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Abstract

Copper is essential for aerobic life, but many aspects of its cellular uptake and distribution remain to be fully elucidated. A
genome-wide screen for copper homeostasis genes in Drosophila melanogaster identified the SNARE gene Syntaxin 5 (Syx5)
as playing an important role in copper regulation; flies heterozygous for a null mutation in Syx5 display increased tolerance
to high dietary copper. The phenotype is shown here to be due to a decrease in copper accumulation, a mechanism also
observed in both Drosophila and human cell lines. Studies in adult Drosophila tissue suggest that very low levels of Syx5
result in neuronal defects and lethality, and increased levels also generate neuronal defects. In contrast, mild suppression
generates a phenotype typical of copper-deficiency in viable, fertile flies and is exacerbated by co-suppression of the copper
uptake gene Ctr1A. Reduced copper uptake appears to be due to reduced levels at the plasma membrane of the copper
uptake transporter, Ctr1. Thus Syx5 plays an essential role in copper homeostasis and is a candidate gene for copper-related
disease in humans.
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Introduction

Copper (Cu) is essential to aerobic organisms as a cofactor in

diverse metabolic processes including cellular respiration and

proliferation; formation of connective tissue, melanin and

neurotransmitters; antioxidant defence; cell signalling; and angio-

genesis [1,2]. Although several proteins involved in copper

homeostasis have been well characterized, numerous aspects of

the cellular distribution remain to be fully elucidated.

Ctr1 is the major copper uptake protein in mammalian cells,

and is thought to form a trimer containing a pore at the plasma

membrane through which copper can pass [3,4]. Chaperones

Atox1, CCS, Cox17, Sco1 and Sco2 are required to deliver

copper to copper-dependent enzymes in various subcellular

compartments. Atox1, CCS and Cox17 may receive their copper

either directly via protein–protein interaction with Ctr1 or

indirectly via an intermediate such as glutathione or metallo-

thionein [5], and Sco1 has been shown to receive copper from

Cox17 [6]. At the trans-Golgi network (TGN), copper is

transferred from Atox1 directly to the transmembrane copper-

translocating P-type ATPases ATP7A (MNK) and ATP7B

(WND) for transport to enzymes of the secretory pathway [7].

However, under conditions of excess cellular copper, ATP7A and

ATP7B traffic towards the plasma membrane where they

facilitate copper efflux [8].

Due to the varied metabolic processes for which copper is

required, there are a wide variety of copper-related diseases with

diverse phenotypes. For example, Menkes disease is caused by

impaired ATP7A-mediated transport of dietary copper from the

polarised gut epithelial cells, resulting in systemic copper

deficiency and Wilson disease is caused by impaired ATP7B-

mediated transport of copper from the liver resulting in copper

toxicosis [reviewed in 9]. However, not all copper-related diseases

have been associated with a candidate gene [10]. Copper levels

and copper metabolism proteins have been implicated in gene

expression, tumour cell metastasis and resistance to anti-neoplastic

drugs and copper chelators have shown promise in the treatment

of cancer [reviewed in 2]. Copper dyshomeostasis in the brain is

associated with Alzheimer’s disease and copper ionophores have

shown encouraging results in clinical trials [11]. The further

characterisation of genes involved in copper homeostasis is

therefore required to provide additional candidate genes and

support our understanding of the mechanisms underlying a range

of copper-related diseases [2].

The vinegar fly Drosophila melanogaster has recently proven a

useful model for characterizing the role of copper homeostasis

genes. Drosophila has orthologues of all major copper homeostasis

proteins and several studies have demonstrated the high level of

functional conservation with humans [12–15]. In Drosophila, two

homologous proteins, Ctr1A and Ctr1B, fulfil the function of
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mammalian Ctr1. Ctr1A is constitutively expressed [13,16] and is

required for baseline copper uptake while Ctr1B is induced in the

midgut by dietary copper limitation and is needed to boost

absorption [13,17]. DmATP7 is the sole Drosophila orthologue of

mammalian copper transporting ATPases, ATP7A and ATP7B

[15].

A genetic screen was performed in Drosophila to further

illuminate our understanding of copper homeostasis mechanisms

[18]. This resulted in the identification of the SNARE (soluble

NSF attachment protein receptor) gene Syntaxin 5 (Syx5) as playing

an important role in copper regulation in the fly; flies heterozygous

for a null mutation in Syx5 display significantly increased tolerance

to high levels of dietary copper.

SNAREs are involved in fusion of vesicles to target membranes

and are therefore central to intracellular trafficking [19]. Syx5 is

localised to the trans-Golgi network (TGN) for docking of vesicles

including the COPI type [20] and is required for endosome to

TGN transport of Shiga toxin and the endogenous cargo protein

mannose 6-phosphate receptor [21]. There is also evidence for

Syx5–mediated transport between endoplasmic reticulum (ER) and

Golgi [22]. Drosophila Syx5 has recently been shown to play a role

in translocation of proteins to the apical membrane and is also

required for Golgi reassembly following cell division [23]. This

signifies a degree of functional conservation of mammalian and

Drosophila Syx5. Given the known roles of mammalian Syx5 in both

anterograde and retrograde intracellular trafficking, Syx5 repre-

sents an excellent candidate for involvement in uptake or

intracellular distribution of copper. The current study presents

evidence that Syx5 is vital for efficient copper uptake in insect and

mammalian cells as well as in vivo in Drosophila.

Results

Syx5+/2 heterozygotes have high tolerance to dietary
copper

Increased Drosophila copper tolerance had been previously

mapped to a single locus on Chromosome 2 encoding Syx5 [18].

