Ashok Iyaswamy

Ashok Iyaswamy
  • Doctor of Philosophy
  • Research Assistant Professor at Hong Kong Baptist University

NeuroScientist I Drug Discovery I Biomaterials I Exosome I Small molecule research I Brain Delivery I Reviewer I Editor

About

69
Publications
16,302
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
2,214
Citations
Introduction
Dr. Ashok is presently working as a Research Assistant Professor in Mr. & Mrs. Ko Chi Ming Centre for Parkinson's Disease Research, Teaching and Research Division, Hong Kong Baptist University. He is an expert in Translational drug research, Chinese Medicine research, Neurodegenerative Diseases, Pharmacology of drug development, Mechanisms of Autophagy.
Current institution
Hong Kong Baptist University
Current position
  • Research Assistant Professor

Publications

Publications (69)
Article
Full-text available
The gut microbiome plays a key role in the pathogenesis and disease activity of inflammatory bowel disease (IBD). While research has focused on the bacterial microbiome, recent studies have shifted towards host genetics and host-fungal interactions. The mycobiota is a vital component of the gastrointestinal microbial community and plays a significa...
Article
Full-text available
Hyperuricemia (HUA) is a condition associated with a high concentration of uric acid (UA) in the bloodstream and can cause gout and chronic kidney disease. The gut microbiota of patients with gout and HUA is significantly altered compared to that of healthy people. This article focused on the complex interconnection between alterations in the gut m...
Article
Full-text available
Alzheimer’s disease (AD) is marked by the gradual and age-related deterioration of nerve cells in the central nervous system. The histopathological features observed in the brain affected by AD are the aberrant buildup of extracellular and intracellular amyloid-β and the formation of neurofibrillary tangles consisting of hyperphosphorylated tau pro...
Article
Full-text available
Lung cancer is one of the major cancer types and poses challenges in its treatment, including lack of specificity and harm to healthy cells. Nanoparticle-based drug delivery systems (NDDSs) show promise in overcoming these challenges. While conventional NDDSs have drawbacks, such as immune response and capture by the reticuloendothelial system (RES...
Article
In this editorial, we examine a paper by Koizumi et al , on the role of peroxisome proliferator-activated receptor (PPAR) agonists in alcoholic liver disease (ALD). The study determined whether elafibranor protected the intestinal barrier and reduced liver fibrosis in a mouse model of ALD. The study also underlines the role of PPARs in intestinal b...
Article
Full-text available
Aβ specific theranostic small molecule, F-SLCOOH inhibits Aβ self-aggregation and promotes lysosomal biogenesis in Alzheimer’s disease models.
Article
Autophagy impairment is a key factor in Alzheimer's disease (AD) pathogenesis. TFEB (transcription factor EB) and TFE3 (transcription factor binding to IGHM enhancer 3) are nuclear transcription factors that regulate autophagy and lysosomal biogenesis. We previously showed that corynoxine (Cory), a Chinese medicine compound, protects neurons from P...
Article
Full-text available
Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by the predominant impairment of neurons in the hippocampus and the formation of amyloid plaques, hyperphosphorylated tau protein, and neurofibrillary tangles in the brain. The overexpression of amyloid-β precursor protein (APP) in an AD brain results in the binding of APP intra...
Article
In recent years, there has been growing concern over the rising incidence of liver diseases, with increasing exposure to environmental toxins as a significant contributing factor. However, the mechanisms of liver injury induced by environmental pollutants are largely unclear. Here, using tetrabromobisphenol A (TBBPA), a widely used brominated flame...
Article
Full-text available
The autophagy-lysosomal pathway (ALP) is a major cellular machinery involved in the clearance of aggregated proteins in Alzheimer disease (AD). However, ALP is dramatically impaired during AD pathogenesis via accumulation of toxic amyloid beta (Aβ) and phosphorylated-Tau (phospho-Tau) proteins in the brain. Therefore, activation of ALP may prevent...
