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Abstract: This study investigates four widely used satellite and gauged-based precipitation products for hydrological evaluation in the
poorly gauged Tigris River basin (TRB), with an area of 445,656 km2, using the Soil and Water Assessment Tool (SWAT) watershed model.
The multiple precipitation data sources (PDSs) evaluated in this study include Precipitation Estimation from Remotely Sensed Information
using Artificial Neural Networks-Climate Data Record (PERSIANN-CDR), Multisource Weighted-Ensemble Precipitation (MSWEP), Asian
Precipitation Highly Resolved Observational Data Integration towards the Evaluation of water resources project (APHRODITE), and
National Oceanic and Atmospheric Administration (NOAA) Climate Prediction Center (CPC) data. The SWAT model was calibrated using
three approaches to identify more realistic parameters. Overall, APHRODITE could capture the spatiotemporal distributions of daily pre-
cipitation with a correlation coefficient of 0.65, root-mean square error of 0.62 mm, and percent bias of 19.1%. In addition, APHRODITE also
captured the monthly streamflow with reasonably accuracy for selected streamflow stations in the TRB with mean Nash-Sutcliffe efficiency
of >0.65. Conversely, MSWEP overestimated and CPC underestimated the observed mean climatology, respectively, and had similar effects
on monthly streamflow simulations. Among all the selected precipitation products, the relative performance of CPC is poor in comparison to
other data sets. DOI: 10.1061/(ASCE)HE.1943-5584.0001737. © 2018 American Society of Civil Engineers.
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Introduction

Hydrological models are useful tools for investigating hydro-
logical processes in watersheds with limited actual measurements
(Abbaspour et al. 2015; Amisigo et al. 2008; Li et al. 2009). Precipi-
tation is one of the important inputs for hydrological models that are
used to study surface and subsurfacewater flow and drought analysis
in any watershed (Beven 2011; Miao et al. 2015). The availability of
precipitation estimates frommultisource data (i.e., satellite and radar
data, interpolated from actual observations, or a combination of all)
extended the application of hydrological models to areas where the
actual observations are scarce. However, the quality, reliability, and
the spatiotemporal variability of these precipitation data sources
(PDS) need validation prior to their sectorial applications. Failure
in representing the accurate spatiotemporal variability of precipita-
tion may lead to errors and uncertainties in stream flow predictions
especially in basins poorly represented by an actual rain gauge net-
work (Andréassian et al. 2012; Faurès et al. 1995; Mishra and Singh
2010; Taesombat and Sriwongsitanon 2009). Therefore, it is impor-
tant to validate the ability of a hydrological model driven by various
PDSs to simulate the actual streamflow information for a specific
region, especially with scarce data environment and to evaluate

the errors associated with each PDS (Yang et al. 2015). For this
purpose, the Soil and Water Assessment Tool (SWAT) (Arnold and
Fohrer 2005) is utilized in this study due to its effectiveness in evalu-
ating water quantity and quality (Gassman et al. 2007).

In many studies, multisource precipitation products are evalu-
ated and validated against in situ precipitation for streamflow sim-
ulation using hydrological models (Behrangi et al. 2011; Karakoc
and Patil 2016; Tobin and Bennett 2009; Yuan et al. 2017). Among
many primary sources of precipitation estimates (e.g., surface net-
work, ground-based radar, and satellite remote sensing retrieval),
the remotely sensed satellite measurements have produced many
high spatial (<4 km) and temporal (<3 hours) resolution precipita-
tion products (Behrangi et al. 2014; Sorooshian et al. 2000).
Several studies have evaluated the performance of satellite-based
precipitation products for hydrologic applications in data sparse
regions (Behrangi et al. 2014; Jiang et al. 2014; Lee et al. 2015;
Tobin and Bennett 2011). For example, Thiemig et al. (2013)
and Zhu et al. (2016) validated the use of satellite precipitation
data for streamflow simulation and reported that using two
satellite-based precipitation products, namely Tropical Rainfall
Measurement Mission (TRMM) and Precipitation Estimation from
Remotely Sensed Information using Artificial Neural Networks-
Climate Data Record (PERSIANN-CDR), performed better in
comparison to the reanalysis gauged-based data. Many studies have
concluded that satellite-based precipitation products could be poten-
tially used for hydrological predictions particularly for ungauged
basins (Jiang et al. 2012; Xue et al. 2013).

The uncertainty associated with hydrological models, especially
when using different model inputs, greatly affects the model perfor-
mance. This may lead to less meaningful and sometimes misleading
predictions if such uncertainties are not addressed in the calibration
process (Schuol and Abbaspour 2006; Vrugt and Bouten 2002;
Yang et al. 2007a, b). During model calibration, instead of relying
on a single model prediction, statistical methods are used to
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represent uncertainties in hydrological models, where such uncer-
tainties are given a probabilistic range to account for several sour-
ces of errors in the model (Franz et al. 2010). These errors can be
due to four major sources related to model inputs, structure, param-
eters, and output calibration data. The simplest statistical method
for parameter reducing uncertainty is the first-order approximation,
which uses a linear objective function. This approach does not ac-
count for correlation between model parameters (Vrugt and Bouten
2002). More complex algorithms such as sequential uncertainty
fitting (SUFI), Monte Carlo-based algorithms, and Markov chain
Monte-Carlo (MCMC) have been successfully applied to provide
improved meteorological and hydrological predictions as well
as to represent uncertainties in hydrological model parameters
(Bates and Campbell 2001; Blasone et al. 2008; Gallagher and
Doherty 2007). Although SUFI optimization method requires
a massive number of simulations, it is very robust in predicting
the parameters uncertainty and the corresponding streamflow sim-
ulations (Abbaspour et al. 1997, 2004), and therefore this method
was applied in this study.

For the last few decades there has been a significant increase
in water scarcity in the lower Tigris River basin (LTRB). This is
highly attributed to the intense water management practices (in-
cluding dam constructions, irrigation systems, and meeting drink-
ing water demands) implemented in the upper Tigris River basin
(UTRP), located in Turkey and Iran (Bozkurt and Sen 2011; Issa
et al. 2014; Voss et al. 2013; Wilson 2012). The analysis of water
resources in such watershed is challenging due to the scarcity of
observed precipitation data caused by the ongoing conflicts and
political instability (Marghany et al. 2016).

