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Abstract—The Radio Frequency Identification (RFID) is in-
creasingly being deployed in indoor tracking systems, such as
inventory management and airport baggage monitoring, etc.
Effective RFID data management is expected to be able to
support various applications that range from monitoring to
analysis. However, the “dirtiness” in raw RFID readings hinder
the progress of applying meaningful high level applications.
Hence, it is indispensable to cleansing RFID data in such systems.

In this paper, we focus on two quality aspects in raw indoor
RFID data: temporal redundancy and spatial ambiguity. The
former refers to the large number of repeated readings for the
same object and the same RFID reader during a short period
of time. The latter refers to the undetermined whereabouts of
an object due to multiple RFID readings by different readers
simultaneously. We investigate the spatiotemporal characteristics
of indoor spaces as well as RFID reader deployment, and
exploit them in designing effective data cleansing techniques.
Specifically, we aggregate raw RFID readings to reduce temporal
redundancy; we design a distance-aware graph to resolve spatial
ambiguity with respect to the indoor topology and the RFID
reader deployment captured in the graph. We evaluate the
spatiotemporal data cleansing techniques using both real and
synthetic datasets. The experimental results demonstrate that the
proposed techniques are effective and efficient in cleansing indoor
RFID tracking data.

I. INTRODUCTION

The Radio Frequency Identification (RFID) is increasingly
being deployed in indoor tracking systems, e.g., airport bag-
gage monitoring. Without physical sight or contact, an RFID
tag attached to a moving object (e.g., a bag in an airport)
makes the object seen by an RFID reader when the object is
in the reader’s detection range. As a result, the RFID reader
reports the object’s presence to the database that manages the
object positions. When multiple RFID readers are deployed in
an indoor space like an airport, objects like bags with RFID
tags are tracked by the reports from those readers.

Effective RFID tracking data management is expected to
support various applications that range from monitoring to
analysis of indoor moving objects. However, noises and errors
abound in raw RFID data. Such “dirtiness” comes from differ-
ent sources. Essentially, radio frequency waves are not steady
and therefore the detection range of an RFID may change
from time to time, especially in an indoor space where there
are various signal reflecting and/or blocking entities like walls
as well as changing flows of people. Such dirtiness hinders
the progress of applying meaningful high level applications,
and therefore we need to clean indoor RFID data.

In this paper, we focus on two kinds of dirtiness in indoor
RFID tracking data.

Temporal Redundancy: An RFID reader report
(readerID , objectID , time) means the object identified by
objectID is seen by the reader identified by readerID at time
point time . A tagged object can be read many times by the
same reader within a short period, depending on the sampling
frequency configured for a reader1.

Spatial Ambiguity: An tagged object can be read by
multiple readers simultaneously. This may result from the
unexpected change of the detection range of a reader nearby.
Such changes happen due to various reasons, e.g., metal items
that reflect the signals or the re-direction of reader antenna(s).
As a result, the object is reported by multiple readers that are
places at different positions and spatial ambiguities are caused.

In other words, redundant readings arise temporally when
an object is detected multiple times by a device. In contrast,
ambiguous readings appear spatially where an object is de-
tected by multiple readers simultaneously. In this paper, we
focus on these two issues in an indoor setting. Exploiting
the spatiotemporal constraints implied by indoor RFID reader
deployment, we design data cleansing techniques to remove
the temporal redundancy and reduce the spatial ambiguity.

An example is shown in Figure 1. There are two readers r1
and r2 in two rooms respectively. An object O1 moves in the
left room from time point t1 to time point t5, which yields
five reports by r1 as the trajectory is within r1’s detection
range. This causes temporal redundancy in the RFID data. If
the times points t1, . . . , t5 are very close to each other, we
compress the five reports into a single tuple 〈r1, O1, [t1, t5]〉.
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Fig. 1. An example of RFID data cleansing

On the other hand, at time point t3, object O1 is detected by
both readers. This is due to the unexpected expansion of r2’s

1An RFID reader’s read rate can be as high as over 100 per second [22].



detection range, as shown by the dashed range. Consequently,
from the RFID data, O1 seems to be in both rooms at same
time t3. Thus spatial ambiguity is caused. However, due to
spatial constrains, O1 can not appear in both locations, as they
are separated by walls. Neither can O1 move from one room
to another room if time points t2 and t3 are very close and the
distance between the two rooms (through the two doors) are
long enough. By considering such spatiotemporal constraints,
our cleansing technique is able to remove spatial ambiguous
reports such as 〈r2, O1, t3〉.

We make the following contributions in this paper.
• We formulate the data cleansing problem for RFID data

obtained in indoor spaces.
• We design a threshold based temporal cleansing algo-

rithm to eliminate temporal redundancy in indoor RFID
data.

• We propose a distance-aware deployment graph to cap-
ture indoor spatiotemporal constraints, and design a spa-
tial cleansing algorithm that utilizes the graph to identify
and reduce spatial ambiguity in indoor RFID data.

• We conduct extensive experimental studies to evaluate our
spatiotemporal cleansing techniques. The experimental
results demonstrate that our cleansing techniques are
effective, efficient and scalable.

