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Abstract—Chronic kidney disease (CKD) is a major public
health concern with rising prevalence. In this study we consider
24 predictive parameters and create a machine learning classifier
to detect CKD. We evaluate our approach on a dataset of 400
individuals, where 250 of them have CKD. Using our approach we
achieve a detection accuracy of 0.993 according to the F1-measure
with 0.1084 root mean square error. This is a 56% reduction of
mean square error compared to the state of the art (i.e., the
CKD-EPI equation: a glomerular filtration rate estimator). We
also perform feature selection to determine the most relevant
attributes for detecting CKD and rank them according to their
predictability. We identify new predictive attributes which have
not been used by any previous GFR estimator equations. Finally,
we perform a cost-accuracy tradeoff analysis to identify a new
CKD detection approach with high accuracy and low cost.

Index Terms—Chronic kidney disease, machine learning, fea-
ture selection.

I. INTRODUCTION

Chronic kidney disease is a worldwide public health prob-

lem with an increasing incidence, prevalence, and high cost.

Approximately 2.5-11.2% of the adult population across Eu-

rope, Asia, North America, and Australia are reported to have

chronic kidney disease [1], where in the USA alone it has

affected more than 27 million individuals [2]. According to

The National Kidney Foundation about 59% of all American

are at risk of developing kidney disease in their lifetime [3].

The increase of CKD is partially explained by the increasing

prevalence of diabetes mellitus and hypertension which are the

leading risk factors for CKD. CKD promotes hypertension and

dyslipidemia, which, in turn, can contribute to the progression

of renal failure.

Recent studies suggest that some of these adverse outcomes

can be prevented or delayed by early detection and treatment

[4]. Awareness of CKD among patients is gradually increasing,

but still low. According to the 2003-2004 National Health and

Nutrition Examination Survey, less than 5 percent of patients

with stage 1 or 2 CKD and less than 10 percent with stage 3

reported having been diagnosed with CKD; only 45 percent

of patients with stage 4 were aware of their condition [5].

Since there is a relatively small number of practicing

nephrologists, nephrologists cannot exclusively manage all

patients with CKD. The burden of CKD management thus

falls largely on primary care providers (PCPs). A recent study

[6] has shown that awareness of CKD by all types of PCPs

is unacceptably low and knowledge of CKD management

is particularly poor among family practitioners, especially

among those with more than 10 years in clinical practice and

who spend more than 50% of their time practicing clinical

medicine. Hence an accurate, convenient, and automated CKD

detection method is important for clinical practice.

In this paper we develop an automated machine leaning

solution to detect CKD and explore 24 parameters related to

kidney disease. The dataset used for evaluation consists of

400 individuals and suffers from noisy and missing data. We

need a robust classifier that can deal with these issues. Hence,

we evaluate solutions with three different classifiers: k-nearest

neighbour, random forest and neural nets.

The main contributions of this paper are:

• Our solution, using a random forest classifier and 24 at-

tributes, achieves a detection accuracy of 0.993 according

to the F1-measure with a 0.1084 root mean square error.

We show that this accuracy is significantly higher than

current accepted GFR estimator equations; about 60%

and 56% RMSE reduction compared to the Modification

of Diet in Renal Disease (MDRD) equation [7] and

the Chronic Kidney Disease Epidemiology Collaboration

(CKD-EPI) equation [8].

• Using a wrapper method from machine learning we

identify a set of 12 attributes (down from 24 attributes)

which detect CKD with high accuracy. Also, using the

LASSO regularization method we rank the attributes

according to their predictive capability in detecting CKD

and further reduce the predictive attributes set to 10.

By adding red blood cells, pus cell clumps, hemoglobin,

diabetes mellitus, coronary artery disease, pedal edema,

anemia as attributes with currently used serum creatinine

and albumin, we achieve a 57% reduction in root mean

square error compared to the state of the art solutions.