Motivated by the growing water demand in TRB as well as
the availability multiple of precipitation products to support water
management, the present study will investigate the following: (1) the
spatiotemporal heterogeneities of the four PDSs [namely, Asian
Precipitation Highly Resolved Observational Data Integration To-
wards the Evaluation of water resources project (APHRODITE),
Multisource Weighted-Ensemble Precipitation (MSWEP), National
Oceanic and Atmospheric Administration’s (NOAA’s) Climate
Prediction Center (CPC), and PERSIANN-CDR] compared to ac-
tual gauge data over the TRB; (2) to evaluate the suitability of using
these PDSs to simulate streamflow in such a large river basin with
limited hydroclimate information; and (3) the predictive uncertainty
of daily precipitation data was investigated for simulating stream-
flow. The results of this study will provide an insight into the im-
portance of validating multiple PDSs for hydrological modeling
when precipitation data are inadequate or unavailable.

Study Area

This studywas conducted on the Tigris River basin [Fig. 1(a)], which
encompasses a total drainage area of around 445,656 km2, of which
56.1% is in Iraq, 24.5% in Turkey, 19% in Iran, and 0.4% in Syria
(Rohstoffe 2013). The TRB has nine major tributaries, most of
which originate in Turkey and Iran, and eventuallymeet Tigris River
in Iraq (Frenken 2009; Shahin 2007). Approximately 30% of the
TRB land is covered by intense agricultural areas [Fig. 1(b)],
26% is primarily covered with grassland, 35% is arid land, and
the remaining 9% represents settlements in the basin (Kibaroğlu
2002). Based on the Digital Elevation Map (DEM) of the area,
the topography of the TRB is highly variable where the elevation
ranges from few meters in the south (lowlands) to 4,356 m above
the sea level in the northeast (highlands).

The TRB is characterized by its transitional climate from
semihumid in the headwaters (highlands) to semiarid (lowlands)

(Ajaaj et al. 2016). The resulting change in elevation from the north
to the south creates a strong spatial distribution of precipitation in
the TRB. Most of the rain occurs between November and April,
reaching maximum during winter months (December–February).
The rest of the year (May–October) is dry particularly from June
to August. Because most of the winter precipitation occurs in the
mountains (UTRB), it is mostly stored as snow pack. Therefore,
the resulting flow of the Tigris River is seasonal and dominantly relies
on snowmelt during spring season, March–May (Jones et al. 2008).
Given the semiarid climate of the LTRB, the evaporation causes
a considerable loss of water from this part of the basin. Mean air tem-
perature ranges from−35°C in winter (mountains) to 40°C in summer
(Mesopotamian plain in the south of the TRB) (Rohstoffe 2013).

In the mid-1970s a general regional water resources plan was
implemented in the UTRB aimed at increasing water withdrawal
for agricultural, industrial, and municipal water supply (Tigrek and
Kibaroglu 2011). Consequently, a progressive reduction in the flow
of the Tigris River has been noticed in the LTRB, especially during
dry season months (May–October). This has resulted in a loss of
about 25% of the irrigated areas and drying up of most of the
marshlands in the LTRB (Jones et al. 2008). For example, the mean
annual flow rate at Kut station (southern LTRB) has been reduced
by 50 m3 s−1 from 1931–1973 to 1974–2004. The mean annual
precipitations over the entire river basin for these two time periods
are similar (473.34 and 472.80 mm, respectively), which makes the
LTRB vulnerable to extreme drought under such management
plans (Issa et al. 2014; Wilson 2012).

Hydrological Model

SWAT is a popular hydrological and water quality model developed
by the USDA-Agricultural Research Service (USDA-ARS). It is a
long-term, lumped, continuous, watershed-scale simulation model
designed to assess the impact of different management practices on
surface water, sediment, and agricultural chemical yields on a sub-
basin scale (Arnold and Fohrer 2005). The watershed in SWAT
is classified into multiple subbasins that are further divided into
unique combinations of land use, soil type, and slope known as
hydrologic response units (HRUs). SWAT performs its calculations
for each HRU then scales it back to subbasins based on the per-
centage of each HRU in that subbasin (Wible 2014). This hydro-
logical model is based on a water balance equation (Arnold et al.
1998) as given by Eq. (1). In this equation, SWt is the soil water
content at time t; SWo is the initial soil water content; and R, Q,
ET, P andQR are the precipitation, runoff, evapotranspiration, per-
colation, and return flow, respectively, all measured in millimeters
and at the time t in the day

SWt ¼ SWo þ
Xn
t¼1

ðR −Q − E − P −QRÞ ð1Þ

SWAT commonly uses two methods to estimate the surface run-
off and infiltration including the Soil Conservation Service (SCS)
and the Green-Ampt infiltration method, respectively. In this study,
the SCS curve number method is chosen to model surface runoff in
SWAT model. Three methods are used to simulate evapotranspira-
tion in SWAT model including Penman-Monteith, Priestley-Taylor,
and Hargreaves. Penman-Monteith is used in this study as it counts
for wind speed, air temperature, relative humidity, and different
land uses (Arnold et al. 2012), and has shown good empirical sim-
ulations (Earls and Dixon 2008). In SWAT, the snow is simulated as
an equivalent depth of water, and the precipitation within an HRU
is classified as snow if the mean air temperature drops below the
snowmelt temperature threshold, which is determined through
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calibration. The subsurface system in SWAT is modeled as two
components, shallow and deep aquifers. The shallow aquifer
receives water from the unsaturated soil profile with a delay esti-
mated using an exponential delay function, while only a fraction of
the total recharge can percolate to the deep aquifer (Arnold and
Fohrer 2005). SWAT model routes surface water as a volume
through the channel network using either the variable storage rout-
ing method or the Muskingum routing method (used in this study).