The rest of this paper is organized as follows. Section II
reviews the related works on RFID data management/cleansing
and symbolic indoor tracking. Section III formulates the indoor
RFID data cleansing problem that we tackle in this paper.
Section IV details the temporal cleansing algorithm, followed
by the spatial cleansing techniques in Section V. Section VI
presents extensive experiments on both synthetic and real data
sets. Finally, Section VII concludes the paper and discusses
the directions for future research.

II. RELATED WORK

In this section we review related work. We cover RFID
data management and cleansing in Section II-A, and symbolic
indoor tracking in Section II-B.

A. RFID Data Management and Cleansing

In recent years RFID technology has been widely used in
many scenarios such as supply chain management [6], [7],
[13], health care [5], people and object tracking [2]–[4], [8],
[9]. Massive amounts of RFID data is generated by RFID-
based applications, e.g., Wal-Mart produces about 7 terabytes
of RFID data per day [7]. Roozbeh et al. [19] discuss the
general challenges for RFID data management.

As raw RFID data are not clean, cleansing is needed.
To handle missing readings, smoothing filters [10], [17] are
employed in the steaming context. Mylyy [17] proposes a
temporal smoothing filter with a fixed time window. By count-
ing the RFID readings in the filter window and comparing
them to given thresholds, this method reduces missing RFID
readings from the data stream. However, it is difficult to
decide the best window size for varying RFID data. Jeffery
et al [10] proposes adaptive SMURF (Statistical sMoothing

for Unreliable RFid data). Modeling the RFID data streams
as statistical samples of RFID tags, SMURF uses sampling
estimators to automatically adjust the filter window size.

On the other hand, techniques are also developed to handle
duplicates in RFID data. Mahdin et al. [16] use count Bloom
Filters to remove duplicate RFID data at the reader level.
Assuming that cross reads are always less than normal reads,
Bai et al. [1] employs a counting based smoothing filter to
remove cross reads in RFID streams. Liao et al. [14] proposes
a probability model to estimate the tag density for each RFID
reader, and utilize the model to remove cross reads. Tinggaard
et al [20] designs a data warehouse for Bluetooth/RFID
tracking data obtained from airport passengers, in order to
facilitate flow analysis on uncertain passenger movements.

Unlike these works [1], [10], [14], [16], [17] that conduct
cleansing in pre-processing, Rao et al. [18] proposes a de-
ferred approach that uses declarative sequenced-based rules to
conduct data cleansing at query execution time.

This paper differs from the aforementioned related works
in two important aspects. First, it focuses on off-line indoor
RFID positioning data rather than general streaming RFID
data. Second, it exploits the spatiotemporal constraints implied
in an indoor space in data cleansing.

B. Symbolic Indoor Tracking

We briefly review symbolic indoor positioning and tracking
using the example floor plan shown in Figure 2. The indoor
space has several rooms and a corridor that connects all the
rooms. Each room has one or more doors. A number of RFID
readers are placed at the doors.
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Fig. 2. Positioning device deployment

1) Raw Positioning Data: Symbolic indoor tracking em-
ploys the proximity analysis. An object is only seen when
it is within the detection range of a positioning device, e.g.,
an RFID reader. Accordingly, the object’s seen position is
indicated by the RFID reader’s identifier in the raw reading.
Each raw reading is in the format of (deviceID, objectID, t),
which means that the object identified by objectID is detected
by the device identified by deviceID at time t.

2



Usually the detection range of a positioning device is a
circular region with a pre-specified radius. A positioning
device continuously detects objects that are in its range,
with the frequency determined by its sampling rate. All the
positioning devices in an indoor space generate large amount
of raw readings. For the floorplan example shown in Figure 2,
an example table of raw readings is shown in Table I.

TABLE I
RAW READINGS TABLE

deviceID objectID t
r6 object1 t0
r6 object1 t1
r6 object1 t2
r7 object1 t3
r6 object1 t4
r7 object1 t5
r7 object1 t6
r6 object1 t7
r7 object1 t8
r7 object1 t9
r7 object1 t10
r8 object1 t14
r8 object1 t15
r8 object1 t16
r9 object1 t16
r9 object1 t19

deviceID objectID t
r9 object1 t20
r9 object1 t21
r1 object1 t24
r1 object1 t25
r1 object1 t26
r1 object1 t27
r2 object1 t29
r2 object1 t30
r2 object1 t31
r2 object1 t32
r3 object1 t33
r3 object1 t34
r3 object1 t35
r3 object1 t36
r3 object1 t37
r3 object1 t38

2) Graph Based Indoor Tracking: Jensen et al. [11] propose
a graph based approach for indoor tracking based on the raw
positioning data generated by devices like RFID readers. A
deployment graph is constructed to capture the deployment of
positioning devices and the indoor topology. In particular, a
partitioning device is one that partitions the indoor space into
different parts such that an object must be seen by the device
when the object moves from one part to the other. All such
partitioning devices partition the indoor space into different
cells. A device deployment graph Gdev is formally defined as
labeled graph Gdev =

(
V,E,D,LE

)
, where:

1) V is the set of vertices; each vi ∈ V represents a cell.
2) E is the set of edges, where E = {(vi, vj) | vi, vj ∈

V ∧ vi 6= vj }. An edge between two cells indicate that
objects can move from one cell to the other under the
surveillance of one or more devices.