• We identify a highly accurate and cost effective CKD

detection classifier considering only 5 attributes: spe-

cific gravity, albumin, diabetes mellitus, hypertension and

hemoglobin as features. Using this classifier we have

achieved 0.98 F1-measure and 0.11 RMSE with a total

of $45.05 cost for patient tests.
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II. RELATED WORK

Chronic kidney disease (CKD) is defined by the presence

of structural or functional abnormalities of the kidney with or

without an accompanying reduction in glomerular filtration

rate (GFR). Persons with CKD may have one or more of

the following: pathologic abnormalities, markers of kidney

damage (i.e., imaging abnormalities and abnormalities in

serum or urine, including proteinuria and abnormal urinary

sediment), or GFR less than 60 mL per minute per 1.73m2

for at least three months. Glomerular filtration rate (GFR)

is one of the commonly used indexes for early detection of

CKD. A five-stage classification system for the disorder has

been established by the US National Kidney Foundation’s

Kidney Disease Outcomes Quality Initiative and adopted inter-

nationally by the Kidney Disease: Improving Global Outcomes

(KDIGO) initiative to guide identification of cases and facil-

itate management [9], [10], [11], where glomerular filtration

rate (GFR) is the estimator for CKD. Estimation of GFR varies

by age, sex, and body size. GFR is approximately 120 to 130

mL per minute per 1.73 m2 in young adults, and decreases

by an average of 1 mL per minute per 1.73 m2 per year after

30 years of age [12]. A GFR less than 60 mL per minute per

1.73 m2 represents a loss of at least one-half of normal kidney

function; below this level, there is an increased prevalence of

CKD complications.

Earlier studies focused on plasma creatinine (Pcr) and cre-

atinine clearance as markers of GFR, but Pcr usually does not

increase until GFR has decreased by 50% or more, and many

patients with normal Pcr levels frequently have lower GFR

[13]. Creatinine clearance is also used to estimate the GFR.

But, it overestimates true GFR [14] since creatinine is filtered

and secreted by the proximal tubules. Generation of creatinine

is determined by muscle mass and diet, whereas tubular

secretion could be decreased by the use of medications such as

trimethoprim and cimetidine (Tagamet). The serum creatinine

level is an insensitive marker of GFR early in the course of

CKD. A 33% decrease in GFR may raise the creatinine level

from 0.8 to only 1.2 mgperdL(70.72 to 106.08molperL). If

the prior creatinine level is not known, this decrease in GFR

may go unrecognized. When estimated GFR is suspected to be

inaccurate, for example, in patients with severe malnutrition

or paraplegia-a 24-hour urine collection should be performed

to evaluate creatinine clearance.

Currently, there are three equations commonly used to

estimate GFR on the basis of creatinine concentration in serum

and demographic features: the Cockcroft-Gault equation [15],

the Modification of Diet in Renal Disease (MDRD) equation,

[7] and the more accurate Chronic Kidney Disease Epidemiol-

ogy Collaboration (CKD-EPI) [8] formula. Equations 1 and 2

show the MDRD and CKD-EPI equations expressed as single

equations where Scr is serum creatinine in mg/dL and α, k
are constant values depending on the gender of the patient.

GFR = 175× (Scr)
−1.154 × (Age)−0.203

× (0.742iffemale)× (1.212ifAfricanAmerican)
(1)

Equation Attributes
Cronic Kidney Disease Age, sex, race,

Epidemiology Collaboration serum creatinine level
Cockcroft-Gault Age, weight,

sex, serum creatinine level
Modification of Age, sex, race
Diet in Renal and serum urea, nitrogen,

Disease albumin, creatinine level

TABLE I
EQUATIONS AND ATTRIBUTES FOR GFR ESTIMATION

GFR = 141×min(Scr/k, 1)
α ×max(Scr/k, 1)−1.209

× 0.993Age × 1.018[iffemale]× 1.159[ifblack]
(2)

Table I shows the parameters used by these equations

to estimate GFR. The Cockcroft-Gault equation uses age,

weight, sex, and serum creatinine level for GFR estimation.

MDRD and CKD-EPI equations do not require weight or

height variables because the results are reported normalized

to accepted average adult surface area.

The Cockcroft-Gault equation systematically overestimates

GFR. The MDRD is reasonably accurate in patients with CKD,

but it may misidentify persons with normal kidney function as

having CKD. The MDRD can also be affected by fluctuations

in creatinine production and fluid balance; it gives falsely

elevated estimated GFRs in malnourished and overhydrated

patients and falsely decreased GFRs due to increased serum

creatinine levels in patients taking trimethoprim and cimetidine

[16]. Also, its accuracy varies among ethnic groups [17].