Article
Full-text available
Bacterial Extracellular Vesicles (BEVs) possess the capability of intracellular interactions with other cells, and, hence, can be utilized as an efficient cargo for worldwide delivery of therapeutic substances such as monoclonal antibodies, proteins, plasmids, siRNA, and small molecules for the treatment of neurodegenerative diseases (NDs). BEVs ad...
Article
Full-text available
The citrus canker pathogen Xanthomonas axonopodis has caused severe damage to citrus crops worldwide, resulting in significant economic losses for the citrus industry. To address this, a green synthesis method was used to develop silver nanoparticles with the leaf extract of Phyllanthus niruri (GS-AgNP-LEPN). This method replaces the need for toxic...
Article
Full-text available
A key pathological feature of neurodegenerative diseases (NDs) such as Alzheimer's disease (AD) and Parkinson's disease (PD) is the accumulation of aggregated and misfolded protein aggregates with limited effective therapeutic agents. TFEB (transcription factor EB), a key regulator of lysosomal biogenesis and autophagy, plays a pivotal role in the...
Article
Unsaturated lipids containing single or more carbon-carbon double bonds (C═C) within tissues are closely associated with various types of diseases. Mass spectrometry imaging (MSI) has been used to study the spatial distribution of lipid C═C location isomers in tissue sections. However, comprehensive characterization of lipid C═C location isomers us...
Article
Full-text available
Many neurodegenerative diseases, such as Alzheimer’s disease (AD) and frontotemporal dementia with Parkinsonism linked to chromosome 17, are characterized by tau pathology. Numerous motor proteins, many of which are involved in synaptic transmission, mediate transport in neurons. Dysfunction in motor protein-mediated neuronal transport mechanisms o...
Article
Full-text available
Background Tauopathies are neurodegenerative diseases that are associated with the pathological accumulation of tau-containing tangles in the brain. Tauopathy can impair cognitive and motor functions and has been observed in Alzheimer’s disease (AD) and frontotemporal dementia (FTD). The aetiology of tauopathy remains mysterious; however, recent st...
Article
Full-text available
Ovarian cancer is a frequent malignancy that affects a large percentage of women. Endometriosis is a chronic condition, where there is a production of benign lesions were observed in the uterine environment. PCOS is a metabolic disorder characterized by the presence of numerous cysts in the ovaries. The relation between ovarian malignancies and PCO...
Article
Full-text available
Doublecortin-like kinase 1 (DCLK1), a protein molecule, has been identified as a tumor stem cell marker in the cancer cells of gastrointestinal, pancreas, and human colon. DCLK1 expression in cancers, such as breast carcinoma, lung carcinoma, hepatic cell carcinoma, tuft cells, and human cholangiocarcinoma, has shown a way to target the DCLK1 gene...
Article
Full-text available
Oxidative stress, caused by an imbalance between the production and the accumulation of reactive oxygen species (ROS), is a prominent cause of the neurotoxicity induced by aggregated amyloid-β (Aβ) in Alzheimer's disease (AD). Tools that can directly detect and monitor the presence and amount of Aβ-induced ROS are still lacking. We report herein th...
Article
Full-text available
Eukaryotic cells possess a plethora of regulatory mechanisms to maintain homeostasis and ensure proper biochemical functionality. Autophagy, a central, conserved self-consuming process of the cell, ensures the timely degradation of damaged cellular components. Several studies have demonstrated the important roles of autophagy activation in mitigati...
Article
Full-text available
Alzheimer’s disease (AD) is an age-associated neurodegenerative disease; it is the most common cause of senile dementia. Klotho, a single-pass transmembrane protein primarily generated in the brain and kidney, is active in a variety of metabolic pathways involved in controlling neurodegeneration and ageing. Recently, many studies have found that th...
Article
Full-text available
Accumulation of amyloid-β (Aβ) oligomers and phosphorylated Tau aggregates are crucial pathological events or factors that causes progressive neuronal loss, and cognitive impairments in Alzheimer's disease (AD). Current medications for AD have failed to halt, much less reverse, this neurodegenerative disorder; therefore, there is an urgent need for...