3) D = Sdevice is a set of positioning devices.
4) LE : E → 2D maps an edge to a subset of D.

Specifically, an edge is labeled by the identifiers of those
devices that monitor the edge.

Figure 3 presents the deployment graph for the indoor
setting shown in Figure 2. Note that vertex 9 in the graph
represents the outdoor space.

In addition to the deployment graph, two mapping struc-
tures [11] are defined to facilitate the indoor tracking. First,
mapping D2V : D → 2V returns a set of cells D2V (ri) that
have a given device ri on their edges. Referring to Figure 3,
device r1 is in the label of the edge between cells 5 and 6, so
D2V (r1) = {5, 6}. In capturing the possible movements of
objects the mapping is quite useful. If an object’s movement is
observed by device ri at time t, it must have moved from a cell
in D2V (ri). Likewise if an object leaves device ri, it definitely
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Fig. 3. Deployment graph for the deployment in Figure 2

enters a cell in D2V (ri). Second, mapping V 2D : V → 2D

returns the set of devices V 2D(vi) that monitor the edges of
the given cell vi. In the example shown in Figure 3, V 2D(1)
returns {r6, r5, r7, r12}.

This paper distinguishes itself from the previous work [11]
with several important characteristics. First, this paper con-
siders the overlaping between different positioning devices,
whereas the previous work [11] assumes that devices do not
overlap. Second, in relation to the first point, this paper is
intended to decide where an object really is when it is seen
by multiple devices, whereas the previous work [11] focuses
on tracking the object when it is not seen by any device.
This important difference is illustrated in Figure 4. Third, in
order to support data cleansing, this paper proposes a graph
(Section V-A) different from the deployment graph [11].
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Where can the object be? (this paper)
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Fig. 4. Difference from the previous work

III. PROBLEM FORMULATION

In this section we formulate the data cleansing problem that
we tackle in this work. We present the definitions and the
main cleansing tasks in Section III-A. We give an overview of
our solution in Section III-B. Table II lists the notation used
throughout the paper.

A. Definitions and Tasks
Without loss of generality, we assume that all raw readings

are ordered by their detection times in the Raw Reading Table
(RRT). We formally define other concepts as follows.

Definition 1: (Temporal Redundant Readings) Two raw
readings rri and rrj are temporal redundant readings if
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|rri.t − rrj .t| ≤ τ ,2 rri.deviceID = rrj .deviceID and
rri.objectID = rrj .objectID .

TABLE II
NOTATION

Notation Meaning
ri, rj RFID readers

rr, rri, rrj Raw RFID readings
tr, tr′ tracking records
RRT Raw reading table
ATT Aggregate tracking table
Gdd Distance-aware deployment graph
dti The minimum dwell time of reader ri
di,j The minimum indoor distance between ri and rj
Si,j The maximum indoor moving speed between ri and rj

Definition 2: (Tracking Record) Given a series of tempo-
ral redundant readings rr1, rr2, . . . rrk (rr1.t < rr2.t < . . .
< rrk.t), a tracking record tr is a temporal aggregation of
them. Formally, tr is in the format (deviceID , objectID ,
ts, te), where tr.deviceID = rri.deviceID , tr.objectID =
rri.objectID , tr.ts = rr1.t, and tr.ts = rrk.t for 1 ≤ i ≤ k.

A tracking record states that the object (objectID) is de-
tected by a device (deviceID) during the time interval [ts, te].

Definition 3: (Spatial Ambiguous Tracking Records)
Two tracking records tr′ and tr are spatial ambiguous if
tr′.deviceID 6= tr.deviceID and tr′.objectID = tr.objectID ,
if tr′.[ts, te] ∩ tr.[ts, te] 6= ∅, or if tr.ts − tr′.te ≤ min tt. 3

Given a raw reading table RRT , we intend to accomplish
the following two tasks.

Task 1: Temporal Redundancy Elimination. This task
is to aggregate raw readings into more meaningful tracking
records. This way is expected to significantly reduce the data
size without any information loss.

Task 2: Spatial Ambiguity Reduction. This task is to be
done after the first task. Given a large set of tracking records,
we identify spatial ambiguous tracking records and reduce
such spatial ambiguities by referring to the spatiotemporal
constraints imposed by the positioning device deployment as
well as the indoor topology.

We call these two tasks together spatiotemporal data cleans-
ing. We proceed to give a solution overview for it.

B. Overview of Spatiotemporal Data Cleansing

We design a two-phase solution for spatiotemporal data
cleansing for indoor RFID data, as shown in Figure 5.

