4) =⇒ (3) Without loss of generality, we can assume that M is an indecomposable A -module which
is not a projective A/r(M) -module. By Lemma 2.1 (5), the module M is not cyclic. By Lemmas 1.7 (2)
and 2.1 (1), the module M is injective.

(3) =⇒ (2) If M is an indecomposable injective module, then M is skew-projective by Lemma 2.2 (7).
If M is a projective A/r(M) -module, then M is skew-projective by Lemmas 1.1 (1) and (2).

(2) =⇒ (1) The proof follows from Lemma 1.1 (4). �
Theorem 2.1. Let M be a torsion module over a bounded hereditary Noetherian prime ring A . Then

the module M is π -projective ⇐⇒ M is skew-projective ⇐⇒ every primary component of the
module M is either an indecomposable injective module or a projective module over the factor ring of A
with respect to the annihilator of this primary component.

Theorem 2.4 follows from Lemmas 2.1 (7) and 2.3.

Lemma 2.4. Let T be an injective module, F be a hereditary module, and let M ≡ T ⊕F . Then for
any submodule N of M , there exists a direct decomposition M = T ⊕F1 such that N = N ∩T ⊕N ∩F1 .
Proof. Let h : N → F be the homomorphism with the kernel N ∩ T , induced by a natural projection

T ⊕ F → F with kernel T . Since h(N) is a submodule of the hereditary module F , the module h(N)
is projective. Therefore, there exists a direct decomposition N = N ∩ T ⊕ N1 , where N1 ∩ T = 0.
Let E be the injective hull of M . Since T is an injective submodule of the injective module E and
T ∩N1 = 0, there exists a direct decomposition E = T ⊕ E1 with N1 ⊆ E1 . Since T ⊆M , we see that
M = M ∩ (T ⊕E1) = T ⊕ (M ∩ E1) = T ⊕ F1 , where F ≡M ∩E1 and N1 ⊆M ∩E1 = F . �
Lemma 2.5. Let T be an injective module without nonzero Noetherian factor modules, F be a hered-

itary Noetherian module, and let M ≡ T ⊕ F .

(1) If the module T is skew-projective, then M is a skew-projective module.
(2) If all idempotent endomorphisms of all of the factor modules of the module T can be lifted to
endomorphisms of the module T , then all idempotent endomorphisms of all of the factor modules
of M can be lifted to endomorphisms of M .

(3) If the module T is quasi-projective, then M is a quasi-projective module.
(4) If T is a uniserial module, then the module M is π -projective, and all idempotent endomorphisms
of all of the factor modules of M can be lifted to endomorphisms of M .

Proof. (1) Let f be an endomorphism of a factor module M/N of M , and let h be a natural
epimorphism. By Lemma 2.4, there exists a direct decomposition M = F1⊕T with N = N ∩F1⊕N ∩T .
Then M/N = h(F1)⊕ h(T ) . Let h1 ≡ h | F1 , h2 ≡ h | T , f1 ≡ f | h(F1) , and let f2 ≡ f | h(T ) . Since

F1 ∼= M/T ∼= F , the module F1 is Noetherian. We have the homomorphism f1h1 from the module F1
into the module h(M) . Since the module F1 is projective, there exists a homomorphism f1 : F1 → M

with h1f1 = f1h1 . Since the module h(T ) does not have a nonzero Noetherian homomorphic image and
the module h(F1) is Noetherian, Hom

(
h(T ), h(F1)

)
= 0. Therefore, f2

(
h(T )

) ⊆ h(T ) and f2 is an
endomorphism of the factor module h(T ) of the module T . Since the module T is skew-projective, there
exists an endomorphism f2 of the module T such that h2f2 = f2h2 . By the rule f(x+y) = f1(x)+f2(y)
(x ∈ F1 , y ∈ T ), the endomorphism f of the module M = F1 ⊕ T is defined. Then hf = fh .

(2) and (3) The proof of (2) and (3) is analogous to the proof of (1).
(4) The proof follows from (2). �
Lemma 2.6. Let A be a right hereditary right Noetherian prime ring, Q be the injective hull of the

module AA , and let E be an injective nonsingular indecomposable nonzero right A -module.

(1) Every injective indecomposable right A -module is a homomorphic image of the module Q .
(2) For every injective torsion indecomposable right A -module X , there exists an epimorphism (with
nonzero kernel) f : E → X .

(3) For every injective torsion indecomposable right A -module X , the module X ⊕ E is not π -pro-
jective.