Article
Increasing evidence shows that autophagy impairment is involved in the pathogenesis and progression of neurodegenerative diseases including Parkinson’s disease (PD). We previously identified a natural alkaloid named corynoxine B (Cory B) as a neuronal autophagy inducer. However, its brain permeability is relatively low, which hinders its potential...
Article
Full-text available
Alzheimer’s disease (AD), characterized by the accumulation of protein aggregates including phosphorylated Tau aggregates, is the most common neurodegenerative disorder with limited therapeutic agents. Autophagy plays a critical role in the degradation of phosphorylated Tau aggregates, and transcription factor EB (TFEB) is a master regulator of aut...
Article
Full-text available
Rationale: Impairment of autophagy maturation has been implicated in Alzheimer's disease (AD) pathogenesis. However, the mechanism for this impairment has not been elucidated, and whether enhancing autophagy maturation is a viable therapeutic strategy for AD has not been verified. Methods: We examined the autophagosome maturation process in AD cell...
Article
Background : Collective evidences have indicated that intracellular accumulation of hyperphosphorylated tau forms neurofibrillary tangles in the brain, which impairs memory, cognition and affects social activities in Alzheimer's disease (AD). Purpose : To investigate the tau-reducing, and memory enhancing properties of protopine (PRO), a natural a...
Article
Full-text available
Circulating adiponectin (APN) levels decrease with age and obesity. On the other hand, a reduction in APN levels is associated with neurodegeneration and neuroinflammation. We previously showed that aged adiponectin knockout (APN−/−) mice developed Alzheimer’s like pathologies, cerebral insulin resistance, and cognitive impairments. More recently,...
Article
Full-text available
Peptides are strings of approximately 2–50 amino acids, which have gained huge attention for theranostic applications in cancer research due to their various advantages including better biosafety, customizability, convenient process of synthesis, targeting ability via recognizing biological receptors on cancer cells, and better ability to penetrate...
Article
Alzheimer’s disease (AD), a major form of dementia, has been reported to affect more than 50 million people worldwide. It is characterized by the presence of amyloid-β (Aβ) plaques and hyperphosphorylated Tau-associated neurofibrillary tangles in the brain. Apart from AD, microtubule (MT)-associated protein Tau is also involved in other neurodegene...
Article
Full-text available
Transcriptional factor EB (TFEB), a master regulator of autophagy and lysosomal biogenesis, is generally regarded as a pro-survival factor. Here, we identify that besides its effect on autophagy induction, TFEB exerts a pro-apoptotic effect in response to the cyclopentenone prostaglandin 15-deoxy-∆-12,14-prostaglandin J2 (15d-PGJ2). Specifically, 1...
Article
Abbreviations: Aβ: β-amyloid; AD: Alzheimer disease; AIF1/IBA1: allograft inflammatory factor 1; ALP: autophagy-lysosomal pathway; APP: amyloid beta precursor protein; ATP6V1B1/V-ATPase V1b1: ATPase H+ transporting V1 subunit B1; AVs: autophagy vacuoles; BAF: bafilomycin A1; CFC: contextual/cued fear conditioning assay; CHX: Ca2+/H+ exchanger; CTF...
Article
Background Alzheimer's disease (AD) is the most common neurodegenerative disease. Deposition of amyloid β plaques (Aβ) and neurofibrillary tangles (NFTs) is the key pathological hallmark of AD. Accumulating evidence suggest that impairment of autophagy-lysosomal pathway (ALP) plays key roles in AD pathology. Purpose The present study aims to asses...
Article
Full-text available
Parkinson’s disease (PD) is a common neurodegenerative disease featured by progressive degeneration of nigrostriatal dopaminergic neurons (DA) accompanied with motor function impairment. Accumulating evidence has demonstrated that natural compounds from herbs have potent anti-PD efficacy in PD models. Among those compounds, resveratrol, a polypheno...