The first phase, called Temporal Cleansing, sequentially
scans data from the raw reading table and generates more
meaningful tracking records by aggregating on the time. The
aggregation results are controlled by the threshold τ . If an
object’s two consecutive raw readings are apart from each
other for a period longer than τ , they will be put into two
different tracking records; otherwise, they will be aggregated
into the same tracking record. We store all generated tracking
records in the Aggregate Tracking Table (ATT).

2τ is an application-specific threshold [1], [21].
3min tt is the minimum traveling time for an object to move from tr′’s

device to tr’s device. It is to be detailed in Section V-C.

(deviceID, objectID, ts, te)

Temporal Cleansing

Spatial Cleansing

(deviceID, objectID, ts, te)

(deviceID, objectID, t)

Fig. 5. Two phase spatiotemporal data cleansing

Consider all the raw readings about object1 from Table I,
and suppose that threshold τ is specified as four time units.
The temporal cleansing on all those readings will generate
the aggregate tracking table as shown in Table III. For exam-
ple, tracking record (r6, object1 , t0, t7) means that object1 is
tracked by a reader r6 from time t0 to time t7.

TABLE III
AGGREGATE TRACKING TABLE

deviceID objectID ts te
r6 object1 t0 t7
r7 object1 t3 t10
r8 object1 t14 t16
r9 object1 t16 t21
r1 object1 t24 t27
r2 object1 t29 t32
r3 object1 t33 t38

TABLE IV
RESULT OF SPATIAL CLEANSING

deviceID objectID ts te
r6 object1 t0 t7
r7 object1 t8 t10
r8 object1 t14 t16
r9 object1 t19 t21
r1 object1 t24 t27
r2 object1 t29 t32
r3 object1 t33 t38

The second phase, called Spatial cleansing, takes the ag-
gregate tracking table as input, identifies possible spatial
ambiguities, and reduce them by a distance-aware graph for
all positioning devices in the indoor space.

We look at the idle time between tr and tr′, i.e., tidle =
tr.ts−tr′.te, and compare it with the minimum traveling time
min tt on object need to move from device tr′.deviceID to
device tr.deviceID . If tidle < min tt, it is impossible for
the object to move so fast from one device to the other, and
therefore tracking record tr’s time interval will be truncated
accordingly. Note such a truncation may remove the entire
tracking record tr if tr.te is also too early to be possible with
respect to the minimum movement time. Such minimum times
between devices are captured in a distance-aware graph, to be
detailed in Section V.

Refer to the running example whose ATT is shown
in Table III. Assuming the minimum movement time be-
tween device r6 and r7 is one time unit, tracking record
(r7, object1, t3, t10) is truncated to (r7, object1, t8, t10) by the
spatial cleansing. The result is shown in Table IV.

In the example above, we assume that the first tracking
record in ATT is correct and we make the spatial cleansing
check each subsequent tracking record in ATT with respect
to its previous tracking record tr′ for the same object. This
assumption holds in the airport scenario because the bags are
first handled manually by the staff at check-in desks, and thus
it is unlikely for the first readings to be incorrect. As a matter
of fact, our spatial cleansing can be extended to other cases
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where the known correct tracking record(s) is not the first one.
In such a case, we need to make the spatial cleansing work
both in the forward and/or backward directions starting from
the known correct record. For example, in the airport scenario
“belt loader readers” may be placed at an airplane and they
thus yield known correct ending records.

IV. TEMPORAL CLEANSING

In this section, we detail the temporal cleansing that elimi-
nates the temporal redundancy in RFID data.

Algorithm 1 describes the temporal cleansing process. The
algorithm starts with the initialization of a new aggregate
tracking table ATT (line 1). For each raw reading rr from
RRT , all the aggregate tracking records with the same device
and object as rr in the current ATT are fetched into set trs
(line 4). If trs is not empty and rr is temporally close enough
to an existing tracking record tr in trs, i.e., rr.t− tr.te ≤ τ ,
tr’s time interval is extended to rr.t and rr is processed
(lines 5–10). Otherwise, rr cannot be combined to any existing
tracking record, and therefore a new tracking record is created
for it and inserted to ATT (lines 11–12).

Algorithm 1 TemporalCleansing(Raw reading table RRT ,
Threshold τ )

1: ATT ← ∅; trs← ∅
2: for each rr ∈ RRT do
3: flag ← false
4: trs ← {tr ∈ ATT | tr.objectID = rr.objectID ∧
rr.deviceID = tr.deviceID}

5: if (|trs| > 0) then
6: for each tracking record tr ∈ trs do
7: if (rr.t− tr.te ≤ τ ) then
8: tr.te ← rr.t;
9: flag ← true;

10: break
11: if flag = false then
12: insert (rr.deviceID ,rr.objectID , rr.t, rr.t) to ATT

Note that the temporal cleansing here is characterized by its
off-line process manner and the use of threshold τ to control
the temporal aggregation. In contrast, the pre-processing em-
ployed in the previous work [11] assumes data are online in
a stream and it does not use a time threshold.

We use the formula shown in Eq. 1 to set the threshold τ .

Threshold(τ) =
detection range diameter

object moving speed
(1)

Here, we estimate how long it takes an object to move through
a circular detection range of a reader. An example is shown
in Figure 6. In Section VI, we experimentally test the effect
of this method for setting τ .