Estimation accuracy of GFR using the MDRD equation study

has achieved up to a root mean square error of 0.274 [8]. On

the other hand, the CKD-EPI formula can estimate GFR with

root mean square error of 0.250 [8], hence shows better per-

formance particularly at high rates, and could overcome some

of these limitations. Both the MDRD and CKD-EPI equations

are based on serum creatinine. Despite modest reduction in

bias with the CKD-EPI equation, estimates remain imprecise,

with some people showing large differences between the

measured and estimated GFR. Like all other creatinine-based

estimation equations, they suffer from physiologic limitations

of creatinine as a filtration marker [18].

Research presented in [19] has considered 5 attributes:

blood pressure, serum creatinine, packed cell volume, hyper-

tension, and anemia to calculate the L-factor and clustered

CKD and non-CKD patients based on the L-factor value. Ac-

cording to their evaluation CKD cannot be detected based on

their L-factor classifiers. Other works [20], [21] have evaluated

machine learning algorithms such as back propagation neural

networks, radial basis functions, random forests and SVMs

and achieved up to 85.3% accuracy on identifying CKD. Also,

[22] performs feature selection techniques such as information

gain, gain ratio, or attribute evaluation and fusion based feature

selection to identify relevant features, but their evaluation has

not presented the relevant selected features. Moreover, this

work presented classification accuracy of naive bayes, random

forest, J48 classifier and logistic regression classifier without
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Attribute Data type
Age age in years

Blood Pressure mm/Hg
Specific Gravity Nominal

Albumin nominal(1-5)
Sugar nominal (1-5)

Red Blood Cells normal,abnormal
Pus Cell normal,abnormal

Pus Cell clumps present,notpresent
Bacteria present,notpresent

Blood Glucose Random mgs/dl
Blood Urea mgs/dl

Serum Creatinine mgs/dl
Sodium mEq/L

Potassium mEq/L
Hemoglobin gms

Packed Cell Volume nominal
White Blood Cell Count cells/cumm
Red Blood Cell Count millions/cmm

Hypertension yes, no
Diabetes Mellitus yes, no

Coronary Artery Disease yes, no
Appetite good,poor

Pedal Edema yes,no
Anemia yes,no

TABLE II
ATTRIBUTE INFORMATION

mentioning which attributes were used as features for these

classifiers.

Hence, the goals of our study are to comprehensively

explore parameters which are related to kidney disease and to

introduce a cost effective machine learning approach to detect

early CKD instead of the GFR estimation equations.

III. DATA SET AND ATTRIBUTES

Our research uses a publicly available dataset [23]: Early

stage of Chronic Kidney Disease. This dataset includes 400

patients with 24 attributes collected from each of these pa-

tients; 250 of them have CKD. The ages of these patients vary

from 2 to 90 with mean of 51.48 and a standard daviation of

17.17. Most of the 24 collected attributes shown in Table II

have not been used by previous state of art approaches for

CKD detection, e.g., most approaches use only age, serum

creatinine, albumin, and urea.

These attributes along with their relation with kidney dis-

eases are described below:

• Serum creatinine is a waste product that comes from

muscle activity. When kidneys are working well they

remove creatinine from the blood. As kidney function

slows, blood levels of creatinine rise. According to the

studies [7] [8], serum creatinine, age, serum urea, and

specific gravity are the most used predictive parameters

for CKD detection.

• Studies have shown graded relations between increased

albuminuria (the presence of albumin in the urine) and

kidney outcomes in diverse study populations [24]. Also,

data from the general U.S. population indicate that al-

buminuria is the most typical marker of CKD in young

adults [25].

• High blood pressure can damage blood vessels in the

kidneys, reducing their ability to work properly. When

the force of blood flow is high, blood vessels stretch so

blood flows more easily. Eventually, this stretching scars

and weakens blood vessels throughout the body, including

those in the kidneys. If the kidneys’ blood vessels are

damaged, they may stop removing wastes and extra fluid

from the body. Extra fluid in the blood vessels may then

raise blood pressure even more, creating a dangerous

cycle [26].

• CKD is an independent risk factor for coronary artery
disease (CAD). It is the leading cause of morbidity and

mortality in patients with CKD [27].

• Study [28] shows that 70% of those with an elevated

serum creatinine had hypertension. Hence, high blood

pressure, CAD and hypertension are good predictive

attributes for CKD.