To confirm the correct locus had been identified, Syx5AR113/CyO

Drosophila were screened for copper tolerance (Fig. 1). The

Syx5AR113 allele encodes a functionally null, truncated peptide

which is homozygous lethal [23]. The wild-type strain Armenia,

the eye-colour mutant w1118 and the mapping strain Df(2L)r10,

cn1/CyO, with a deletion spanning Syx5, were included as controls.

The offspring from crosses of Syx5AR113/CyO6Armenia, Df(2L)r10,

cn1/CyO6Armenia, and a double-balancer stock (IF/CyO)6Arme-

nia were also screened to confirm copper tolerance segregated

with the Syx5 mutations.

Both Syx5AR113/CyO and Df(2L)r10, cn1/CyO had significantly

higher survival to the adult stage than Armenia, w1118 or IF/CyO

when reared on a copper-supplemented diet, but no difference in

survival was observed on basal media or the copper chelator BCS

(Figure 1). x2 analysis of the crosses revealed that the increased

copper tolerance segregates with both the Df(2L)r10 deletion

(x2 = 26.385, P,0.001 on 1 mM Cu) and the Syx5A113 allele

(x2 = 18.615, P,0.001), but not with any balancer or wild-type

chromosomes (Table S1). This clearly demonstrates that increased

copper tolerance in Syx5+/2 heterozygotes is associated with a

50% reduction in Syx5 levels compared to wild-type Drosophila.

The Syx5AR113/CyO strain was used to investigate how Syx5

mediates this copper tolerance. This strain shows no viability or

fertility defects (Figure S1) indicating that the copper-related

phenotypes demonstrated here are not due to a non-specific

reduction in fitness.

Copper tolerance is associated with reduced copper
levels in Syx5+/2 Drosophila

Pupal metal content was measured to ascertain copper

accumulation throughout the larval feeding stage, as this is most

relevant to the increased tolerance of dietary copper (Figure 2).

Syx5+/2 heterozygotes accumulate less copper than wild-type on

both basal and copper-supplemented diets. This strongly suggests

that the increased copper tolerance of Syx5+/2 heterozygotes is due

to reduced copper levels relative to wild-type flies although we

cannot rule out alternative explanations for the copper tolerance

phenotype with reduced copper content being an indirect

Figure 1. Syx5 +/2 Drosophila show increased dietary copper tolerance. ‘Armenia’ and ‘w1118’ are control strains with normal copper
homeostasis mechanisms. ‘DB’ is a double balancer strain containing the CyO balancer chromosome present in the Syx5+/2 mutants. ‘Df(2L)r10’ is an
original mapping strain and ‘Syx5AR113’ is a specific Syx5 null allele. Values are mean with s.e.m. Both Syx5 heterozygous strains show increased copper
tolerance compared to the three controls. *Significant difference from Armenia, determined by a Mann-Whitney test (P,0.05). There was no
difference in survival between w1118 and Syx5AR113/+ flies on concentrations of BCS up to 1 mM (F = 0.778, P = 0.610).
doi:10.1371/journal.pone.0014303.g001
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consequence. Interestingly, they also accumulate more zinc than

wild-type on a zinc-supplemented diet, but tolerance to excess zinc

is unaffected (Figure S2). No other metals were significantly

affected.

The induction of metallothionein genes has been used previously as

a proxy marker for copper excess, and Ctr1B induction as a marker

for copper deficiency [15]. These genes were examined in Syx5+/2

larvae raised under basal and copper supplemented conditions

(Figure S3). Higher expression of Ctr1B in Syx5+/2 larvae

compared to wild-type (3.260.7 times wild-type, independent

samples T-Test, P,0.05) is consistent with copper deficiency

under basal conditions [17], and is alleviated by copper-

supplementation (1.160.1 times wild-type). Copper-supplemented

media stimulated the normal metallothionein (copper sequestration)

response, raising expression to similar levels in both Syx5+/2 and

wild-type larvae. MtnC was the only metallothionein to show lower

expression compared to wild-type (0.160.0, P,0.05). These

results are consistent with direct measurements of copper content

(Figure 2) which show that Syx5+/2 larvae are capable of

accumulating copper on supplemented media, even though the

levels do not reach those of wild-type. Higher concentrations (2–

4 mM copper) result in a copper load sufficient to increase Syx5+/2

mortality, despite the high tolerance compared to wild-type

(Figure 1). Together these data indicate that flies with 50% wild-

type levels of functional Syx5 accumulate excess copper, but do so

less efficiently than wild-type flies.

Tissue-specific reduction in Syx5 generates a typical
copper deficiency phenotype

The GAL4-UAS system in Drosophila can be used to manipulate

target gene expression in individual tissues by using tissue-specific

GAL4 drivers to either ectopically express the gene of interest or

inhibit it by RNA interference (RNAi) [24,25]. RNAi lines specific

to Syx5 were used to suppress Syx5 activity. Targeted suppression

of Syx5 in the developing eye (Gmr-GAL4), nervous system (Elav-

GAL4) or midgut (Mex-GAL4) resulted in larval or pupal lethality,

probably due to the essential role of this gene in intracellular

trafficking and Golgi reassembly following cell division [23].

Suppression of Syx5 in the Pannier domain (Pnr-GAL4), a band

down the centre of the developing thorax and abdomen, is also

normally lethal. However rare survivors raised at 18uC show

abdominal hypopigmentation phenotypes typical of copper

deficiency [Figure 3B, 15,26] and complete loss of the central

thorax. In contrast, over-expression of Syx5 in the same domain

resulted in reduced scutellum and bristles but no change in

pigmentation (Figure 3C). This milder phenotype is not necessarily

related to copper transport as bristles are a mechanosensory

structure, so their loss can reflect neuronal defects [27].