V. DISTANCE-AWARE SPATIAL CLEANSING

In this section, we elaborate on spatial cleansing, i.e.,
reducing the spatial ambiguity by exploiting spatiotemporal
constraints imposed by the RFID reader deployment and the
indoor topology. In Section V-A, we describe a graph that
captures those indoor spatiotemporal constraints. In Section

Fig. 6. An example of threshold setting

V-B, we detail how to construct such a graph given the RFID
reader deployment in an indoor space. In Section V-C, we
propose the spatial cleansing algorithm using the graph.

A. Distance-Aware Deployment Graph

As described in Section III, spatial ambiguity takes place
when two tracking records temporally overlap or are too close
to each other. For such cases, we need to check if the two
involved readers are close enough in the deployment. If they
are not close enough for the object to move from one to the
other during the time gap or for it to be seen simultaneously
by the two readers, the two tracking records are dirty as they
tell wrong information with respect to the reality. In order
to reduce such spatial ambiguity, it is necessary to know the
distances between readers. However, such information is not
captured in the deployment graph [11] as shown in Figure 3.

Motivated as such, we propose a distance-aware deployment
graph in this section. The goal of such a graph is to enable
deriving the minimum travel time from one reader to another.
The basic idea is to model the readers as graph vertices and
capture such minimum travel times in the corresponding graph
edges. For the sake of flexibility, we do not use the travel
time directly as the graph weights. Instead, for each edge
connecting two readers ri and rj , we store the minimum
indoor walking distance between them and the maximum
walking speed allowed by the physical conditions.

Formally, the distance-aware deployment graph is a
weighted graph Gdd = (V,E,LV ,LE), where

1) V is a set of vertices. Each vertex vi ∈ V represents a
deployed positioning device ri.

2) E is the set of edges, where E = {(ri, rj) | ri, rj ∈
V ∧ ri 6= rj ∧D2V (ri) ∩D2V (rj) 6= ∅ }.

3) LV : V → R assigns to a vertex vi the minimum
dwell time that an object o should spend in device ri’s
detection range such that o is detected by device ri.

4) LE : E → R×R assigns to a edge (ri, rj) the minimum
indoor walking distance between two devices ri and rj
and the maximum speed with which an object can move
between them. Specifically, LE((ri, rj)) = (di,j , Si,j).

The distance-aware deployment graph corresponding to
floor plan in Figure 2 is shown in Figure 7. Our specific design
on the weights above are justified by practical needs. Different
RFID readers (and other positioning devices) usually imply
different minimum dwell times for detection. Even for one
particular reader, its minimum dwell time may be changed
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due to the tuning of its physical parameters (e.g., sampling
frequency). Therefore, our design of individual graph vertex
weights can support such differences and possible changes.

On the other hand, the travel time between two readers does
not solely depend on the distance between them. For example,
the moving speed of the conveyor belt system in an airport is
tunable, in order to cope with different baggage traffic loads.
As a result, the minimum travel time between two readers
monitoring the belt is not merely determined by the distance
but also by the current moving speed of the belt. Furthermore,
in a large conveyor belt system or multiple belt systems, the
moving speed is not always the same among different parts.
Therefore, our design of both distance and speed weights on
each edge is necessary to support such needs in reality.
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B. Distance-Aware Deployment Graph Construction

The distance-aware graph is constructed by Algorithm 2.
It explicitly takes the set of devices and their weights as

Algorithm 2 DistanceGraphConstruction(Devices D, De-
vice weights W )

1: Gdd(V,E,LV ,LE)← (D, ∅,W, ∅)
2: for each device ri ∈ D do
3: for each device rj ∈ D and rj 6= ri do
4: if (ri, rj) ∈ Gdd.E then
5: continue
6: find the indoor shortest path P from ri to rj
7: if there is no other device on P then
8: add edge (ri, rj) to Gdd.E with the weights between

them
9: else

10: for each pair of consecutive devices rk and rl on P
do

11: if (rk, rl) ∈ Gdd.E then
12: continue
13: else
14: add edge (rk, rl) to Gdd.E with the weights

between them
15: return Gdd

input. For each pair of devices ri and rj (lines 2–3), the
indoor shortest path P is found if the edge (ri, rj) is not

in the graph yet (lines 4–6). If P only contains devices ri
and rj , a new edge is created with the corresponding weights
(line 7–8). Otherwise, each pair of consecutive devices on P
are processed likewise (line 10–14).

Inside Algorithm 2, the indoor shortest pathes are computed
according to the algorithms proposed elsewhere [15]. For the
sake of simplicity, the input for those algorithms are implicitly
passed to Algorithm 2.