• Anemia is a condition in which the body has fewer red

blood cells than normal. Red blood cells carry oxygen

to tissues and organs throughout the body and enable

them to use energy from food. With anemia red blood

cells carry less oxygen to tissues and organs, particularly

the heart and brain. Anemia commonly occurs in people

with CKD having permanent or partial loss of kidney

function. Anemia might begin to develop in the early

stages of CKD, when someone has 20 to 50 percent of

normal kidney function [29]. Anemia is a predictive factor

for early renal disease. Hemoglobin, red blood cell count,
packed cell volume in the patients blood are used to detect

early stage of anemia.

• According to National Kidney Foundation [30] about a

third of people with diabetes may get CKD. The filtering

units of the kidney are filled with tiny blood vessels.

If a person has diabetes, high sugar levels in the blood

can cause these vessels to become narrow and clogged.

Without enough blood, the kidneys become damaged

and albumin passes through these filters and ends up in

the urine where it should not be. Diabetes causes nerve

damage which make patient unable to detect if his or her

bladder is full. The pressure from a full bladder can cause

damage to the kidney. Blood glucose is used to screen for

diabetes. Hence, diabetes, blood glucose and albumin in

urine are good indicators for CKD.

• Though sodium and potassium are essential for the hu-

man body, a person with CKD cannot eliminate excess

sodium, potassium and fluid from his body. Eventually

sodium, potassium, and fluid buildup in tissues and blood-

stream. High sodium increases blood pressure [31]. High

potassium in the blood is called hyperkalemia, which may

occur in people with advanced CKD. Some of the effects

of high potassium are nausea, weakness, numbness and

slow pulse. Both sodium and potassium are predictor

attributes for CKD.

• Edema is the medical term for swelling. Edema results

whenever small blood vessels become ‘leaky’ and release

fluid into nearby tissues. The extra fluid accumulates,
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causing the tissue to swell. A kidney condition called

nephrotic syndrome can result in severe pedal edema.

• In the developing world, infectious diseases are also im-

portant causes of kidney failure [32] , including infections

due to bacteria (tuberculosis in India and the Middle East,

streptococcal infection in Africa), viruses (HIV and hep-

atitis B and C in Africa), and parasites (schistosomiasis

in Africa and Latin America, leishmaniasis in Africa and

Asia, and malaria in Africa). Pus cells in urine indicates

infection in the kidney.

IV. CLASSIFICATION TASK

The task of classifying data is to decide class membership

Y of an unknown data item X based on a data set D =
(x1, y1), ...(xn, yn) of data items xi with known class mem-

berships yi. In binary class classification problems the class

labels y are either 0 or 1. The xi are usually m-dimensional

vectors, the components of which are called covariates and

independent variables or input variables. The relationship

between x and y is described by a probability distribution

P (x, y); where the data set D contains independent samples

from P . From statistical decision theory, it is well known that

the optimal class membership decision is to choose the class

label y that maximizes the posterior distribution P (y|x). In

this research we explore the following 3 different classification

algorithms to predict optimal class membership (CKD or not

CKD). In this section, as background, we briefly describe and

compare these classifiers and discuss their applicability for our

dataset.

A. K-Nearest Neighbours

The k-nearest neighbour algorithm [33] uses the data di-

rectly for classification without building a model first. As

such, no details of model construction need to be considered,

and the only adjustable parameter in the model is k, the

number of nearest neighbours to include in the estimate of

class membership: the value of P (y|x) is calculated simply as

the ratio of members of class y among the k-nearest neighbors

of x. By varying k, the model can be made more or less

flexible. The advantage of the k-nearest neighbours classifier

is, it is robust to noisy training data and effective with large

training datasets. The major drawback lies in the calculation of

the case neighborhood: for this, one needs to define a metric

that measures the distance between data items. In most cases

it is done by trial and error.

B. Random Forest

The random forest [34] is an ensemble approach that can

also be thought of as a form of nearest neighbour predictor.

Ensembles [35] are a divide-and-conquer approach used to

improve performance. The main principle behind ensemble

methods is that a group of ‘weak learners’ can come together

to form a ‘strong learner’. The random forest starts with a

standard machine learning technique called a ‘decision tree’

which, in ensemble terms, corresponds to our weak learner.