Combining the Syx5 suppression and over-expression transgenes

in the same fly results in a moderate hypopigmentation of the

thorax (Figure 3D) similar to that seen in the moderate copper

deficiency caused by Ctr1A suppression [Figure 3E, 26]. This is

most likely a hypomorphic Syx5 phenotype where the combination

of RNAi and over-expression results in an intermediate level of

Syx5 transcript causing a partial loss of function.

To investigate genetic interactions between Syx5 and the copper

homeostasis machinery, DmATP7 and Ctr1A levels were manipu-

lated together with Syx5 suppression. Over-expressing or sup-

pressing either Ctr1A (copper uptake) or DmATP7 (copper efflux)

was unable to rescue the lethality caused by strong Syx5

suppression. Together with the Syx5 hypomorph combination

(Figure 3D), Ctr1A suppression is additive (Figure 3F); the

hypopigmentation phenotype is more severe and there is bristle

loss that is not observed for either Ctr1A suppression (Figure 3E) or

in the Syx5 (Figure 3D) hypomorph alone. In contrast Ctr1A over-

expression, which would normally increase copper levels, does not

rescue the Syx5 hypomorph (Figure 3G). The Syx5 hypomorph has

no effect on the phenotype caused by either DmATP7 suppression

(Figure 3H) or over-expression (Figure 3I).

These studies demonstrate that strong suppression of Syx5

causes lethality that cannot be rescued by the manipulation of

major copper transporters which mediate uptake and efflux,

indicating that intracellular trafficking pathways additional to

those involved in copper homeostasis are disrupted. In contrast,

mild suppression of Syx5 leads to a typical copper deficiency

phenotype in the adult thorax and abdomen that is exacerbated by

suppression of Ctr1A and cannot be rescued by Ctr1A over-

expression. The copper deficiency phenotype is consistent with a

reduction in copper levels found in Syx5+/2 heterozygous flies

(Figure 2, Figure S3) and a disruption to copper transport

(Figure 3E).

Syx5 suppression reduces copper uptake at the cellular
level

Copper accumulation was studied in cultured cells to further

examine the role of Syx5 in cellular copper homeostasis.

Suppression of Syx5 in the Drosophila S2 embryonic cell line

resulted in reduced copper accumulation (Figure 4A), consistent

with the reduction seen in pupae (Figure 2). No other metals were

significantly affected. In particular, in contrast to the whole animal

inductively coupled plasma atomic emission spectrometry (ICP)

results, zinc content was not altered by Syx5 suppression in cells. A

reduction in copper levels appears to be the key cellular Syx5

suppression phenotype and was therefore examined further.

To investigate how Syx5 might affect copper homeostasis, the

gene was suppressed in cells with stable over-expression of Ctr1A or

Ctr1B (Figure 4B). While total copper accumulation was higher in

cells over-expressing either copper uptake gene, the relative

efficiency of accumulation was decreased to a similar extent in

control and over-expression cell lines when Syx5 was suppressed.

This is consistent with data from Syx5+/2 heterozygote flies, which

show they are able to accumulate excess copper, but do so less

efficiently than wild-type flies (Figures 1–2, Figure S3).

Figure 2. Copper accumulation in Syx5 +/2 Drosophila. Copper
content was measured by ICP-AES in wild-type and Syx5+/2 Drosophila
reared to the pupal stage on copper chelator (100 mM BCS), basal media
or 1 mM copper. Values are mean metal content per pupa with s.e.m.
from five replicates of 50 pupae. Syx5+/2 larvae accumulate less copper
on both basal and copper-supplemented media. *Significant difference
from wild-type, determined by a Mann-Whitney test (P,0.05).
doi:10.1371/journal.pone.0014303.g002
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The effect of human Syx5 suppression was also investigated in

two human fibroblast cell lines (Figure 5 and Figure S4). GM2069

cells have wild-type copper transport mechanisms. Me32a cells

were derived from a Menkes disease patient and have a deletion in

the ATP7A gene that introduces a premature stop codon [28].

These cells hyper-accumulate copper as the truncated ATP7A

Figure 4. Syx5 suppression in Drosophila S2 cells decreases copper accumulation. Metal accumulation was measured by ICP-AES in control
(black) and Syx5 (grey) RNAi suppression cells grown in basal media (A). Syx5 gene expression was suppressed to 19–36% of wild-type levels. Values
are mean with s.e.m of eight replicates over two experiments, normalized against control cells. Mean copper accumulation during a 24 h exposure to
2 mM Cu was measured using 64Cu in S2 cell lines stably over-expressing Ctr1A, Ctr1B or an empty vector control and normalized to total cellular
protein (B). Error bars are s.e.m. from nine replicates over three experiments. Syx5 gene expression levels relative to wild-type were 18–41% (control
cells), 25-41% (Ctr1A) and 23-31% (Ctr1B). Copper accumulation is reduced by Syx5 suppression (A) even when Ctr1A or Ctr1B is over-expressed (B):
suppression of Syx5 reduces copper levels to 50–70% of wild-type in all cell lines. *Significant difference between control and Syx5 suppression cells,
determined by an independent samples T-Test (P,0.05).
doi:10.1371/journal.pone.0014303.g004

Figure 3. Suppression of Syx5 in adult Drosophila cuticle results in hypopigmentation typical of copper deficiency. Gene expression/
suppression was driven in a dorsal stripe down the adult thorax/abdomen using the Pannier-GAL4 driver. A control fly is shown (A). Syx5 suppression
under Pnr-GAL4 is normally lethal. Rare survivors reared at 18uC (B) show loss of dorsal thorax (arrow 1) and strong abdominal hypopigmentation
(arrow 2). Syx5 over-expression results in reduced bristles and scutellum (C, arrow 3). Syx5 suppression can be rescued to a mild hypomorph by
concurrent Syx5 over-expression (D), which shows hypopigmentation (arrow 4) similar to that seen for Ctr1A suppression (E). The mild hypomorph is
exacerbated by Ctr1A co-suppression (F) but not rescued by Ctr1A over-expression (G). DmATP7 suppression (H) and over-expression (I) phenotypes
are unaffected by addition of the Syx5 hypomorph combination.
doi:10.1371/journal.pone.0014303.g003
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protein is unable to facilitate efflux of excess copper and the

ATP7B efflux protein is not expressed.