C. Spatial Cleansing Algorithm

We use the information captured by the distance-aware
deployment graph (Gdd) to conduct the spatial cleansing
for the indoor RFID tracking data. To identify and reduce
the possible spatial ambiguity involving two RFID readers
rs and rt, we first compute the minimum traveling time
(min tt(rs, rt)) that a moving object needs to reach from rs
to rt. Specifically, we apply the Dijkstra’s algorithm to graph
(Gdd), expanding the search from rs until rt is reached. In the
process, we also take into account the minimum dwell time
of a device ri, which is captured by the corresponding vertex
vi’s weight Gdd.LV (vi), in prioritizing the visiting order of
unvisited vertices (devices). Due to the page limit, we omit
the low level details of min tt(rs, rt) computation.

The spatial cleansing procedure is shown in Algorithm 3. It
takes the aggregate tracking table (ATT ) and the distance-
aware deployment graph Gdd as input. For each tracking
record tr in ATT , the spatial cleansing works as follows. We
first check its dwell time4 (line 2).

Algorithm 3 SpatialCleansing(Aggregate tracking table
ATT , Distance-aware deployment graph Gdd)

1: for each tr in ATT do
2: mdt← Gdd.LV (tr.deviceID)
3: tr′ ← the previous record in ATT such that (tr.objectID =
tr′.objectID) ∧ (tr.deviceID 6= tr′.deviceID)

4: if tr′ = null then
5: continue
6: mtt← min tt(tr′.deviceID , tr.deviceID)
7: if (tr.ts − tr′.te < mtt+mdt) then
8: tr.ts ← tr′.te +mdt+mtt
9: if (tr.te − tr.ts ≤ 0) then

10: delete tr from ATT

Next, we get tr’s previous tracking record tr′ from ATT
that involves the same object and device as tr (line 3). We
assume that tr′ is cleaned since it appears before tr′, and
subsequently clean tr with respect to tr′ (lines 6–10). Specif-
ically, we get the minimum traveling time from tr′.deviceID
to tr.deviceID (line 6) according to the procedure described
above. If the idle time between tr′ and tr, i.e., tr.ts − tr′.te,
is too short compared to the minimum traveling time plus
the minimum dwell time for tr.deviceID (line 7 tr appears
too early as a tracking record. Therefore, we truncated tr.ts
accordingly (line 8) to make sure the idle time is sufficient with
respect to the spatiotemporal constraint. Further, we delete tr
from ATT if its updated dwell time is too short (lines 9–10).

4Given a tracking record tr, its dwell time is tr.te − tr.ts.
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Fig. 8. Spatial cleansing cases

We illustrate spatial cleansing cases in Figure 8. The case
shown in Figure 8(a) is a clean case where the idle time
between two consecutive tracking records is sufficiently long,
i.e., longer than the minimum traveling time between devices
r6 and r7. We need to do nothing for such a case in the
spatial cleansing. The case shown in Figure 8(b) illustrates
that we need to truncate tr.[ts, te], cutting tr’s part shown in
black, because the idle time between tr′ and tr is too short,
i.e., shorter than the minimum traveling time between devices
r6 and r7. The case shown in Figure 8(c) takes place as a
subcase of the previous case. Here, tr is deleted after the
spatial cleansing because its remaining dwell time is too short.

VI. EXPERIMENTAL STUDIES

In this section, we conduct experiments to evaluate our
devised indoor RFID data cleansing techniques. Section VI-A
describes the experimental settings. Section VI-B presents the
experimental results.

All the experiments were implemented in C++. They were
run on a 64-bit Windows 7 enabled PC with 2.8GHz core i7
processor and 7.89GB main memory.

A. Experimental Setup

We describe the performance metrics used in our evaluation,
followed by the descriptions of the datasets used.

1) Metrics: The performance of our proposals is evaluated
by two metrics: efficiency and effectiveness. The efficiency is
measured by counting the clock time.

The effectiveness is measured by the data reduction ratio,
defined as # of records before cleansing

# of records after cleansing . Specifically, the data reduc-

tion ratio for temporal cleansing is |RTT |−|ATT |
|RTT | , where RTT

and ATT are respectively input and output of the temporal
cleansing (Algorithm 1). The data reduction ratio for spatial
cleansing is |ATT |−|ATT ′|

|ATT | , where ATT ′ refers to the spatial
cleansing method (Algorithm 3)’s output. We also test the
trends of the effectiveness by varying the thresholds of both
algorithms.

We further measure the effectiveness of our spatial cleansing
algorithm by counting the number of trajectories free of spatial
ambiguity before and after cleansing.

2) Datasets: We used both synthetic and real data in our
experimental studies. The parameter settings are summarized
in Table V. The default values are bolded.

TABLE V
EXPERIMENT PARAMETERS

Parameters Settings
Detection range 1m, 3m, 5m

Number of objects 1000, 2000, 5000, 10000
Number of floors 1, 2, 3
Number of doors 100, 200, 300

Threshold (τ ) 5, 10, 15, 20. 25, 30

Synthetic Data. For simplicity, we regard hallways and
staircases as rooms, and staircase entrances as doors. We adopt
a floor plan with 85 rooms, which are connected by 100 doors.
We vary the number of floors, and also the number of rooms
and doors. Each pair of adjacent floors are connected by 2
staircases.