The decision tree algorithm repeatedly splits the data set

according to a criterion that maximizes the separation of the

data, resulting in a tree-like structure. In this algorithm an input

is entered at the top and as it traverses down the tree the data

gets bucketed into smaller and smaller sets. The random forest

takes this notion to the next level by combining trees with the

notion of an ensemble. Thus, in ensemble terms, the trees are

weak learners and the random forest is a strong learner. The

advantages of a random forest classifier are that its’ runtimes

are quite fast, and that it is able to deal with unbalanced and

missing data. Weaknesses of this algorithm are that when used

for regression it cannot predict beyond the range in the training

data, and it may over-fit data sets that are particularly noisy.

C. Neural Network

A neural network [36] is a powerful computational data

model that is able to capture and represent complex in-

put/output relationships. The motivation for the development

of neural network technology stemmed from the desire to

develop an artificial system that could perform ‘intelligent’

tasks similar to those performed by the human brain. This

model differs from the two algorithms above in the sense that

it provides a functional form f and parameter vector α to

express P (y|x) as P (y|x) = f(x, α). The parameters α are

determined based on the data set D, usually by maximum-

likelihood estimation. The true power and advantage of neural

networks lie in their ability to represent both linear and non-

linear relationships and in their ability to learn these relation-

ships directly from the data being modeled. Traditional linear

models are simply inadequate when it comes to modeling

data that contains non-linear characteristics. The most common

neural network model is the multilayer perceptron (MLP). This

type of neural network is known as a supervised network

because it requires a desired output in order to learn. The

goal of this type of network is to create a model that correctly

maps the input to the output using historical data so that the

model can then be used to produce the output when the desired

output is unknown.

D. Applicability for the Dataset

Our considered dataset [23] with 24 attributes suffers from

missing and noisy value. Hence, we need a robust and fast

non-linear classifier which can handle both noisy and missing

attribute values. All three classifiers in this study create a

non-linear decision boundary which is necessary for complex

applications like this one. The k-nearest neighbours classifier

has the advantage of performing with a small training set and

it can adopt new training data at runtime. It has a disadvantage

that it is difficult to find an optimal value of k that produces

the best performance for a training set with a finite number

of training samples. Specially value of k may change with

inclusion of new training data. On the other hand, the training

of a neural network typically requires a large amount of data

in the training set. Both random forest and neural network

classifiers have faster speeds of classification compared to k-

nearest neighbours. Both k-nearest neighbours and random

forest have good adaptivity with missing and noisy data,
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though they may over-fit particularly on noisy datasets. Feature

reduction techniques are used to reduce over-fitting for these

classifiers. Although, neural networks are fairly resistant to

noise, they are not adaptive to missing data. In these cases,

missing values are replaced with pseudo values or instances

with missing data are ignored in evaluation.

Since, we want to have a robust and fast classifier which

can also handle noisy and missing data, we have evaluated all

three of these classifiers on our dataset with both feature reduc-

tion (section V-A) and missing value handling approaches to

determine the best classification algorithm for this application.

V. ATTRIBUTE SELECTION TASK

Attribute selection is the automatic selection of attributes

in data that are most relevant to the predictive modeling

problem. It is different from dimensionality reduction. Both

methods seek to reduce the number of attributes in the dataset,

but a dimensionality reduction method does so by creating

new combinations of attributes, where as attribute selection

methods include and exclude attributes present in the data

without changing them. Attribute selection methods are used

to identify and remove unneeded, irrelevant and redundant

attributes from data that do not contribute to the accuracy of

a predictive model or may in fact decrease the accuracy of

the model. There are two general classes of attribute selection

approaches: the wrapper and embedded approaches. We have

evaluated one algorithm from each of these classes on our

dataset to determine the most relevant attributes for CKD

detection and remove the irrelevant features for cost reduction

of the detection approach.

A. Wrapper Approach

This paper performs the wrapper approach to identify the

best subset of the 24 attributes, which can be used as features

to detect CKD with high accuracy. In the wrapper approach

the attribute subset selection is done using the induction

algorithm as a black box (i.e. no knowledge of the algorithm

is needed, just the interface). The feature subset selection

algorithm conducts a search for a good subset using the

induction algorithm itself as part of the evaluation function.