Copper accumulation was determined at time intervals from 1

to 24 h (Figure 5A–B). Suppression of Syx5 resulted in a significant

reduction in copper accumulation in both cell lines, with the

difference most evident in GM2069 cells between 13 and 24 h

when copper levels plateau. These results are consistent with those

in S2 cells exposed to copper following suppression of Syx5

(Figure 4). Suppression of Syx5 does not significantly affect the rate

of copper uptake in GM2069 cells up to 1 h (Figure S4A) or the

short term copper uptake kinetics (Figure S5B–C). The reduced

copper accumulation in Me32a cells (Figure 5B) indicates that

functional ATP7A is not required for the Syx5 suppression

phenotype. This suggests that the copper deficiency phenotype is

associated with copper uptake rather than efflux, consistent with

gene interaction studies in Drosophila (Figures 3 and 4B).

To exclude the possibility that Syx5 suppression stimulates an

ATP7A-independent efflux mechanism, cells were allowed to

accumulate copper and copper retention was examined when cells

were returned to basal media (Figure 5C–D). Although less total

copper accumulated following suppression of the gene (Figure 5A–

B), there was no effect on the rate of copper turnover (Figure 5C–

D) indicating increased copper efflux is unlikely to be responsible

for the reduction in copper accumulation. Taken together these

results demonstrate that suppression of Syx5 reduces copper uptake

efficiency when cells are exposed to copper in the micromolar

range. Reduced copper accumulation is evident after 1 h and the

greatest difference occurs when copper levels have reached a

steady state.

The localisation of human Ctr1 (hCtr1) was examined in

human embryonic kidney (HEK293, ATCC cell line CRL-1573)

cells following Syx5 suppression using biotinylation to detect myc-

tagged hCtr1 at the cell surface (Figure 6). A biotinylated protein

of approximately 35 kDa was detected at the cell surface,

comparable to the reported size of monomeric myc-tagged hCtr1

in HEK293 cells [29]. Syx5 suppression reduced the amount of

hCtr1 detected at the plasma membrane whilst a control

membrane transporter, NaK-ATPase was not affected. Densitom-

etry analysis revealed that, relative to NaK-ATPase, hCtr1 levels

at the cell surface were reduced to 20% of that in control cells,

consistent with the finding that copper uptake is reduced.

Western blot densitometric analysis showed that Syx5 levels

were reduced to 24–33% of wild-type in the human cell lines

(Figures 6 and S5). This is milder suppression than in cases where

Golgi fragmentation has been reported [21,30] and minimal

disruption to the Golgi and early endosomes was observed here

(Figure S6). This is consistent with results from Drosophila in

suggesting that copper homeostasis phenotypes are observed in

otherwise viable, fertile flies when Syx5 levels are only mildly

reduced. Greater reductions cause additional cellular disturbances

and a range of phenotypes not necessarily related to copper

homeostasis.

Discussion

Roles for mammalian Syx5 in both anterograde and retrograde

vesicular transport have been well characterized and severe Syx5

reduction causes fragmentation and dispersal of the Golgi [21,30].

Figure 5. Syx5 suppression in human cells decreases copper accumulation but does not affect rate of turnover. Wild-type (GM2069; A)
and ATP7A deficient (Me32a; B) human cell lines were exposed to control (squares) or Syx5 (circles) siRNA for 48 h. Syx5 gene expression levels
relative to wild-type were 22–46% for GM2069, and 23n45% for Me32a cells. Copper accumulation was then measured with 64Cu following 1–24 h
exposure to 2 mM copper. Values are mean with s.e.m. of six replicates over two experiments. Non-linear regression analysis demonstrated copper
accumulation in GM2069 cells (A) was significantly reduced following suppression of Syx5 (F = 108.0, P,0.0001). Linear regression analysis
demonstrated copper accumulation was also significantly reduced in Me32a cells (B) following suppression of Syx5 (F = 44.1, P,0.0001). Rate of
copper turnover of the radioisotope 64Cu was measured in wild-type (GM2069; C) and ATP7A deficient (Me32a; D) human cell lines. Cells were treated
with control (squares) or Syx5 (circles) siRNA and exposed to 2 mM copper for 24 h, then returned to basal media for 2–8 h. Data are expressed as a
percentage of copper accumulation at Time 0 and expressed as mean with s.e.m. of nine replicates over three experiments. Linear regression analysis
shows that the rate of copper turnover was not significantly altered by Syx5 suppression.
doi:10.1371/journal.pone.0014303.g005
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Similarly, the Drosophila Syx5 orthologue is required for Golgi

reassembly following cell division and for translocation of proteins

to the apical membrane [23]. Complete loss of Syx5 activity leads to

early larval lethality in the fly [23], as does the strong targeted RNAi

suppression achieved by most GAL4 drivers tested for this study.