By default, there are 5000 RFID tagged objects moving
inside a 2-floor building. The movement of an object follows
the random waypoint model [12] with a constant speed of
1.1m/s . More specifically, an object in a room can move inside
the room, or move to another room that is chosen at random.
On the way to the destination, an object can be detected by
one to ten RFID readers. The RFID readers are deployed at
the doors that connect different rooms. The detection range of
each reader is randomly chosen from 1m-5m.

Real Data. We use the real data set collected from Aalborg
Airport that operates with an automatic RFID-based baggage
handling system. As shown in Figure 9, the baggage handling
system features a number of specific semantic locations (e.g.,
check-in desks, sorter) and RFID readers. A total of 5 RFID
readers are deployed in different semantic locations.

R1

R1
R5 R2

R4 R3

Screening

Fig. 9. Baggage hall at Aalborg Airport

During the check-in phase, each bag is attached with a
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passive RFID tag which is to be detected by the deployed
RFID readers. From check-in desks (CD), bags pass the
screening area through conveyor belts. After a successful
security screening, the bags enter the main sorting area (SO)
where the sorting system ensures that the bag is pushed into a
designated chute. Note the bags move in a constrained manner
on different conveyors belts before reaching into chutes. The
length and the speed of each conveyor are different. Such
constraints are captured in the proposed distance-aware de-
ployment graph, and subsequently utilized in spatial cleansing.

The bags in chutes are then loaded into wagons by the bag-
gage handling staff before they are transported to a designated
aircraft through one of the gateways (GW-1 or GW-2). On the
other hand, arrival bags are carried by wagons from an aircraft
to the arrival hall (AR) through gateway GW-1 where baggage
handling staff unloads the bags from wagons on to the arrival
conveyor belt.

We have continuously recorded the data for two consecutive
months. Then, we collect more than half a million raw reading
records for about 20000 RFID tagged bags. The real data used
for our experiments were obtained through the system installed
by Lyngsoe Systems.

B. Experimental Results

We start with investigating the effect of the formula (equa-
tion 1) for setting threshold. We fixed the default detection
range as 3m and compared the effectiveness of temporal
cleansing (data reduction ratio) using different threshold val-
ues. The result is shown in Figure 10. The data reduction ratio
seems to flatten at very small and very large threshold values.
With a larger threshold, more raw readings are aggregated
together and with very small thresholds not many raw readings
are aggregated together. The size of threshold is bounded at the
low end by the sampling frequency and at the higher end by the
detection range of the reader. The results show how application
parameters can be effectively used to set the threshold.
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Fig. 10. Effectiveness of the threshold formula (Eq. 1)

Sections VI-B1 and VI-B2 report the spatiotemporal cleans-
ing results on synthetic and real data, respectively. Sec-
tion VI-B3 briefly shows the experimental results on the
distance-aware deployment graph construction.

1) Spatiotemporal Cleansing Results on Synthetic Data:
The results on the temporal cleansing effectiveness are re-
ported in Figure 11.

By transferring raw readings into aggregated tracking
records, a significantly large portion of redundant records can
be eliminated, as shown in Figure 11(a). Specially, for the
dataset having 10K objects, the reduction ratio is as high as
over 90% in all tested cases. Also, the data reduction ratio
increases while enlarging the value of the threshold. With a
larger threshold, the chance is higher for raw readings being
aggregated into a single tracking record. After the threshold
exceeds some value, say 15, the increasing trend flattens. It
implies that most raw readings could be aggregated by using
a reasonably large threshold. Meanwhile, the ratios slightly
vary for different numbers of objects, since the trajectories for
different objects are generated independently.

The aggregate tracking table returned by the temporal
cleansing is passed to Algorithm 3 to do the spatial cleansing.
We also test the data reduction ratio for spatial cleansing. Ac-
cording the results reported in Figure 11(b), the data could be
further reduced by removing spatial ambiguities. Over 10% of
records with spatial ambiguities can be reduced for the default
dataset. Again, the data reduction ratio increases slightly after
the threshold reaches 15. Larger threshold values correspond
to stricter spatial distance constrains between readers, and thus
more records can be disqualified.

We also test the spatiotemporal cleansing effectiveness with
respect to the number of objects and report the results in
Figure 11(c). The effectiveness of temporal cleansing does
change much with increasing number of objects, as can be seen
from the left Y-axis. More than 90% of raw data is reduced
after temporal cleansing that loses no information. Regarding
spatial cleansing effectiveness, slight decrease is noticed when
number of the object increases, see from the right Y-axis. The
overall data size is further reduced by 6-10%. These findings
suggest that proposed spatiotemporal cleansing is effective.

The results on efficiency are reported in Figure 12. Referring
to the results shown in Figure 12(a), the temporal cleansing
algorithm is efficient, e.g., it takes less than 15 seconds for
handling 10000 objects (about 1M records). It also scales well
with respect to the varied thresholds.

The results about spatial cleansing efficiency are reported
in Figure 12(b). The algorithm achieves better efficiency at a
higher threshold. The reason is that fewer tracking records are
generated by temporal cleansing using larger thresholds.