Model Inputs for SWAT Model

Land use data for the year 2000 was derived from maps provided by
European Commission Joint Research Center for Central Asia
(Tateishi et al. 2011). Soil map for the study area was obtained from
the global digital soil map provided by Food and Agricultural
Organization of the United Nations (FAO 2013). A DEM at 90 m
resolution is obtained from the Shuttle Radar Topography Mission
(SRTM). This DEM is used to delineate the watershed. All of the
meteorological inputs (i.e., temperature, wind, humidity, and solar
radiation) except precipitation was obtained from the National Cen-
ters for Environmental Prediction (NCEP) and Climate Forecast

System Reanalysis (CFSR) data set (Dile and Srinivasan 2014;
Fuka et al. 2014). The data covers many years of records from
1979 onward on a daily basis and it has been updated for the current
state of atmosphere.

Monthly streamflow data for multiple gauging stations located
on Tigris River and its tributaries were obtained from the United
States Geological Survey (USGS) Saleh 2010). A total of 10
stations were found reliable for use in calibration and validation
of SWAT model. Table 1 summarizes the primary characteristics
of these gauging stations for which streamflow was evaluated.
The selected gauge stations represent two climate regimes (semi-
humid and semiarid). The discharge data was examined and vali-
dated for missing data. If the flow rate was missing in any month,
the mean flow rate of the two forward and two backward months
was substituted for the missing month.

Precipitation Data

This section provides an overview of the major characteristics of the
precipitation data sources considered in this study. Four grid-based
daily precipitation data derived from multiple sources (historical

Fig. 1. Tigris River Basin location map: (a) DEM with stream gauges; (b) land use map; and (c) subbasins with outlets.
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observations, radar, satellite, or a combination of the three) were
used as input in SWAT model to simulate the observed monthly
stream flow in the TRB. In addition, we included one actual
gauge-based precipitation dataset to provide a realistic range of
model parameters and to account for model uncertainty due to dif-
ferent precipitation inputs. The following subsections provide an
overview of precipitation products used in this study.

The Asian Precipitation Highly Resolved Observational Data
Integration towards the Evaluation of Water Resources project
(Yatagai et al. 2012) is a product from the Research Institute for
Humanity and Nature (RIHN) and the Meteorological Research
Institute of Japan Meteorological Agency (MRI/JMA). This pre-
cipitation data product is interpolated from rain gauges and avail-
able for continental Asia including Himalayas, Southeast Asia, and
mountainous areas of the Middle East for the period 1951–2007.
This study uses the current version (V1101R1) of the data with a
spatial resolution of 0.25° that covers the entire TRB domain.

Multisource Weighted Ensemble Precipitation is a recent global
daily precipitation dataset with 0.25° grid spatial resolution and
available for the period 1979–2015. MSWEP (Beck et al. 2017)
combines data from satellite and both reanalysis and observed pre-
cipitation. The MSWEP data was further corrected for gauge-under
catch and orographic errors by inferring catchment average precipi-
tation from the streamflow data for 13,762 stations globally.

The National Ocean and Atmospheric Administration Climate
Prediction Center (Xie et al. 2007) is based on the daily global pre-
cipitation data from multiple sources and it is available for the
period 1979–2005 at 0.5° grid resolution. The CPC data is devel-
oped to create a precipitation database by combining precipitation
from radar, satellite and over 30,000 rain gauge stations data across
the globe.

PERSIANN-CDR data set is a multi-retrospective satellite-
based data precipitation, consistent, long-term data that is used for
hydrological studies and available for the period 1983–2016 at a
spatial resolution of 0.25° in latitude band (60S-60N). The major
advantages of PERSIANN-CDR data set are as follows: (1) this
product provides consistency and long-term availability with more
than 30 years updated quarterly; (2) it is derived from multiple data
sources, which makes it more reliable; and (3) the high resolution
monthly precipitation data set is consistent with GPCP monthly
estimates (Ashouri et al. 2015; Knapp 2008; Sorooshian et al.
2000). The PERSIANN-CDR product is first developed by incor-
porating GridSat-B1 infrared satellite data into the PERSIANN
algorithm and then is validated with the National Centers for Envi-
ronmental Prediction (NCEP) Stage IV hourly precipitation data.
The product is further adjusted using the Global Precipitation Cli-
matology Project (GPCP) monthly product version 2.2 (GPCPv2.2)
(Ashouri et al. 2015).

The actual daily gauge-based precipitation data (APD) was ob-
tained from approximately 33 stations located in the TRB for the
period 1957–1963 (the data is scarce and difficult to access). The
continuity and the quality of this data source were examined; it was
found that the daily data was not consistently documented for some
gauge stations each month. Thus, the following steps were taken to
generate APD gauge-based data: (1) for each month, the original
stations were remapped (regridded) to a new uniform mesh grid
defined on 0.25° longitude and latitude spatial resolution, and
(2) precipitation at those new grid locations was evaluated using
kriging interpolation method. The kriging technique is recom-
mended for interpolating daily precipitation over deterministic
methods (Ly et al. 2013).

Methodology

Model Setup and Calibration

ArcSWAT 2012 (Arnold et al. 2013) was used in this study. The
delineation of the watershed and streams network was done based
on the DEM (90 m resolution), which resulted in 99 subbasins for
the TRB [Fig. 1(c)]. The subbasins were further divided into 5371
HRUs based on unique combinations of soil, land use, and slope.
The Sequential Uncertainty Fitting-2 (SUFI-2), available in the
SWAT-CUP package (Abbaspour et al. 2015) was used for model
calibration and validation. The SUFI-2 algorithm maps all model
parameter uncertainties and expresses them as a range of uniform
distributions that account for all sources of uncertainties in the
hydrological model (Abbaspour et al. 2004). A set of 22 flow
parameters along with their range was identified for this process
to determine the most sensitive parameters. Initial parameter ranges
were assigned from large-scale SWAT models developed for neigh-
boring areas and from tabulated parameter values in SWAT manual
(Faramarzi et al. 2009). A full list of these parameters along with
their default ranges is shown in Table 2. The sensitivity of the se-
lected parameters was found using a global sensitivity analysis tool
known as LH-Oah, which combines Latin hypercube sampling and
one-factor-at-a-time sampling (Van Griensven et al. 2006).