In contrast, results presented here have shown that a 50%

reduction in Syx5 levels in Drosophila leads to significantly

increased tolerance to high dietary copper with no adverse impact

on viability or fertility. Drosophila copper tolerance can be altered

by manipulating levels of known copper uptake proteins or

metallothioneins directly or via suppression of the metallothionein

transcription factor, MTF-1 [12,13,31]. However, the present

study implicates for the first time a gene encoding components of

vesicular trafficking in copper tolerance. Direct measurement of

copper levels and analysis of copper-induced gene expression

showed that this increased tolerance is associated with a reduction

in copper accumulation. Consistent with this, moderate suppres-

sion of Syx5 specifically in the adult thorax generated a typical

copper-deficiency phenotype.

Reduced Syx5 levels also resulted in elevated zinc accumulation

in the fly but, unlike the copper phenotype, this did not affect zinc

sensitivity. A possible explanation is that, with reduced copper

levels, more metallothionein is available to sequester excess zinc

and the flies are able to absorb more without detrimental effects. It

is notable that this change in zinc accumulation was seen in

Drosophila pupae only, not in cell lines, and could therefore be a

systemic response to reduced copper accumulation.

The study of copper uptake and retention in cultured cells

confirmed that the in vivo copper deficiency phenotype is due to a

reduction in the efficiency of copper accumulation. Importantly,

consistent results were seen in both Drosophila and human cell lines,

suggesting that Syx5 plays an evolutionarily conserved role in

cellular copper uptake. In human cell lines, we observed no

detectible effect on copper uptake kinetics over 10 minutes, but

rather a gradual reduction in copper accumulation over a period

of hours. Copper turnover was unaffected by suppression of Syx5

and copper levels differed most at steady state levels.

Consistent with the finding that Syx5 suppression affects the

copper uptake pathway, hCtr1 levels at the plasma membrane

were reduced to 20% of control when Syx5 was suppressed in

human cells. Previous studies have found that flies lacking

Drosophila Syx5 have impaired transport of proteins to the apical

membrane of epithelial cells [23]. Due to barely detectable Ctr1

levels in the whole lysate, it cannot be determined whether overall

Ctr1 levels are reduced in these cells. Given the known role of

Syx5 in anterograde vesicle transport and apical protein targeting,

the most likely explanation is that Syx5 is required for localization

of Ctr1 to the plasma membrane. However alternative explana-

tions such as reduced synthesis or stability of Ctr1 cannot be ruled

out. Thus it appears that loss of Syx5 alters Ctr1 function, thus

inhibiting cellular copper uptake. This leads to a systemic copper

deficiency in vivo.

Although mild dispersion of the Golgi was seen in Syx5

suppression cells and it has been shown previously that the loss of

Syx5 can cause severe cellular and fertility defects [23], the

impairment to copper uptake observed here occurred in the

presence of sufficient Syx5 that flies show normal viability and

fertility compared to wild type flies. Since the copper-tolerant

Syx5+/2 heterozygotes examined here are otherwise healthy, this

raises the possibility that mild loss of Syx5 function may be

important in copper-related disease in humans. This may be

particularly relevant to conditions such as cancer and Alzheimer’s

disease, where subtle changes in cellular copper regulation may

influence progression of the disease [1,2,11]. Indeed, it has been

found that defects in components of the trafficking machinery can

lead to a specific disease phenotype [32], although this has not

previously been documented for copper homeostasis. In the case of

Alzheimer’s disease adapter proteins can affect Abeta40 and

Abeta42 production by altering residence time of amyloid

precursor protein in particular compartments including the plasma

membrane [33].

We have presented evidence for a key role of Syx5 in cellular

copper uptake, indicating that it plays a significant role in copper

homeostasis. The finding that mild loss of Syx5 function

significantly influences intracellular copper levels in the absence

of other obvious phenotypes at the whole organism level provides a

novel candidate for etiology of diseases resulting from copper

dyshomeostasis [e.g. 2,10].

Materials and Methods

Drosophila stocks and maintenance
All Drosophila strains were maintained on standard medium at

25uC. Armenia, Arm60 (European Drosophila Stock Centre, Umeå

Sweden). w1118 (BL3605, Bloomington Stock Centre). ‘Df(2L)r10’,

Figure 6. Syx5 suppression reduces the amount of hCtr1 at the
plasma membrane of Hek293 cells. Hek293 cells stably expressing
Ctr1-myc were treated with scrambled negative control or Syx5 siRNA.
Cell surface proteins were isolated following biotinylation using biotin-
streptavidin precipitation prior to western immuno-blotting. Ctr1was
detected with an anti-c-myc antibody. Syx5 knockdown was confirmed
with an anti-Syx5 antibody and anti-NaK ATPase was used as control.
Total lysate (T), non-biotinylated (NB), and biotinylated (B) fractions are
shown. Protein bands were quantified with densitometry. Two species
of Syx5 were detected and Syx5 knockdown reduced the amount of this
protein in total cell lysate to approximately 33% of control siRNA
treated cells. An hCtr1 monomer of approximately 35 kDa was detected
in the biotinylated fraction. Densitometric analysis of hCtr1 protein
intensity relative to NaK ATPase, revealed that Syx5 knockdown
reduced the about of hCtr1 at the cell surface to approximately 20%
of control siRNA treated cells.
doi:10.1371/journal.pone.0014303.g006
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Df(2L)r10, cn1/CyO (BL1491). Syx5AR113/CyO, also referred to as

Syx5+/2 (BL3645) [23]. ‘Double balancer’, w; IF/CyO; MKRS/

TM6b, Tb (gift from G. Hime, University of Melbourne). Gmr-

GAL4, P{Gmr-GAL4.w2}2 (BL9146). Mex-GAL4 [34]. Pnr-

GAL4, P{GawB}pnrMD237 (BL3039). ‘UAS-Syx5’, RNAi transfor-

mants 3857 and 3859 specific for Syx5 yielded the same results,

and data shown are for 3857 (Vienna Drosophila RNAi Center).