The accuracy of the induced classifiers is estimated using

accuracy estimation techniques. Hence, it is a state space

search problem. The wrapper approach conducts a search in

the space of possible parameters. In this research we have used

‘best first search’ as search method due to its robustness. The

idea is to select the most promising set we have generated so

far that has not already been expanded. Best first search usually

terminates upon reaching the goal. Since it is an optimization

problem, the search can be stopped at any point and the best

solution found so far can be returned. In practice a stale search

method is used, where search is terminated if no improved set

is found in the last k expansions. An improved node is defined

as a node with an accuracy estimation at least ε higher than

the best one found so far. In the following experiments, k is

five and epsilon is 0.1%.

B. Embedded Approach

This paper performs the embedded approach to identify and

rank the attributes with higher predictability of CKD detection

and eliminate unneeded, irrelevant and redundant attributes

from consideration. Embedded approaches learn which fea-

tures best contribute to the accuracy of the detection model

during model creation. The most common type of embedded

feature selection approaches are regularization methods. Regu-

larization refers to the process of adding additional constraints

to a problem that bias the model toward lower complexity. In

this research we have used LASSO (Least Absolute Shrinkage

and Selection Operator) which is a modified form of least

squares regression that penalizes model complexity via a

regularization parameter. It achieves better prediction accuracy

by shrinkage with ridge regression, but at the same time, it

gives a sparse solution, which means that some coefficients are

exactly 0. Hence, LASSO is thought to achieve the shrinkage

and variable selection simultaneously. LASSO minimizes the

residual sum of squares subject to the sum of the absolute

value of the coefficients being less than a constant. LASSO

not only helps to improve the prediction accuracy when

dealing with multicolinearity data, but also carries several nice

properties such as interpretability and numerical stability. It is

a simple non linear dimensionality reduction technique which

has efficient solution via coordinate descent with order O(np)

where, n is the number of instances in the dataset and p is

number of attributes. Also, one of the major advantages of

using LASSO for attribute selection is that correlations in

predictor attributes are not problematic for LASSO [37].

LASSO regularization cannot handle categorical attributes,

which are present in our dataset. Hence, we have converted

each categorical attribute to k− 1 dummy attributes, where k
is the number of categories present in that variable. We have

performed group LASSO regularization [38], where all the

dummy attributes created from one categorical attribute are

grouped for attribute reduction.

VI. EVALUATION

The evaluation is divided into four sets. In subsection VI-A

we present the results of the evaluation on the dataset [23]

for detecting CKD using all 24 features with three different

classifiers: k-nearest neighbours, random forest, and neural

networks. Since, previous state of the art works [8] have

used the root mean square error (RMSE) to estimate detection

accuracy, this paper considers accuracy, F1-measure, and the

root mean square error (RMSE) as performance metrics to

compare the classifiers. All the evaluations were done using

10-fold cross validation with 20% of the data as test data.

Since it is not always practical to use 24 features, using the

wrapper approach we find the best subset of these 24 attributes

that provide excellent accuracy and report these results in

subsection VI-B. In section VI-C we rank and identify the

attributes with predictability of CKD using LASSO regular-

ization. Finally, in section VI-D we perform a cost analysis to

identify a attribute set to detect CKD with high accuracy at a

low cost.

266



Fig. 1. Detection performance of classifiers with and without replacing
missing values.

A. Predicting CKD with 24 Attributes

To run the classifiers on the dataset we must first address

missing values. We have evaluated two approaches to handle

these missing values: replacing all missing values for nominal

and numeric attributes in our dataset with the modes and

means or medians from the training data. For the k-nearest

neighbours approach, we have used the IBk algorithm con-

sidering 2 nearest neighbours. IBk′s distance computation

method assigns maximum distance when there is a missing

value encountered in one of the instances. In our random forest

algorithm we have used C4.5 [39] trees. In C4.5 the missing

values are not replaced in the dataset. Instead, an impurity

function computed takes into account the missing values by

penalizing the impurity score with the ratio of missing values.

On test set the evaluation in a node which has a test with

missing values, the prediction is built for each child node and

aggregated later (by weighting). The neural network algorithm

ignores the missing values during classifier training. Figure 1

(A), (B) shows detection performance of classifiers with and

without replacing missing values. In this evaluation we have

considered all 24 features as input for the classifier.

Figure 1 shows that, detection accuracy for the k-nearest

neighbours approach (IBk algorithm) decreases significantly

during training the classifier with missing attribute values.