In general, model parameters are usually sensitive with respect
to change in the precipitation data source used in the hydrological
model. Besides, different models forcing data could result in sim-
ilar stream flow predictions after optimizing different parameters.
Therefore, parameter sensitivity analysis of SWAT model for each
of the fours PDSs and APD was conducted by applying three ap-
proaches for selection of parameters as follows, and Fig. 2 shows
the flowchart of these techniques used for the parameters calibra-
tion process:

Table 1. Selected streamflow gauging stations located in Tigris River basin

River name and station location Station ID
Latitude
(degrees)

Longitude
(degrees)

Drainage area
(km2)

Mean monthly discharge
(m3 s−1)

Tigris River at Mosul TIGBSN1 36.63 42.82 54,900 460.83
Greater Zab River at Bakhem TIGBSN2 36.64 44.50 383 382.78
Khazir River at Manquba TIGBSN3 36.30 43.55 2,900 31.20
Greater Zab River at Eski-Kelek TIGBSN4 36.27 43.65 20,500 425.53
Lesser Zab River at Doka TIGBSN5 35.95 44.95 233 233.36
Adhiam River at Fatha TIGBSN6 35.05 43.55 107,600 767.04
Tigris River Injana TIGBSN7 34.50 44.52 9,840 33.14
Diyala River at Derbindi-Khan TIGBSN8 35.13 45.75 17,800 154.00
Tigris River at Baghdad TIGBSN9 33.41 44.34 134,000 479.20
Tigris River at Gharraf TIGBSN10 32.53 45.79 150,964 208.45
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• Cumulative ranked parameter set (CRPS): The parameters ob-
tained from SWAT model with each of the PDS as forcing pre-
cipitation input were ranked from 1 to 22 (with 1 being the most
sensitive parameter). The mean of the four ranks from all PDS
was determined to represent an overall cumulative rank (or
CRPS) shown in Table 3. Top eight most sensitive parameters
were identified using this procedure and the other 14 parameters
were given default values. Final parameter ranges obtained from
the CRPS approach assures comparing similar model para-
meters from estimated and observed precipitation. Strauch et al.
(2012) used a similar procedure for calibrating SWAT model
using five precipitation data sets.

• Gauge ranked parameter set (GRPS): The eight most sensitive
parameters from SWAT model run with actual gauge precipita-
tion data were identified. Then this set of parameters was used
to calibrate SWAT model for streamflow for each of the PDSs.
This procedure is termed as gauge ranked parameter set. This
fixed parameter set procedure may have better representation
for the hydrological conditions in the TRB and similar approach
was earlier applied by Jiang et al. (2012).

• Individual ranked parameter set (IRPS): SWAT model is cali-
brated individually with each of the PDSs and labeled as indi-
vidual ranked parameter set. The IRPS allows selecting the eight
most sensitive parameters for each PDS independently in model
calibration and validation. This method is different from CRPS
because it allows SWAT model with each PDS to be calibrated
independently (i.e., four parameter sets are identified in this
process, one for each PDS).

Model Uncertainty and Performance Measures

In SUFI-2, the propagation of uncertainties in the hydrologic model
parameters leads to uncertainties in model output variables such as
streamflow. These uncertainties are usually expressed as probabi-
listic predictions calculated at 2.5% and 97.5% levels of the cumu-
lative distribution of the output variables, which is also known as

95% prediction probability uncertainty (95PPU) (Abbaspour et al.
2015). Two statistical based factors, known as p-factor and r-factor,
are commonly used to quantify uncertainties in simulated results
(expressed as lower and upper bands of the 95PPU). The p-factor
(>70% is acceptable value) is the percentage of the observed data
bounded by upper and lower model outputs, while r-factor (around
1 is acceptable value) is the thickness of that band (Abbaspour et al.
2007). The r-factor is given by Eq. (2). Where the term yt;97.5% −
yt;25% includes the upper and the lower bounds of 95PPU at time t,
and σobs is the standard deviation of the observed data sample

r − factor ¼
1
n

P
n
t ðyt;97.5% − yt;25%Þ

σobs
ð2Þ

Model streamflow outputs are evaluated using multiple statisti-
cal criteria including correlation coefficient (CC), root-mean square
error (RMSE), percent bias (PBIAS), and Nash-Sutcliffe efficiency
coefficient (NSE). The calculation procedure for CC, RMSE,
PBIAS, and NSE are given in Eqs. (3)–(6), respectively. The Oi
represents the observed variable and Pi is the simulated variable
at a time step i. The P̄ and Ō denote the average simulated and
observed values of the same variable, respectively

CC ¼ ½Pn
i¼1ðPi − P̄ÞðOi − ŌÞ�2P

n
i¼1 ðPi − P̄Þ2 Pn

i¼1 ðOi − ŌÞ2 ð3Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn
i¼12

ðPi −OiÞ22

s
ð4Þ

PBIAS ¼
P

n
i¼1ðPi −OiÞP

n
i¼1 Oi

ð5Þ

NSE ¼ 1 −
P

n
i¼1ðPi − P̄ÞP
n
i¼1ðOi − ŌÞ ð6Þ

Table 2. List of parameters and their default ranges used for the SWAT model development

Type Parameter Description

SWAT default range

Minimum Maximum

r__ CN2 SCSII curve number −0.3 0.3
r__ SOL_AWC Average available soil water content −0.3 0.3
r__ ESCO Soil evaporation compensation factor −0.4 0.4
v__ EPCO Plant uptake factor 0.01 1
r__ SURLAG Surface runoff lag coefficient −0.2 0.2
v__ CH_N2 Manning’s n value for the main channel 0.016 0.033
v__ CH_K2 Effective soil hydraulic conductivity (mm/hr) 5 150
r__ OV_N Overland flow Manning’s coefficient −0.4 0.4
r__ ALPHA_BF Base-flow recession factor (days) −0.3 0.3
v__ GW_REVAP Groundwater revap coefficient 0.02 0.2
v__ GW_DELAY Groundwater delay time (days) 0 500
v__ GWQMN Threshold water depth in shallow aquifer requires for return flow to occur 0 5,000
r__ SOL_K Saturated hydraulic conductivity (mm/day) −0.3 0.3
r__ REVAPMN Threshold water depth in shallow aquifer requires for revap to occur −0.3 0.3
r__ RCHRG_DP Deep aquifer percolation fraction −0.3 0.3
v__ SFTMP Mean temperature of snowmelt (°C) −5 5
v__ SMTMP Snowmelt base temperature (°C) −5 5
v__ SMFMX Maximum melt factor (mm H2O/°C-day) 1.7 6.5
v__ SMFMN Minimum melt factor (mm H2O/°C-day) 1.4 4.5
v__ TIMP Snow pack temperature lag factor 0.01 1
v__ SNOCOVMX Minimum snow water content corresponds to 100% snow cover (mm H2O) 0 1
v__ SNO50COV Fraction of snow volume represented by SNOCOVMX corresponds to