Drosophila mortality screen
Standard medium was supplemented with 100–1000 mM of the

copper chelator bathocuproinedisulfonic acid (BCS; Sigma) or 1–

4 mM Cu (CuSO4.5H2O; Merck) as specified in the text. Survival

to the adult stage was measured for five replicates of 50 first instar

larvae per condition. Male Syx5AR113/CyO, Df(2L)r10/CyO or

IF/CyO mutants were crossed to female Armenia and visible

Chromosome 2 markers were used to monitor segregation of

Syx5AR113, Df(2L)r10 and CyO. Offspring from the replicates were

pooled for x2 analysis.

Transgenics
The Drosophila Syx5 open reading frame including the first intron

was PCR amplified from w1118 genomic DNA, omitting the

termination codon using primers: Forward, GGGGTACCATG-

CAAACCCGAAGACGCCT and Reverse, GCTCTAGACGA-

CATAAAAACAACGAAG. This fragment was sub-cloned in-

frame with a C-terminal myc epitope tag into the pUAST_attB

vector. Embryos from the Basler laboratory wC31 strains wX-51A

and wX-96E were injected by standard techniques. Microinjec-

tions utilized an Eppendorf Femtojet apparatus with Femtotips II

(Eppendorf) pre-pulled glass needles. Integrants at both these attP

sites were obtained. Results presented here utilized the wX-51A

integrant. Adult flies were imaged with a Leica MZ6 Stereomi-

croscope.

Generation of myc-tagged Crt1 overexpressing HEK293
cells

The myc-tagged Ctr1 construct was generated through PCR

amplification of cDNA using the forward (59-TCATGGATCC-

GAAAAAATGGAACAAAAACTCATCTCAGAAGAGGATC-

TGGATCATTCCCACCATATGGG -39) and reverse (59-G-

GGCTCTAGAGAATTCAATGGCAATGCTCTGTGATATC -

39) oligonucleotides and by incorporation into the mammalian

expression vector, pcDNA3. The forward oligonucleotide intro-

duced sequence encoding the myc epitope in-frame immediately

after the start codon and provided a flanking 59 BamH1

endonuclease restriction site. The reverse oligonucleotide provided

an EcoRI endonuclease restriction site 39 to the stop codon.

Template cDNA was isolated from human hepatoma HepG2 cells

(ATCC, cell line HB-8065) using the SuperScriptTM III

CellsDirect cDNA synthesis system (Invitrogen) following the

manufacturer’s protocol. The PCR reaction contained 16PCR

buffer, 0.2 mM of each dNTP, 2 mM MgCl2, 0.2 mM of each

primer, 2.5 units Platinum Taq DNA polymerase and 3 ml of

cDNA (Invitrogen). Reactions were run on an Eppendorf

Epgradient S Mastercycler on the following program: one cycle

of 94uC for 2min, 38 cycles of 94uC for 45s, 57uC for 60s and

72uC for 60 s, followed by one cycle of 72uC for 2 min. The

resultant PCR product was digested with BamH1 and EcoR1 and

cloned into pcDNA3 at the same sites. Integrity was confirmed by

sequencing. Stable transfection of HEK293 cells (ATCC, cell line

CRL-1573) with the myc-tagged Ctr1 construct was performed

using FuGENEH HD (Roche) following the manufacturer’s

instructions. The cells were recovered in Dulbecco’s Modified

Eagle’s medium (DMEM) containing 10% (v/v) FCS and

transfectants were selected with 500 mg/ml G418 for 14 days.

Cell culture
Drosophila embryonic S2 cells were propagated in Serum Free

Media (SFM, Invitrogen) as previously reported [14]. S2 cells

maintaining stable over-expression of Ctr1A or Ctr1B were

generated by co-transfecting pCoHygro with either pAcCtr1A,

pAcCtr1B or pAc empty vector control using Lipofectamine2000

and propagated in Schneider’s Complete Media (Invitrogen) with

10% foetal calf serum (Trace Scientific) supplemented with

300 mg/ml hygromycin-B according to the manufacturer’s

instructions (Invitrogen). Media was replaced with SFM for all

experiments and supplemented with CuCl2 (Sigma) at the

concentration specified in the text. Wild-type (GM2069) and

ATP7A null (Me32a) human fibroblast cells have been described

previously [28]. Cells were maintained in Eagle’s basal culture

medium (Thermo Scientific) supplemented with 10% foetal calf

serum (Trace Scientific) at 37uC and passaged weekly. Human

embryonic kidney (HEK293) cells were stably transfected with

myc-tagged human Ctr1 (pcDNA3.1Ctr1-Myc). These cells were

maintained in Dulbecco’s modified Eagle’s medium (Thermo

Scientific) with 10% foetal calf serum (Trace Scientific) and

500 mg/ml Geneticin (Invitrogen) at 37uC and passaged weekly..

All experiments were conducted in growth media with 10% foetal

calf serum.

RNA interference and gene expression
dsRNAi in S2 cells was conducted as previously reported [14].

dsRNA was targeted to Syx5 (cDNA bases 214–757). Control

dsRNA was derived from EYFP cDNA or Adult Cuticle Protein 1

(13–558), which is not expressed in S2 cells. siRNA suppression in

mammalian cells utilized Stealth RNAi duplexes (Invitrogen).

40 nM Syx5 or low GC negative control Stealth RNAi duplexes

were transfected into mammalian cells with Lipofectamine2000

according to the manufacturer’s instructions (Invitrogen). Cells

were seeded to be 30–50% confluent on the day of transfection

and growth media was replaced with Opti-MEM (Invitrogen).