Article
Full-text available
Extracellular vesicles (EVs) play major roles in intracellular communication and participate in several biological functions in both normal and pathological conditions. Surface modification of EVs via various ligands, such as proteins, peptides, or aptamers, offers great potential as a means to achieve targeted delivery of therapeutic cargo, i.e.,...
Article
Full-text available
Neurodegenerative diseases (NDs) are common chronic diseases related to progressive damage of the nervous system. Globally, the number of people with an ND is dramatically increasing consistent with the fast aging of society and one of the common features of NDs is the abnormal aggregation of diverse proteins. Autophagy is the main process by which...
Article
Full-text available
Alzheimer’s disease (AD) is characterized by memory dysfunction, Aβ plaques together with phosphorylated tau-associated neurofibrillary tangles. Unfortunately, the present existing drugs for AD only offer mild symptomatic cure and have more side effects. As such, developments of effective, nontoxic drugs are immediately required for AD therapy. Pre...
Article
To enable the early detection and intervention of Alzheimer's disease (AD), it is highly desirable to develop novel theranostic agents for simultaneous detection of toxic and pathogenic amyloid-β (Aβ) oligomers in vivo and attenuation of Aβ-induced toxicity. Herein, we report a new series of oligomeric Aβ targeted near infrared (NIR) emissive dibut...
Article
Full-text available
TFEB (transcription factor EB), which is a master regulator of autophagy and lysosome biogenesis, is considered to be a new therapeutic target for Parkinson’s disease (PD). However, only several small-molecule TFEB activators have been discovered and their neuroprotective effects in PD are unclear. In this study, a curcumin derivative, named E4, wa...
Article
Full-text available
TFEB (transcription factor EB) and TFE3 (transcription factor E3) are "master regulators" of autophagy and lysosomal biogenesis. The stress response p38 mitogen-activated protein (MAP) kinases affect multiple intracellular responses including inflammation, cell growth, differentiation, cell death, senescence, tumorigenesis, and autophagy. Small mol...
Article
Full-text available
Alzheimer’s disease (AD) is one of the most common neurodegenerative diseases in older individuals with specific neuropsychiatric symptoms. It is a proteinopathy, pathologically characterized by the presence of misfolded protein (Aβ and Tau) aggregates in the brain, causing progressive dementia. Increasing studies have provided evidence that the de...
Article
Full-text available
Accumulating studies have suggested that targeting transcription factor EB (TFEB), an essential regulator of autophagy‐lysosomal pathway (ALP), is promising for the treatment of neurodegenerative disorders, including Alzheimer's disease (AD). However, potent and specific small molecule TFEB activators are not available at present. Previously, we id...
Article
Full-text available
Alzheimer's disease (AD) is the most common age-related neurodegenerative disorder. Amyloid-β (Aβ) and hyper-phosphorylated tau accumulation are accountable for the progressive neuronal loss and cognitive impairments usually observed in AD. Currently, medications for AD offer moderate symptomatic relief but fail to cure the disease; hence developme...
Article
Full-text available
The mammalian target of rapamycin (mTOR) signaling pathway plays a critical role in regulating cell growth, proliferation, and life span. mTOR signaling is a central regulator of autophagy by modulating multiple aspects of the autophagy process, such as initiation, process, and termination through controlling the activity of the unc51-like kinase 1...
Article
Full-text available
Alzheimer’s disease (AD) is a degenerative disorder typified by progressive deterioration of memory and the appearance of β-amyloid peptide (Aβ)-rich senile plaques. Recently we have identified a novel function of a patented formulation of modified Huanglian-Jie-Tu-Tang (HLJDT-M), a Chinese herbal medicine, in treating AD in in vitro studies (US pa...
Article
Many controversial reports are available on the use of aspartame as it releases methanol as one of its metabolite during metabolism. The present study proposes to investigate whether long term (90 days) aspartame (40 mg/kg b.wt) administration could induce oxidative stress and alter the memory in Wistar strain male albino rats. To mimic the human m...