50% snow cover
0.01 0.99

Note: v__ indicates default parameter is replaced by a given value; and r__ indicates the existing parameter value is multiplied by (1 + the given value).
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Results

Comparison between PDS and APD Data

The spatiotemporal variation of long-term precipitation climatol-
ogy from the four PDSs (APHRODITE, MSWEP, CPC, and

PERSIANN-CDR) is compared with the actual precipitation rep-
resented by APD data. As described earlier, all PDSs are available
for the period (1979–1997), except PERSIANN-CDR data for the
period (1983–1997), while the APD precipitation data set is avail-
able for the period 1953–1963. Because PDS and APD data are
available in different time periods, we performed the following
statistical analysis to compare between these data sets.

First, we plotted the autocorrelation plot to investigate the de-
gree of similarity between APD and PDS time series and a lagged
version of itself over successive time intervals. Using autocorrela-
tion plot it is possible to investigate temporal patterns, such as the
presence of a periodic signals. Fig. 3 provides the autocorrelation
plot for monthly precipitation data of APD and PDS time series at
the Mosul station. Note that both APD and all PDS (except CPC
data) time series witness similar temporal pattern in terms of mag-
nitude of seasonal fluctuations in correlation coefficient. Based on
this preliminary analysis, it is expected that CPC data may not be a
good choice for streamflow simulation.

Table 3. Ranks of the most sensitive model parameters resulted from
sensitivity analysis for all PDSs used in the CRPS approach

Parameter MDLAPH MDLMSW MDLCPC MDLPER Average

SOL_AWC 2 1 4 2 2.75
CH_K2 1 2 14 1 4.75
SFTMP 3 5 2 4 8
OV_N 11 13 1 8 9.75
CN2 4 22 7 5 12
GW_REVAP 6 8 5 10 12.25
EPCO 22 3 19 3 12.5
ALPHA_BF 10 11 16 14 16.5

Fig. 2. Flow chart of three calibration procedures (CRPS, GRPS, and IRPS from top to bottom) used in SWAT model ran with four PDS and
APD data sets.
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Fig. 4 illustrates the spatial distribution of the cross correlation
(zero-lag) between APD and PDS over the TRB. Because the APD
and PDS data sets are available in different time periods, we used
long-term monthly means (monthly climatology) for each data set

to estimate the cross correlation between the PDS and the APD.
The values shown in Fig. 4 represent the coefficient of correlation
that typically varies from −1 to þ1. It can be observed that the
correlation pattern between APD and PDS varies based on the type

(a) (b)

(c) (d)

(e)

Fig. 3. Autocorrelation function (ACF) plots based on the monthly precipitation from APD and PDS’s at Mosul gauge station: (a) APD; (b) APH-
RODITE; (c) CPC; (d) MSWEP; and (e) PERSIANN-CDR.
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of the climate; for example, higher cross correlation observed for
regions with higher precipitation, and lower correlation at regions
with relatively less precipitation. The correlation strength between
APD, APRODITE, and MSWEP is comparatively stronger in com-
parison to CPC and PERSIANN-CDR over the entire river basin.
APHRODITE and MSWEP have similar spatial correlation struc-
ture compared to APD, whereas CPC and PERSIANN-CDR per-
formed differentially. For example, PERISAN-CDR comparatively
performed well in regions with moderate precipitation (e.g., north-
west and southeast); conversely, CPC data performed poorly over
the TRB with no clear pattern in annual cross correlation. Based on
this similarity (dissimilarity) in spatial correlation analysis, it is ex-
pected that the performance of PDS likely to differ for streamflow
simulation. It is worth investigating and identifying the best PDS
that can be used to generate reliable streamflow for different water
resource applications.

The correlation strength between APD and PDS was evaluated
at selected precipitation gauge stations located in different parts
of the TRB. The selected locations are Baghdad, Mosul, Nasiriya,
Diala, Hawija, and Hindiya, which are located at 33.33°N, 44.40°E;
36.31°N, 43.15°E; 31.01°N, 46.23°E; 34.08°N, 45.01°E; 33.51°N,
44.30°E; and 32.70°N, 44.28°E, respectively. First, the PDS data
are interpolated at these gauge locations, then the long-term mean
monthly precipitation is estimated to find the coefficient of deter-
mination between them at the selected locations. The values of co-
efficient of determination (R2) between APD and PDS based on
individual months are shown in Fig. 5. Overall, a positive correla-
tion was observed between APD and PDS, and the stronger corre-
lation strength was observed with respect to APHRODITE and
MSWEP data sets for most of the months. However, the perfor-
mance of CPC data is comparatively poor with respect to other PDS
data sets. This figure demonstrates the consistency between the

Fig. 4. Cross correlation map (at zero-lag) between long-term mean monthly precipitation climatology from APD and PDSs over the TRB:
(a) APHRODITE; (b) MSWEP; (c) CPC; and (d) PERSIANN-CDR.
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APHRODITE and MSWEP data sets with the actual precipitation
data used for validating other precipitation products.

In order to capture the rainy days signals between APD and
PDS, we calculated the average number of rainy days for individual

months (Fig. 6). Considering the TRB is mostly located in a semi-
arid climate, we selected 0.3 mm as a threshold value to define a
rainy day (Awulachew et al. 2007). In general, it was observed that
the rainy days signals from APRODITE, and MSWEP showed
similarities with APD. It is expected that the distribution of rainy
days likely to be different due to the potential impact of global
warming and climate change during recent decades for PDS com-
pared to APD data. The CPC performed poorly to capture the rainy
days signals especially during dry months. In contrast, the number
of rainy days captured by PERSIANN-CDR is reasonably observed
at some gauge stations such as Hawija and Hindia.