Opti-MEM was replaced with growth media 4–6 h after

transfection 48 h before experiments. Gene suppression was

confirmed using qPCR and western blot. qPCR was performed

as previously described [31]. Housekeeping genes GAPDH,

Actin42A and bActin were used for normalisation in Drosophila

larvae, Drosophila S2 cells and mammalian cells respectively.

Primer sequences are shown in Table S2.

Metal accumulation and retention
Copper accumulation was measured as previously reported

[14]. Cells were incubated with ,0.4 MBq 64Cu (Australian

Radioisotopes) and non-radioactive copper at the concentrations

described in the figure legends. Copper retention was measured by

incubating cells with copper for 24 h, washing, and incubating for

an additional 2–8 h in basal media. Radioactivity was measured

with a c-counter (1282 CompuGamma, LKB Wallac). Copper

levels were normalized to total cellular protein, which was

determined using BioRad protein reagent according to the

manufacturer’s instructions (BioRad). Total metal accumulation

was measured using a Vista-AX Inductively Coupled Plasma

Atomic Emission Spectrometer (ICP-AES, Varian) in samples

digested in 70% HNO3 and metal levels were measured as

described previously [31]. Drosophila metal levels were measured in

five replicates of 50 pupae and expressed as ng/pupa. S2 cell metal

levels were normalized to total cellular protein.
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Cell Surface Biotinylation and Western Blotting
Cell surface proteins were labelled with 0.5 mg/ml sulpho-

NHS-SS-biotin (Thermo Scientific) and precipitated with strepta-

vidin-agarose beads (Thermo Scientific) as previously described

[35]. Protein samples were resolved on NuPAGE 4–12% Bis-Tris

gels (Invitrogen) and transferred to nitrocellulose membranes for

western immuno-blotting. Primary antibodies used were mouse

anti-c-myc (1:5000, Sigma), rabbit anti-Syx5 [1:1500, 36] and

mouse anti-NaK-ATPase (1:5000, Abcam). Horseradish peroxi-

dase coupled secondary antibodies were rabbit anti-mouse and

goat anti-rabbit (1:7000, Dako). Chemiluminescence was detected

using ECL (GE Healthcare) and images were captured with a

Fujifilm LAS-3000 (Fujifilm LifeScience). Densitometric analysis

was conducted with Multi Gauge v2.3 (Fujifilm).

Statistics
Statistical analysis was conducted using SPSS v16 (SPSS). A

one-sample Kolomogorov-Smirinov test was used to assess

whether data was normally distributed. Statistical analyses are

described in Figure legends. P,0.05 was deemed statistically

significant.

Supporting Information

Table S1 x2 values comparing siblings from crosses to wild-type

Armenia.

Found at: doi:10.1371/journal.pone.0014303.s001 (0.03 MB

DOC)

Table S2 Quantitative PCR primer sequences.

Found at: doi:10.1371/journal.pone.0014303.s002 (0.03 MB

DOC)

Figure S1 Syx5+/2 Drosophila show no viability or fertility defects.

Ten individual pairs each of Syx5+/2 heterozygous virgin females

and w1118 males (Syx5 f6w1118 m), w1118 virgin females and

Syx5+/2 heterozygous males (w1118 f6Syx5 m), or w1118 virgin

females and w1118 males (w11186w1118) were maintained in vials

containing standard laboratory medium which was replaced every

24 h. Fertility was measured by allowing pairs 24 h to mate, then

counting eggs produced every 24 h for five days (A). Male

reproductive output was measured as the egg production of

females inseminated by Syx5+/2 males. Twenty replicates of 50

eggs were transferred into vials containing standard laboratory

medium and viability was scored as the number of adults to

emerge after 20 days (B). The average number of eggs laid per

female over a five day period and the average number of eggs to

reach the adult state were compared among strains using a one-

way ANOVA with LSD post-hoc testing. Since both Syx52/w1118

and CyO/w1118 offspring were produced in Syx5+/2 crosses, an

independent samples T-Test was used to confirm there was no

difference in survival between these sibling genotypes then they

were pooled for comparison to the w1118 strain. The Syx5 mutation

did not adversely affect fertility: there was no significant difference

in the number of eggs produced from either cross compared to

those produced by the w1118 control strain (Syx5+/2 female6w1118

male, 306615; w1118 female6Syx5+/2 male, 241624; w1118

female6w1118 male, 295632; P = 0.479). There was no adverse

impact on viability of eggs from Syx5+/2 parents, in fact there was

slightly higher survival of the w1118 female6Syx5+/2 (4461 s.e.m.)

male compared to the w1118 strain (3861; P = 0.002). Emergence

from the reciprocal cross was intermediate (4061) and not

significantly different from either.

Found at: doi:10.1371/journal.pone.0014303.s003 (0.14 MB

TIF)

Figure S2 Metal accumulation and zinc tolerance in Syx5+/2

heterozygote Drosophila. Metal content was measured by ICP-AES

on flies reared to the pupal stage on basal media (A). Data are

mean 6 s.e.m. metal content per pupa from five replicates of 50

pupae and are expressed relative to wild-type (w1118) levels. In

addition to a decrease in copper accumulation (shown in detail in

Figure 2 of the main text), Syx5+/2 flies accumulated 1.5-fold more

zinc than wild-type (A). Zinc tolerance was determined as

described for copper tolerance in the main text by supplementing

media with 0–8 mM zinc (ZnSO4.7H20, Ajax) (B). No significant

differences in mortality were detected.