(4) Every injective π -projective right A -module M is either a torsion-free module or a torsion module.
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Proof. (1) The proof follows from [2, Lemma 1.14 (2)].
(2) We can assume that X �= 0. By (1) and Lemma 1.11 (7), there exists an epimorphism h : En → X

which induces a nonzero homomorphism f : E → X . Since f(E) is a homomorphic image of the injective
right module E over the right hereditary ring A , the module f(E) is injective [1, 39.16]. Therefore, f(E)
is a nonzero direct summand of the indecomposable module X . Then f(E) = X . By Lemma 1.6 (2), the
module E is torsion-free. Therefore, Ker(f) �= 0.

(3) Assume that the module X⊕E is π -projective. By Lemma 1.4 (2), the module X is E -projective.
By Lemma 1.10 (5), Ker(f) = 0; this is a contradiction.

(4) Since A is a right Noetherian ring and M is an injective right A -module, M = ⊕Mi , where all
the Mi are injective uniform modules (see [1, 27.5]). By Lemma 1.6 (6), every module Mi is either a
torsion-free module or a torsion module. By (3), either all the Mi are torsion-free modules or all the Mi
are torsion modules. �
Theorem 2.2. Let M be a mixed module over a bounded hereditary Noetherian prime ring A . Then

the following conditions are equivalent :

(1) the module M is π -projective;
(2) the module M is skew-projective;
(3) M = T ⊕ F , where F is a finitely generated projective nonzero module, T is an injective torsion
nonzero module, and every primary component of the module T is an indecomposable module.

Proof. The implication (2) =⇒ (1) follows from Lemma 1.1 (4).
(1) =⇒ (3) By Lemma 1.14 (4), M = T ⊕ F = X ⊕ N , where T is an injective torsion π -projective

nonzero module, F is a π -projective torsion-free nonzero module, X is a nonzero uniserial injective
countably generated torsion module, and N is a nontorsion module. By Lemma 2.2 (5), every primary
component of the module T is an indecomposable module. We prove that F is a finitely generated
projective nonzero module. By Theorem A, it is sufficient to prove that F is a reduced finite-dimensional
module. By Lemma 1.11 (6), the module F is finite-dimensional. Assume that F has a nonzero injective
direct summand E . Then X ⊕ E is a mixed injective π -projective module; this is a contradiction to
Lemma 2.6 (5).

(3) =⇒ (2) By Theorem 2.1, the module T is skew-projective. It follows from Lemmas 2.2 (7)
and 1.7 (2) that T does not have a nonzero Noetherian factor module. The projective right module F
over the right hereditary ring A is a hereditary module [1, 39.16]. The finitely generated right module F
over the right Noetherian ring A is a Noetherian module. By Lemma 2.5 (1), the module M is skew-
projective. �
End of the proof of Theorem 2. The following two cases are the only possible cases: 1) M is

a torsion module; 2) M is a mixed module. In the case 1), Theorem 2 follows from Theorem 2.1 and
Lemma 2.5 (2). In the case 2), Theorem 2 follows from Theorem 2.2 and Lemma 2.5 (2). �
Lemma 2.7. Let A be a serial hereditary Noetherian prime ring which is not a simple Artinian ring.

(1) Every indecomposable nonsingular injective nonzero right A -module E is a uniserial countably
generated module without nonzero Noetherian factor modules.

(2) Every finite-dimensional nonsingular injective right A -module T does not have nonzero Noetherian
factor modules.

Proof. (1) Since E is an indecomposable injective module over the serial Noetherian ring A , the
module E is uniserial [6, 11.55 (2)]. Since every semiprimitive serial ring is Artinian, the ring A is not
right primitive. Let 0 �= m ∈ E . Then E/mA is a uniserial torsion module. By Lemma 1.7 (2), the
module E/mA is countably generated. Therefore, the module E is countably generated. Assume that E
has a nonzero Noetherian factor module E/N . Since the nonzero uniserial finitely generated module E/N
is cyclic, there exists an element x ∈ E \N such that E/N = (x+N)A . Then E = N + xA . Since E is
a uniserial module and xA �⊆ N , the module E = xA is Noetherian. By Lemma 1.11 (8), A is a simple
Artinian ring. This is a contradiction.

(2) Assume that there exists an epimorphism h : T → T such that T is a nonzero Noetherian module.
Since T is a finite direct sum of indecomposable injective modules, T = T1 ⊕ · · · ⊕ Tn by (1), where all
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the modules Ti do not have a nonzero Noetherian factor module. Therefore, h(Ti) = 0 for all i . Then
T =

∑n
i=1 h(Ti) = 0; this is a contradiction. �

Lemma 2.8. Let A be a hereditary Noetherian prime ring. Then the following conditions are equiva-
lent :

(1) A is a serial ring ;
(2) there exists a π -projective injective nonzero right A -module which is not singular ;
(3) for every indecomposable injective nonsingular module T and every finitely generated projective
module F , the module T ⊕ F is π -projective.