Article
Full-text available
Alzheimer disease (AD) is the most common neurodegenerative disease characterized by the deposition of amyloid plaque in the brain. The autophagy-associated PIK3C3-containing phosphatidylinositol 3-kinase (PtdIns3K) complex has been shown to interfere with APP metabolism and amyloid beta peptide (Aβ) homeostasis via poorly understood mechanisms. He...
Article
Full-text available
This study assesses the effect of long-term intake of aspartame on liver function and apoptosis signaling pathway in the Wistar albino rats. Several reports have suggested that methanol is one of the major metabolites of Aspartame. Non-primate animals are usually resistant to methanol-induced metabolic acidosis due to high levels of hepatic folate...
Article
Full-text available
Although several studies on toxic effect of aspartame metabolite have been studied, controversial reports over the use of aspartame owing to the fact that it releases methanol as one of its metabolite during metabolism exist. This present study is proposed to investigate whether aspartame (40 mg kg⁻¹ b.wt) administration for 90 days could induce ox...
Article
Full-text available
The present study was carried out to investigate the acute effect of aspartame on oxidative stress in the Wistar albino rat brain. We sought to investigate whether acute administration of aspartame (75 mg/kg) could release methanol and induce oxidative stress in the rat brain 24 hours after administration. To mimic human methanol metabolism, methot...
Article
Full-text available
Though several studies on toxic effect of aspartame metabolite have been studied, there are scanty data on whether aspartame exposure administration could release formate, a methanol metabolite thereby inducing oxidative stress and neurodegeneration in brain discrete region. To mimic the human methanol metabolism, the methotrexate (MTX) treated fol...
Article
Full-text available
This study investigates how long-term (40 mg/kg b.wt) consumption of aspartame can alter the antioxidant status, stress pathway genes, and apoptotic changes in the liver of Wistar albino rats. Numerous controversial reports are available on the use of aspartame as it releases methanol as one of its metabolites during metabolism. To mimic the human...
Article
Full-text available
Aspartame, an artificial sweetener is very widely used in many foods and beverages. But there are controversies about its metabolite which is marked for its toxicity. Hence it is believed to be unsafe for human use. Previous studies have reported on methanol exposure with involvements of free radicals on excitotoxicity of neuronal apoptosis. Hence,...
Article
Background The study focused to long-term effect of aspartame on membrane bound enzymes, oxidative stress markers and histopathology in brain regions of Wistar albino rats. Hence it is essential to observe whether the chronic aspartame administration (75 mg/kg b. wt) could release methanol and induce oxidative stress in the rat brain. Many reports...
Article
Full-text available
The focus of the study is to investigate whether the long-term (90 days) oral administration of aspartame (75 mg/kg) has an effect in the anxiety, locomotor activity and emotionality behavior of Wistar strain male Albino rats. Aspartame releases methanol as one of its metabolites during metabolism. To mimic the human methanol metabolism, the methot...
Article
Full-text available
The present study aims to find out the efficiency of water hyacinth in accumulation and fast absorption of all heavy metals from the aqueous solution. This study infers that water hyacinth plays a vital role in phytoremediation. Eichhornia crassipes (water hyacinth) has been tested for removal of four important heavy metals chromium (Cr) lead (Pb)...
Article
The use of the artificial sweetener aspartame has long been contemplated and studied by researcher around the world regarding their varying negative effects. The present study aims to evaluate the long-term effect of aspartame (75 mg/kg) on liver and brain antioxidant status with histopathological changes in liver and renal cortex in Wistar strain...
Article
This study was aimed at investigating the chronic effect of the artificial sweetener aspartame on oxidative stress in brain regions of Wistar strain albino rats. Many controversial reports are available on the use of aspartame as it releases methanol as one of its metabolite during metabolism. The present study proposed to investigate whether chron...

Network

Cited By