Found at: doi:10.1371/journal.pone.0014303.s004 (0.37 MB TIF)

Figure S3 Copper-responsive gene expression in Syx5+/2

Drosophila. Wild-type and Syx5+/2 Drosophila were reared to third

instar on basal media (A) or 1 mM copper (B) and qPCR was used

to investigate Ctr1B and MtnA-D expression levels from three

replicates of 50 larvae. Ctr1A has no transcriptional response to

copper levels and is included as a control. Gene expression is mean

relative to wild-type. Error bars are s.e.m. Under basal conditions

Ctr1B is upregulated in Syx5+/2 larvae, indicative of copper

deficiency. Copper exposure alleviates the deficiency and leads to

similar MtnA, MtnB and MtnD upregulation in Syx5+/2 and wild-

type larvae. An independent samples T-Test was used to

determine statistical significance for differences between Syx5+/2

and wild-type exceeding a two-fold magnitude, as indicated by

dotted lines (*P,0.05).

Found at: doi:10.1371/journal.pone.0014303.s005 (0.24 MB TIF)

Figure S4 Syx5 suppression in human cells does not significantly

affect copper uptake kinetics. (A) Copper uptake measured over

one hour in GM2069 cells treated with control (squares) or Syx5

(circles) siRNA for 48 h. 64Cu was used to measure copper

accumulation in cells exposed to 2 mM copper for 5–60 minutes.

Values are mean with s.e.m. of nine replicates from three

experiments. There was a tendency for the rate of copper

accumulation to be lower following Syx5 suppression, however

linear regression analysis demonstrated that this was not

significantly different. (B) GM2069 cells treated with control

(squares) or Syx5 (circles) siRNA for 48 h. 64Cu was used to

measure copper accumulation in cells exposed to 2–100 mM

copper for 10 min. Values are mean with s.e.m. of six replicates

from two independent experiments. Non-linear regression analysis

demonstrated that copper uptake kinetics were not statistically

significant different following knockdown of Syx5.

Found at: doi:10.1371/journal.pone.0014303.s006 (0.31 MB TIF)

Figure S5 RNAi suppression in human cells reduces protein

levels for Syx5. GM2069 and Me32a cells treated with control or

Syx5 siRNA for 48 h. Western blot analysis of whole cell lysate

from these cells using anti-Syx5 antibody detected two electro-

phoretic species as previously reported [1]. Rabbit anti-Actin 20–

33 (1:300, Sigma) was used as a loading control. The amount of

both Syx5 species was reduced by Syx5 suppression in each of these

cell lines: Densitometry analysis demonstrates that, relative to

control cells, Syx5 protein levels were reduced to 27.7% in

GM2069 and 31.1% in Me32a cells. 1. Subramaniam VN, Loh E,

Hong WJ (1997) N-ethylmaleimide-sensitive factor (NSF) and

alpha-soluble NSF attachment proteins (SNAP) mediate dissoci-

ation of GS28-syntaxin 5 Golgi SNAP receptors (SNARE)

complex. J Biol Chem 272: 25441–25444.

Found at: doi:10.1371/journal.pone.0014303.s007 (0.24 MB TIF)

Figure S6 Syx5 suppression does not cause substantial Golgi

fragmentation or affect early endosome localization in human

cells. Golgi distribution: Immunocytochemistry in GM2069 cells
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utilized anti-Syx5 (1:50) and mouse anti-Golgin 97 was used as a

TGN marker (1:200, Prof. Paul Gleeson). Secondary antibodies

were Alexa 488 anti-rabbit and Alexa 594 anti-mouse (1:400,

Invitrogen). DAPI (300 nM, Invitrogen) was used to detect the

nucleus. Images were recorded at 1006 magnification using an

Olympus FluoView 1000 confocal microscope with Olympus

FluoView ver1.6a software (Olympus). Images at each wavelength

were captured sequentially and multi-color maximum brightness

stacked images were prepared using Image J (NIH, Bethesda, MD,

USA). GM2069 cells were treated with control siRNA (A–C) or

Syx5 siRNA (D–F). Syx5 is shown in Green (A, D), Golgin 97 is

shown in Red (B, E) and DAPI is shown in Blue. Merged images

are also shown (C, F). Syx5 suppression reduced Syx5 levels but did

not dramatically alter the distribution of Golgin 97 (D–F). Golgi

distribution was measured using Image J and was found to be

42.567.2 mm2 in control and 72.269.7 mm2 following Syx5

suppression. Thus the Syx5 RNAi suppression achieved in this

study produced a mild phenotype in comparison to the effects of

extreme Syx5 inhibition found in previous studies [1,2]. Early

endosome localization: Immunocytochemistry in GM2069 cells

utilized anti-Syx5 (1:50) and mouse anti-EEA1 was used as an

early endosome marker (1:100, BD Biosciences). Secondary

antibodies, DAPI staining and image analysis were conducted as

described above for Golgi distribution. GM2069 cells were treated

with control siRNA (G–I) or Syx5 siRNA (J–L). Syx5 is shown in

Green (G, J), EEA1 is shown in Red (H, K) and DAPI is shown in

Blue. Merged images are also shown (I, L). The localization of

early endosomes was not affected by Syx5 suppression (J–L). 1.

Amessou M, Fradagrada A, Falguieres T, Lord JM, Smith DC,

Roberts LM, Lamaze C, Johannes, L (2007) Syntaxin 16 and

syntaxin 5 are required for efficient retrograde transport of several

exogenous and endogenous cargo proteins. J Cell Sci 120: 1457–

1468. 2. Diao A, Frost L, Morohashi Y, Lowe M (2008)

Coordination of Golgin Tethering and SNARE Assembly:

GM130 binds Syntaxin 5 in a p115-regulated manner. J Biol

Chem 283: 6957–6967.

Found at: doi:10.1371/journal.pone.0014303.s008 (0.84 MB TIF)
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