In the training phase, IBk penalizes instances with missing

attribute values, which biases the classifier. Both the neural

network and random forest algorithm perform better when

trained with missing attribute values. The random forest algo-

rithms’ (C4.5 tree) impurity function computation adopts the

missing values better compared to neural networks ignoring

the missing value strategy. Hence, we achieved a highest

Attributes of the
best predictive subset

Specific Gravity
Albumin

Red Blood Cells
Pus Cell clumps
Serum Creatinine

Sodium
Hemoglobin

Diabetes Mellitus
Coronary Artery Disease

Appetite
Pedal Edema

Anemia
TABLE III

ATTRIBUTES OF THE BEST PREDICTIVE SUBSET USING WRAPPER

APPROACH

detection accuracy of 0.993 according to the F1-measure with

a 0.1084 root mean square error (RMSE) using the random

forest classifier with 100 C4.5 trees trained with missing

attribute values. This is a 56% RMSE reduction compared

to the state of the art solution (the CKD-EPI formula).

B. Best Subset of Attributes

We use the wrapper approach to identify the best subset

of the 24 attributes, that can detect CKD with high accuracy.

In this approach we have used random forest as induction

algorithm and the ‘best first search’ as the search method and

‘stale search’ after 5 node expansions. Table III shows the best

predictive subset of the 24 attributes selected by the wrapper

approach.

Using a random forest classifier with these 12 predictive

attributes as input we achieve a .99 F1-measure, 99% preci-

sion and 0.107 root mean square error (RMSE). Using this

approach we have achieved 57% and 61% RMSE reduction

compared to the CKD-EPI and MDRD formulas for GFR

estimation, respectively. Given the high accuracy achieved,

these results imply that only these 12 features are necessary.

Compared to previous approaches shown in Table I, instead

of sex, age and weight, we see that specific gravity works

as a good predictive attribute. All of the previous equations

have considered ‘serum creatinine’ in their equations, addi-

tionally MDRD has considered urea, nitrogen and albumin.

Our analysis has also identified serum creatinine and albumin

as predictive attributes for CKD. Additionally red blood cells,

hemoglobin, diabetes, coronary artery diseases, sodium, pus

cell clumps and pedal edema are identified as good predictive

attributes for CKD which were not considered in any of the

previous approaches.

C. Assessing Impact of Each Feature

LASSO penalizes regression models with L1 norms that

have sparse solutions: many of their estimated coefficients

are zero. Higher coefficients values indicate higher predictive

capability for a feature and if the value is zero, we eliminate

that attribute. Figure 3 shows the importance of attributes.

Using the random forest classier with these 10 predictive

attributes as input we achieve a 0.99 F1-measure and a 0.111
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Attribute
Pearson’s
correlation

Hemoglobin 0.729
Packed Cell Volume 0.69

Red Blood Cell Count 0.591
Hypertension 0.5904

Diabetes Mellitus 0.5591
Albumin 0.477

Blood Glucose Random 0.4014
Appetite 0.3933
Pus Cell 0.3752

Pedal Edema 0.372
Specific Gravity 0.372

Blood Urea 0.35
Sodium 0.343
Anemia 0.3254
Sugar 0.3

Serum Creatinine 0.2941
Blood Pressure 0.2906

Red Blood Cells 0.2826
Pus Cell clumps 0.2653

Coronary Artery Disease 0.2361
Age 0.2254

White Blood Cell Count 0.2053
Bacteria 0.1869

Potassium 0.0769
TABLE IV

PEARSON’S CORRELATION BETWEEN ATTRIBUTES AND THE CLASS

root mean square error (RMSE) which is 56% and 60% RMSE

reduction compared to the CKD-EPI and MDRD formulas for

GFR estimation, respectively.

One limitation of L1-based sparse models is that faced

with a group of very correlated features they do not select

all of those features; which limits their ability to achieve

optimal accuracy. Table IV shows the Pearson’s correlation

between the attributes and CKD, where higher value means

high correlation. LASSO regularization selects most of the

highly correlated attributes except blood glucose random, pus

cell, blood urea and pedal Edema. Blood glucose random and

diabetes mellitus have Pearson’s correlation of 0.526; pus cell

has 0.542 and 0.548 Pearson’s correlation with hemoglobin

and red blood cell count respectively; blood urea has 0.62 and

0.58 Pearson’s correlation with hemoglobin and red blood cell

count respectively; pedal edema has 0.455, 0.454, 0.43 and

0.42 Pearson’s correlation with red blood cell count, packed

cell volume, albumin and hemoglobin. Since, blood glucose

random, pus cell, blood urea and pedal Edema have high corre-

lation with attributes which have higher correlation with CKD

compare to them, LASSO regularization has not included these

attributes to predict CKD. Compared to previous approaches

shown in Table I, diabetes mellitus, hypertension, hemoglobin,

red blood cell count are good predictive attributes for CKD

which were not considered in any of the previous approaches.