Considering that the APD and PDS data are available in differ-
ent time periods, it is a major limitation to compare their correlation
results between precipitation and runoff. Therefore, to demonstrate
the correlation strength between precipitation and streamflow,
we plotted the scattered plot for these two variables at a monthly
timescale (Fig. 7). A positive correlation was observed between
streamflow and precipitation at selected streamflow gauge stations.
Higher correlation was observed for wet spells, and comparatively
low correlation observed for dry spells. However, note that the

Fig. 5. Coefficient of determination plot based on long-term monthly
precipitation from APD and PDSs evaluated at a sample of gauge
stations: Baghdad, Mosul, Nasiriya, and Hindiya.

(a) (b)

(e)

(c) (d)

Fig. 6. The percentage of rainy days for individual months between APD and PDSs used in this study: (a) APD; (b) APHRODITE; (c) MSWEP;
(d) CPC; and (e) PERSIANN-CDR.
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correlation strength between precipitation and runoff in a very large
river basin located semiarid climate may not be significant as
streamflow is controlled by both climate and catchment character-
istics. Although, the cross (or lagged) correlation plays a very
important role for statistical forecasting models, that completely
ignores catchment characteristics. However, in our study we are
using a physically-based hydrologic model for streamflow simula-
tion, which considers a combination of climate inputs and catch-
ment characteristics (e.g., land use and soil type).

Uncertainty in SWAT Model Parameters

Five sets of precipitation products APHRODITE (APH), MSWEP
(MSW), CPC, PERSIANN-CDR (PER), and actual precipitation
data (APD) are used as inputs to SWATand the corresponding mod-
eled streamflow outputs are represented by MDLAPH, MDLMSW ,
MDLCPC,MDLPER, andMDLAPD. The best-fit and the final ranges

of the parameters resulted from the calibrated SWAT models for
the four PDS (using CRPS) and APD (using GPRS) approaches
are compared in Fig. 8. This figure clearly indicates that changing
precipitation inputs in the SWAT model produces different sets of
parameter uncertainties. Comparing parameter ranges of four mod-
els (MDLAPH , MDLMSW , MDLCPC, and MDLPER) with MDLAPD
(the leftmost bars) reveals that parameter range for MDLAPD tends
to have the least uncertainty (lowest variations). Likewise,MDLAPH
shows comparatively lower parameter uncertainty compared to the
other three models, namelyMDLMSW,MDLPER, andMDLCPC. For
MDLCPC model, the fitted parameter of SOL_AWC is low, which
allows producing more runoff as this precipitation product underes-
timated the APD data, while the SOL_AWC value in MDLMSW is
increased allowing for less runoff as this precipitation overestimated
the APD data (Fig. 8).

Most of the rainfall occurs in the northern part of the TRB (where
the snowfall is dominant); therefore, the snowmelt temperature

Fig. 7. Scatter plots between monthly precipitation and streamflow at the selected locations: (a) Tigris River at Mosul (TIGBSN1); (b) Khazir River at
Manquba (TIGBSN3); (c) Greater Zab River at Eski-Kelek (TIGBSN4); and (d) Diyala River at Derbindi-Khan (TIGBSN8).
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parameter (SFTMP) seems to be more significant in all models cali-
brated with PDS. The range of SFTMP value uniformly varies be-
tween models with a range of −1°C to 2°C, which is consistent with
other studies in similar climate regions, e.g., Iran (Rostamian et al.
2008). The best fit of the hydraulic conductivity for alluvial main
channel value (CH_K2) indicates that the main channels in the
TRB are covered primarily with clean sand and gravel (CH K2 >
100 mm=h) to silty sand with gravel (CH K2> 50mm=h). Consid-
ering the shallow aquifers in the study area, which primarily consists
of sandstone, limestone, and silty soils with a transmissivity ranging
from 200 to 560 m2=day (Jassim and Goff 2006), the CH_K2 values
used are reasonable. The shallow aquifer concept in SWAT model
refers to the top soil layer that extends to few meters downward,
which is in this case automatically defined from soil map by SWAT
model.

SWAT classifies precipitation as snow or rain using the aver-
age daily temperature, while the snowmelt is controlled by air and
snow pack temperature (Neitsch et al. 2011). The mean temper-
ature of snowmelt (°C), temperature (SFTMP), and the snow pack
temperature lag factor (TIMP) parameters showed higher sensitiv-
ity in the TRB models with PDS products. The time delay between
precipitation-surface runoff-streamflow depends on many parame-
ters that were carefully calibrated in the SWAT model. For in-
stance, the surface runoff lag coefficient (SURLAG), overland flow
Manning’s coefficient (OV_N), and snow pack temperature lag

factor (TIMP) control the amount of water that runs off and directed
to streams.

Overall, the parameter ranges and best fit values vary by chang-
ing the precipitation data source in SWAT model, which may need
extra attention when considering only one model input as the issue
of parameterization is an important task in hydrological model de-
velopment. This reinforces the idea of using multiple parameter sets
including the one derived from the actual precipitation model to
validate the other precipitation models with a large number of
simulations (>500 simulations), given that the SUFI-2 parameter
range width is highly affected by the number of simulations and
consequently the simulated streamflow.

Evaluation of Precipitation Products for Streamflow
Simulation

The performance of PDS was evaluated for streamflow simulation
in SWAT model calibrated using parameters obtained from CRPS
for PDS and from GRPS for ADP. The simulated streamflow with
each PDS is compared with the actual observations using quanti-
tative statistics (CC, NSE, and PBIAS), as shown in Table 4. The
precipitation product is considered to be performing well if the
goodness of fit measures satisfy the following thresholds; CC >
0.65, NSE > 0.50, and jPBIASj < 25% (Duda et al. 2012; Moriasi
et al. 2007). Based on these model performance measures, half of

Fig. 8. Ranges of calibrated model parameters and best-fit values (longer horizontal lines) used with SWAT model and derived for five precipitation
products.
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the streamflow simulated in MDLAPD, driven by actual precipita-
tion data (i.e., APD) satisfied the goodness of fit performance cri-
teria. This seems to emphasize the significance of using point-based
precipitation data in representing the spatiotemporal variability
even in relatively large-scale watersheds, such as the TRB. Satisfy-
ing the goodness of fit criteria by only half of the stations also
shows the complexity of the relationship between the daily rainfall
and the generated streamflow. For all other precipitation sources
(products), the goodness of fit performance indicators are relatively
higher during calibration than validation period. The best individual
streamflow prediction among all PDS was obtained fromMDLAPH ,
which suggests that APHRODITE performed better in hydrological
modeling compared to other gauged-based global precipitation
products (i.e., CPC and MSWEP), especially in areas that witness
high precipitation variability and lack of data (Table 4). The possible
reason could be because of the dense gauge representation in case of
APHRODITE over the global grid-based precipitation data. In ad-
dition, global precipitation data are often available on coarser grid
scale, which may misrepresent the spatial variability information in
precipitation data.