Figure 12(c) reports the results on the efficiency with respect
to the number of objects for both spatial and temporal cleans-
ing algorithms. Both algorithms take less than 15 seconds for
the largest testing dataset. The processing time of temporal
cleansing increases quadratically, which is consistent with
Algorithm 1. For spatial cleansing, the running time increases
linearly. It is more efficient because its complexity is lower
and it has a much smaller input, as the size of an aggregate
tracking table is much smaller than that of a raw reading table.

To further study the cleansing effectiveness, we count the
trajectories with/without spatial ambiguities before and after
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Fig. 11. Cleansing effectiveness on synthetic data
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Fig. 12. Cleansing efficiency on synthetic data

the spatial cleansing. The results are shown in Figure 13. It can
be seen that the portion of trajectories free of spatial ambiguity
is increased by 40% in the worst case, and by up to 85% in
the best case. These results show that our spatial cleansing
technique is effective in ambiguity reduction.
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Fig. 13. Valid path evaluation on synthetic data

2) Spatiotemporal Cleansing Results on Real Data: We
also use the real dataset from Aalborg Airport to test the ef-
fectiveness of both temporal and spatial cleansing algorithms.
The results are reported in Figure 15. For both cleansing
algorithms, the effectiveness increases with the increase of
thresholds. A larger threshold tends to aggregate more raw
readings in temporal cleansing and thus exclude more tracking
records to pass to the spatial cleansing. After the threshold
reaches 25, data reduction ratios of both algorithms do not
show significant changes. The “turning point” of the threshold,
which is determined by the objects’ moving patterns, can be
viewed as a limit of the increasing trend.

We measure the efficiency of both algorithms over the real
dataset and report the results in Figure 16. The processing time
of both algorithms decreases with the increase of the threshold.

The trend is opposite to the observations in Figure 15, since
the more data to be cleansed, the more efforts have to be paid.

We also test the effectiveness of spatial temporal cleansing
on real data by counting the trajectories with and without
spatial ambiguities. Figure 14 reports the relevant results.
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Fig. 14. Valid path evaluation on real data

Figure 14(a) shows that before cleansing more than 25%
trajectories have spatial ambiguities. In contrast, Figure 14(b)
shows that after our spatial cleansing only around 8% trajec-
tories still have spatial ambiguities. This again demonstrates
the effectiveness of our spatial cleansing technique.

3) Distance-Aware Deployment Graph Construction Re-
sults: Finally, we evaluate the efficiency of the distance-aware
deployment graph construction (Algorithm 2). We use three
buildings with 100, 200, and 300 doors. Since we deploy RFID
readers at doors, we define the coverage ratio as # of readers

# of doors .
By varying the coverage ratio of a given building, we tune the
number of vertices therefore the size of the deployment graph.
The relevant results are shown in Figure 17.
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In Figure 17, each reported value is the average of 50 runs
of Algorithm 2. The construction time increases super linearly
with the increase of the coverage ratio. Also, the construction
efficiency scales well with the increase of the number of doors.
In all tested cases, the construction time is below 0.6 second.
We can conclude that by using Algorithm 2, the deployment
graph can be efficiently constructed.

We also study the graph construction time cost for real
data. To construct a distance-aware deployment graph for a
real reader deployment in Figure 9, it takes less than 50
milliseconds, which is very efficient. Due to the space limit,
we omit the further details.

VII. CONCLUSION AND FUTURE WORK

In this paper we study data cleansing for indoor RFID
tracking data. We focus on two relevant tasks: temporal re-
dundancy elimination and spatial ambiguity reduction. For the
former, we design a temporal cleansing algorithm to aggregate
raw RFID readings temporally such that the data size is
compressed without information loss. For the latter, we design
a spatial cleansing technique. We propose a distance-aware
deployment graph to capture the spatiotemporal constraints
implied by the deployment of RFID readers as well as the
indoor topology. By exploiting the spatiotemporal constraints
captured in the graph, we design a spatial cleansing algorithm
to reduce the spatial ambiguity in RFID data. We conduct
extensive experimental studies using both synthetic data and
real data. The results demonstrate that the proposed techniques
are effective and efficient in fulfilling the data cleansing tasks
for indoor RFID data. The techniques proposed in this paper
also apply to indoor tracking data obtained by other symbolic
positioning technologies, e.g., Bluetooth.

There are several directions for future work on cleansing
indoor tracking data. First, it is interesting to make use of the
Radio Signal Strength Information (RSSI) if such information
is available in the raw data. RSSI may indicate the distance
between an object and the relevant positioning device(s),
which can be exploited to enhance the data cleansing.

Second, it is possible to conduct individualized data cleans-
ing for different objects if their individual features (e.g.,
moving speed and pattern) are known. In this paper, we use
the maximum speed of all objects in the distance-aware de-
ployment graph. To support individualized cleansing, the graph
and the device-to-device minimum traveling time computation
should be adapted accordingly for individual objects.

Third, it is relevant to conduct queries and/or mining tasks
on cleansed indoor tracking data in order to obtain more
interesting and more informative results.
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Fig. 15. Cleansing effectiveness on real data
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