D. Cost analysis

This section presents a cost-accuracy trade-off analysis

considering the 24 attributes used detect CKD. Table V shows

the test names and approximate lowest test costs [40]–[49]

for the 24 attributes. Figure 2 list these attributes on the x-

axis in order of predictive power. The y-axis displays the

Attribute
Name of
the test

Lowest Cost
(USD)

Blood Pressure
Blood

Pressure Test Free
Specific Gravity Free

Albumin
Serum Albumin

Test 25

Sugar

Fasting Blood

Sugar Test 20

Red Blood Cells

RBC Count,

CBC Test 39
Pus Cell Urinalysis 30

Pus Cell clumps Urinalysis 30
Bacteria Blood Culture 50

Blood Glucose Random
Random Blood
Glucose Test 20

Blood Urea
Blood Urea

Nitrogen Test 11.85

Serum Creatinine
Serum Creatinine

Test 14

Sodium
Serum Sodium Test

or Sodium Urine Test 3.2

Potassium
Potassium

lab test 49
Hemoglobin HGB1 1.65

Packed Cell Volume Hematocrit Test 1.62

White Blood Cell Count

Complete Blood

Count Test 30

Red Blood Cell Count

Complete Blood

Count Test 30
Hypertension Free

Diabetes Mellitus Diabetes Assessment 18.4
Coronary Artery Disease Electrocardiogram 50

Appetite Free
Pedal Edema Free

Anemia Anemia Assessment 27.64
TABLE V

TESTS AND TEST COSTS OF ALL ATTRIBUTES

RMSE as we incrementally add attributes. The curve is labeled

with the cumulative cost in dollars of using these attributes.

For example, according to figure 2 using all 24 attributes

to detect CKD will cost $451.36 and the accuracy is 0.107

RMSE; using the top 20 predictive attributes (i.e., all the

tests up to and including blood urea) has a cost of $294.72.

Importantly, considering only the top 5 predictive attributes:

specific gravity, albumin, diabetes mellitus, hypertension and

hemoglobin as features for our classifier, we achieve .98 F1-

measure and 0.11 RMSE (essentially the same accuracy with

all the attributes), but with only a $45.05 cost. This is a very

important result because patients need only be subjected to a

few tests at very low cost.

VII. CONCLUSION

We have introduced a novel approach to detect CKD using

machine learning techniques. We have performed an evaluation

on a dataset of 400 patients, 250 among them have early stage

of CKD. This dataset contains some noisy and missing values.

Hence, we need a classification algorithm with the capability

of handling missing and noisy values. We evaluated three

classifiers: k-nearest neighbours, random forest, and neural

networks to find a good solution for this application. To reduce

over-fitting as well as to identify the most important predictive

attributes for CKD, we have performed feature reduction using
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Fig. 2. Change of RMSE and cost of CKD detection with increase of predictive attributes used for classifier

Fig. 3. Importance of attributes using lasso.

two methods: the wrapper method and LASSO regularization.

Through our evaluation we find that, the random forest algo-

rithm with a reduced attribute set of 12 members can detect

CKD with highest accuracy of .998 using the F1-measure and

with a 0.107 root mean square error, which is a 57% RMSE

reduction compared to the state of the art solutions. Through

our evaluation we find hemoglobin which is an indicator of

anemia, diabetes mellitus, specific gravity, hypertension etc.

along with previously explored serum creatinine, and albumin

are highly predictive attributes for CKD. Also, through cost

analysis considering all 24 attributes we identify a cost effec-

tive highly accurate detection classifier using only 5 attributes:

specific gravity, albumin, diabetes mellitus, hypertension and

hemoglobin. Importantly, results of this study introduce new

factors to be used by classifiers for more accurately detecting

CKD than the state of art using formulas.
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