Proof. The equivalence of conditions (1) and (2) is proved in [2,Theorem 1].
The implication (3) =⇒ (2) is obvious.
(1) =⇒ (3) We can assume that A is not a simple Artinian ring. By Lemma 2.7 (1), T is a uniserial

module without nonzero Noetherian factor modules. Since F is a finitely generated projective module
over the hereditary Noetherian ring A , the module F is Noetherian and hereditary. By Lemma 2.5 (4),
the module T ⊕ F is π -projective. �

Lemma 2.9. Let A be a hereditary Noetherian prime ring. Then the following conditions are equiva-
lent :

(1) there exists a positive integer n such that the ring A is isomorphic to the ring of all of the (n×n)
matrices over a complete uniserial Noetherian domain D ;

(2) there exists a π -projective injective nonsingular finite-dimensional nonuniform right A -module;
(3) every injective nonsingular finite-dimensional right A -module is quasi-projective;
(4) for every injective nonsingular finite-dimensional module T and every finitely generated projective
module F , the module T ⊕ F is quasi-projective;

(5) for every injective nonsingular finite-dimensional module T and every finitely generated projective
module F , the module T ⊕ F is π -projective.

Proof. The equivalence of conditions (1), (2) and (3) is proved in [2, Lemma 1.21].
The implication (4) =⇒ (5) follows from Lemma 1.1 (5).
The implication (5) =⇒ (2) is obvious.
(3) =⇒ (4) We can assume that A is not a simple Artinian ring. By Lemma 2.7 (2), the module T

does not have a nonzero Noetherian factor module. Since F is a finitely generated projective module over
the hereditary Noetherian ring A , the module F is Noetherian and hereditary. By Lemma 2.5 (3), the
module T ⊕ F is quasi-projective. �

End of the proof of Theorem 3. Without loss of generality, we can assume that M is a nonsingular
finite-dimensional module. The following three cases are the only possible cases: 1) M is a reduced finite-
dimensional nonsingular module; 2) M = T ⊕F , where T is a indecomposable injective finite-dimensional
nonsingular nonzero module, and F is a reduced finite-dimensional nonsingular module; 3) M = T ⊕ F ,
where T is a nonuniform nonsingular injective nonzero module, and F is a reduced finite-dimensional
nonsingular module. In the case 1), Theorem 3 follows from Theorem A. In the case 2), Theorem 3 follows
from Theorem A and Lemma 2.8. In the case 3), Theorem 3 follows from Theorem A and Lemma 2.9. �

Corollary 2.1. Let M be a module over a bounded hereditary Noetherian prime ring A . Then M is
a π -projective nonreduced nonsingular module ⇐⇒ one of the following conditions holds:

(i) A is a serial ring and M = T ⊕ F , where T is an injective indecomposable nonsingular nonzero
module, and F is a finitely generated projective module;

(ii) there exists a positive integer n such that the ring A is isomorphic to the ring of all of the (n×n)
matrices over a complete uniserial Noetherian domain D , M = T ⊕ F , where T is an injective
finite-dimensional nonsingular nonzero module, and F is a finitely generated projective module.

Proof. By Theorem 3, it is sufficient to prove that every π -projective nonreduced nonsingular mod-
ule M over the serial ring A is finite-dimensional. Since M has a nonzero injective direct summand and
every injective module over a Noetherian ring is a direct sum of indecomposable modules [5, 20.6], we

638



obtain that M = X ⊕ Y , where X is an indecomposable injective nonsingular nonzero module, and Y is
an infinite-dimensional nonsingular submodule. By Lemma 2.7 (1), the module X is countably generated.
By Lemma 1.11 (6), the module M is not π -projective. This is a contradiction. �
Corollary 2.2. Let A be a bounded hereditary prime ring such that all π -projective reduced nonsingular

infinite-dimensional A -modules are projective. Then the module M is π -projective ⇐⇒ one of the
following conditions holds:

(i) M is a projective module;
(ii) M = T ⊕ F , where T is a torsion injective nonzero module such that every primary component
of T is an indecomposable module, and F is a nonzero finitely generated projective module;

(iii) M is a torsion module such that every primary component of M is either an indecomposable
injective module or a projective module over the factor ring of A with respect to the annihilator of
this primary component ;

(iv) A is a serial ring and M = E ⊕ F , where E is an injective indecomposable torsion-free module,
and F is a finitely generated projective module;

(v) there exists a positive integer n such that the ring A is isomorphic to the ring of all of the (n×n)
matrices over a complete uniserial Noetherian domain D , M = E ⊕ F , where E is an injective
finite-dimensional torsion-free module, and F is a finitely generated projective module.

Corollary 2.2 follows from Theorems A, 2, 3, and Corollary 2.1.
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