Among all PDS, MDLCPC performed poorly for most of the
streamflow stations during calibration and validation periods, even
though it is compiled from an observed data. Part of this poor per-
formance might be the CPC precipitation data is given on coarser
mesh grid data points than all other PDS (i.e., 0.5° compared
0.25° longitude × latitude). This is consistent with the precipitation
comparison results obtained in the previous section. The poor cor-
relation between simulated and observed precipitation as well as
streamflow simulation using CPC brings into question the credibil-
ity of this precipitation product in the hydrologic simulation, and
indicates that further process might be required to enhance the
spatiotemporal representation for the simulated streamflow data
(e.g., downscaling). In contrast, PERSIANN-CDR data performed
relatively well based on only NSE and PBIAS criteria. Given that
PERSIANN-CDR is satellite data and available for areas with lim-
ited data measurements, it can be considered invaluable for hydro-
logical modeling in the TRB. These findings are in accordance with
the results of Behrangi et al. (2011), Sidike et al. (2016), and Zhu
et al. (2016), where PERSIANN-CDR data showed potentially
encouraging results in simulating monthly streamflow data when
evaluated against actual point-based precipitation data.

The monthly streamflow simulated by all PDS for the period
1983–1997 (consistent for all models) is presented in Figs. 9 and 10.
This analysis was carried out based on the SWAT-CUP best fit
streamflow outputs at four discharge stations, out of which two sta-
tions (TIGBSN1 and TIGBSN7) are located on the main Tigris
River and the other two on its tributaries (TIGBSN4 and TIGBSN6).
These stations represent different flow conditions and climate zones
in the watershed. Note that the flow in these stations is governed by
the snowmelt, which is evident from high flows (regular peaks) in
spring months (March–May) and low flows in dry months (May–
October). Simulated streamflow outputs show that the individual
precipitation product has significant variations compared to the ac-
tual streamflow, particularly the peak flow in the TRB during this
period. Except forMDLMSW (where the peak flow and the base flow
are overpredicted), the base flow in all models was mostly overpre-
dicted, while the peak flow was underpredicted during calibration
and validation periods as indicated by the time series. However, the
performance of all the models was relatively higher in capturing
base flow, especially in the calibration period. This is most likely
due to two main reasons; most precipitation products have failed
to reproduce extreme events with higher accuracy, and the complex-
ity of the branching system of the main Tigris River before the sta-
tion locations has made the river routing process more difficult.T
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Fig. 9. Simulated monthly streamflow estimated from SWAT model with different PDS for selected locations (TIGBSN1 and TIGBSN7) located on
the main Tigris River.

Fig. 10. Simulated monthly streamflow estimated from SWATmodel with different PDS for selected locations (TIGBSN4 and TIGBSN6) located on
Tigris’ river tributaries.
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APHRODITE-based streamflow (i.e.,MDLAPH) in both calibration
and validation periods comparatively match well with the observed
streamflow, where the model follows similar patterns of the peaks
and the low flows for all stations (Figs. 9 and 10).

As stated previously,MDLAPH driven by APHRODITE precipi-
tation data source performed relatively better than MDLCPC,
MDLMSW , and MDLPER in terms of CC, NSE, and PBIAS during
both calibration and validation periods. Even though PERSIANN-
CDR precipitation dataset underpredicted the stream flow in the
TRB, it performed satisfactorily in matching the actual stream flow
at some stations (e.g., TIGBSN1 and TIGBSN7). The CPC pre-
cipitation dataset did not perform well as stated previously. These
results are consistent with the findings of Vu et al. (2012) and
Yang et al. (2015). As expected, the performance of all individual
models is slightly higher in calibration than validation period. This
is quite likely due to the significant increase in irrigation and
drinking water demands in the TRB for later years of simulations
(i.e., during validation period) (Issa et al. 2014; Tigrek and
Kibaroglu 2011).

Model Streamflow Predictive Uncertainties

Parameter uncertainty in hydrological model is likely to con-
tribute randomness to modeled streamflow outputs (Abbaspour
et al. 2015). Predictive uncertainties in modeled streamflow
outputs are compared between the four PDS calibrated using the
three approaches (CRPS, GRPS, and IRPS). The model is con-
sidered to perform well if more than 70% of the observed stream-
flow was captured during the simulation (i.e., p-factor > 70%)
and with smaller 95PPU uncertainty envelope (i.e., r-factor of
about 1).

Simulation uncertainty represented by both the p- and r-factors
was evaluated for each precipitation product calibrated using
CRPS, GRPS, and IRPS approaches and presented in Fig. 11.
The values of these two factors are presented by using four groups
of box plots. Each group represents a model calibrated using CRPS,
GRPS, and IPRS. Three pairs of boxes are presented in each group.
For each pair, the first box plot represents calibration and the sec-
ond box plot is for validation. For all three approaches, p-factor and
r-factor values are higher during calibration than validation period.
The p- and r-factors from IRPS and GRPS approaches scored
higher values than the CRPS. The highest values for p- and r-factors
are observed for MDLAPH and MDLMSW (with a relative percent-
age increase of under 8% in both p- and r-factors for GRPS), which
means that these two calibration approaches have less predictive un-
certainties in simulating streamflow. The relative improvements in
SWAT model simulations calibrated with GRPS over IRPS is likely
due to the higher/lower curve number values used in SWAT model
than the standard tabulated ranges. The higher accuracy in stream-
flow estimations for the case of GRPS came on the expense of the
calibrated parameter ranges. This exercise of not using the stan-
dard tabulated parameter values was also mentioned by Bitew et al.
(2012), which could cause substantial errors to the simulated stream-
flow, if it is not closely monitored. All stations based on MDLAPH
witnessed the lowest uncertainty, while MDLCPC shows the highest
predicted uncertainty, which makes this precipitation data sources
least desirable for prediction streamflow data in TRB. Some gauge
stations based on MDLMSW and MDLPER reached desirable uncer-
tainties in calibration and validation periods.

Finally, a comparison between simulated streamflow using the
CRPS and IRPS approaches and the actual streamflow is illustrated
in Figs. 12 and 13. The left side panel represents simulation results
for CRPS calibration approach, while the right column is simula-
tion results obtained based on IRPS approach. In these two figures,

predictive uncertainty is represented for a sample of two stations
(TIGBSN2 and TIGBSN3) located in the highlands and lowlands
of the TRB, respectively. By comparing the 95PPU of models from
CRPS and IRPS (left and right panels, respectively), the IRPS
shows less predictive uncertainty than the CRPS approach (i.e., bet-
ter streamflow simulations). In addition, the uncertainty bandwidth
was relatively narrower during low flow conditions than high flows.
TheMDLAPH model [Figs. 12(a) and 13(a)] witnessed consistently
the lowest uncertainty compared to the other three data sources. The
other three modeled streamflow outputs (MDLCPC, MDLMSE, and
MDLPER) were unable to capture the extreme streamflow accu-
rately for the entire time series. However,MDLPER showed reduced
uncertainty at some stations when the IPRS calibration approach is
used [compare Figs. 12(d) and 13(d)]. Overall, PERSIANN-CDR
precipitation data can be a possible source for evaluating monthly
streamflow in the TRB.

Different precipitation inputs generate distinct prediction uncer-
tainties in modeling streamflow. The results are heterogeneous, and
it is not possible to generalize the outcomes obtained in one sub-
catchment to another, i.e., the prediction uncertainty of each pre-
cipitation product is basin-specific. These variations of simulated
streamflow uncertainties in response to different input precipita-
tions could be attributed to the different interpolation techniques
and merging algorithms that were implemented to compile these
precipitation datasets (Tuo et al. 2016). Failing to capture extreme
streamflow might be due to the relatively large number of iterations
needed by SUFI-2, which is usually used in calibrating models
(Strauch et al. 2012).

Fig. 11. p- and r-factors from SWAT models (shown as groups) cali-
brated with CRPS, GRPS, and IRPS methods. Each group represents a
model calibrated using three approaches.
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Conclusion

This study investigates the spatiotemporal variations of four pre-
cipitation data sources and evaluates their performance on simulat-
ing streamflow for the Tigris River basin where the ground-based
precipitation observations are scarce. Precipitation data sources
consist of APHRODITE, CPC, MSWEP, and PERSIANN-CDR.
The long-term precipitation estimates from these data sources are
compared with the actual gauged precipitation data available for 33
stations for the study area. In addition, the performance of these
data source for simulating monthly streamflow was investigate us-
ing a hydrologic modeling framework. The following conclusions
are drawn from this study:
• All four precipitation data sources have produced different

biases when evaluated against actual rain gauges. APHRODITE
precipitation data showed the best acceptable spatiotemporal
variations over Tigris River basin. Conversely, MSWEP data
overestimated the actual gauge precipitation data while CPC
underestimated the actual precipitation data. PERSIANN-CDR
satellite-based precipitation data showed a satisfactory compar-
ison with observed precipitation data.

• Monthly streamflow estimated by SWAT model significantly
improved using observed rainfall information in comparison
to selected precipitation data sources because of the biases as-
sociated with each data source. Among the precipitation data
sources, APHRODITE (interpolated from dense number of
gauges per grid) exhibited the best skills in representing the
streamflow, while PERSIANN-CDR (satellite data) showed sa-
tisfactory performance at few locations in the Tigris River basin.
Thus, it can be considered as a favorable product for the Tigris
River basin in case of scarce precipitation records.

• Predicted uncertainties in streamflow simulations vary when
different parameter sets used in the SWAT model. Therefore,
multiple calibration approaches may be utilized to identify bet-
ter model parameter sets. SWAT model calibrated individually
with each precipitation data source showed the best calibration
practice because it produced the least predictive uncertainties
with realistic parameter range representations.

• The streamflow estimated for the Tigris River basin using differ-
ent forcing precipitations are heterogeneous and it is not straight-
forward to generalize the outcomes obtained in one catchment
to another, which also means the prediction uncertainty of each

4000
3500

2500
3000

2000
1500
1000

500

4000
3500

2500
3000

2000
1500
1000

500
1   11  31   46  56  66  76  86 96 106 116 126 136 146 156 1   11  31   46  56  66  76  86 96 106 116 126 136 146 156

95PPU Observed

(a)

(b)

4000
3500

2500
3000

2000
1500
1000

500

4000
3500

2500
3000

2000
1500
1000

500

1   11  31   46  56  66  76  86 96 106 116 126 136 146 156 1   11  31   46  56  66  76  86 96 106 116 126 136 146 156

(c)

5000
4000
3500

2500
3000

2000
1500
1000

500

5000
4000
3500

2500
3000

2000
1500
1000

500
1   11  31   46  56  66  76  86 96 106 116 126 136 146 156 1   11  31   46  56  66  76  86 96 106 116 126 136 146 156

Months from January 1983 

(d)

4000

2500
3000

2000
1500
1000

500

4000

2500
3000

2000
1500
1000

500
1   11  31   46  56  66  76  86 96 106 116 126 136 146 156 1   11  31   46  56  66  76  86 96 106 116 126 136 146 156

D
is

ch
ar

ge
 (

m
3 /

se
c)

Fig. 12. Illustration of 95PPU intervals obtained from SUFI-2 for CRPS and IRPS approaches. Model results are presented for TIGBSN2 streamflow
station. Rows are arranged as follows: (a) APHRODITE; (b) CPC; (c) MSWEP; and (d) PERSIANN-CDR.
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precipitation product is basin-specific (i.e., the findings are only
applied for the Tigris River basin).
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