
Atmospheric rivers (ARs) are synoptic-​scale features 
characterized by their striking geometry — extending 
thousands of kilometres in length and an order of 
magnitude less in width1 — and vertically coherent 
low-​level moisture transport concentrated in the bottom 
3 km of the atmosphere2 (Fig. 1). In total, ARs are esti-
mated to accomplish as much as 90% of poleward mois-
ture transport3,4, which, in the North Pacific, averages 
700 kg m−1 s−1 (Fig. 1b), more than twice the mean annual 
discharge found at the mouth of the Amazon River5. ARs 
do not describe continuous moisture transport. Rather, 
they are continually evolving pathways that incorpo-
rate moisture from local convergence and evaporation 
along their track6,7 or, in select cases, from distant source 
regions in the tropics or subtropics8–12. Owing to the 
complexity of their evolution, our baseline knowledge of 
AR characteristics at the global scale is uncertain due to 
the dependency on identification algorithms (Box 1), with 
factors such as genesis, development and termination  
only recently being explored13,14.

However, ARs are known to operate as one part of 
a larger, synoptic-scale dynamical system driving the 

poleward transport of sensible and latent heat4,15. They 
are generally found in the vicinity of extratropical 
cyclones. Over the North Pacific, for example, 85% of 
ARs are paired with extratropical cyclones16, consist-
ent with their observed relationship with baroclinic 
instabilities and the mid-​latitude storm track3,6. However, 
this relationship is nuanced; only 45% of extratropical 
cyclones over the same region are associated with an 
AR16. Similar non-​linear relationships are observed in 
the North Atlantic, where the evolution and life cycle of 
a single AR can span that of several cyclones9. While the 
phenomena are clearly related, their relationship is inter-
active, with potential implications on the intensification 
of storms and the severity of precipitation impacts  
on land17,18.

Indeed, given their intense moisture transport and 
moist-​neutrality, ARs exhibit conditions that are ideal 
for forced precipitation, either through interaction 
with topography or ascent along a warm conveyor belt 
or frontal boundary19. Thus, when ARs make land-
fall, they can have a range of hydrological impacts, 
including precipitation extremes and related hazards, 
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as well as contributions to water supplies20–24. For 
example, ARs provide 20–30% of annual precipitation 
in western Europe and the western USA22, and 14–44%  
of warm-​season total precipitation in East Asia25.

With 4–5 ARs present in each hemisphere at 
any point in time3, their influence is felt globally. 
Nevertheless, AR-​related impacts are largely constrained 
to the western coastlines of South America26–28, South 
Africa29, North America30 and Europe31–36, the eastern 
coastlines of Japan25,37 and New Zealand38,39, and over 
continental regions, such as the Central and Eastern 
United States40–42. Emerging research has also found 
AR-​like structures over the western Mediterranean that 
share some characteristics with ARs in the mid-​latitudes 
and contribute to precipitation extremes43. Moreover, 
ARs extend into the polar regions44–47, where the 
increased temperatures and moisture that accompany 
these events further modify an environment already 
sensitive to feedback processes48. ARs, for example, have 
been observed to amplify summertime warming in the 
Arctic troposphere49, influence the decline of Arctic sea 
ice by affecting the surface radiative balance50 and bring 
about mass surface-​melt events in West Antarctica, with 
the circulation patterns that accompany them51.

Multiple factors contribute to the scale of the 
impacts ARs have at landfall, including duration 
over space and time, the temperature and intensity of 
moisture transport and antecedent soil moisture and 
snowpack conditions52–54. The rapid succession of indi-
vidual landfalling ARs over a short period (less than 
a week) can supplant the initially beneficial supply of 
water resources. These AR ‘families’ are modulated by 
large-​scale dynamics55,56 and are most notably linked 
to the events leading to damage of the Oroville Dam  
in February 2017 (ref.57). Evidence of megaflood events in 
the palaeoclimate record in the West Coast of the United 
States, likely linked to landfalling AR events, suggests 
that the full range of their variability is still unknown58,59.

Communities experience detrimental effects related 
to ARs through impacts on water resources and hazards, 
either primary or secondary, to extreme precipitation. 
The robust increase of atmospheric moisture and poten-
tial for changes in large-​scale circulation with climate 
change have implications on the intensity, moisture 
sources and preferred tracks of future ARs. However, it 
is not enough to connect increases in the intensity of 
moisture transport to changes in hydrological hazards 
when they make landfall. The precipitation associated 
with ARs can respond quite differently from changes 
seen in moisture transport and are reliant on not only 
surface processes such as orographic forcing but also the 
location, duration and intensity of moisture transport 
within ARs. These changes may manifest in even more 
extreme AR events and exacerbate current difficulties in 
water management. Vital to the resilience of communi-
ties affected by ARs is knowing how their characteristics 
will respond to a warming climate.

In this Review, we present a comprehensive synthesis 
of AR responses to warming, connecting the theoretical 
basis for changes in ARs to results from complex 
models and observations. Building on theory, we first 
explore how thermodynamic and dynamic responses 
to warming affect the scale of AR impacts on land. We 
subsequently provide an overview of the observed and 
projected changes to AR characteristics, including their 
impacts, followed by an assessment of future research 
priorities. The multiple roles ARs play in the climate 
system and the complexity of their impacts at landfall 
motivate the importance of a holistic approach.

Theory-​based changes to atmospheric rivers
The unique characteristics that comprise ARs provide 
opportunities to examine a subset of precipitation pro-
ducers in a future climate from a conceptual perspective. 
We begin by discussing the physical theory associated 
with AR responses to idealized warming, focusing on 
their most defining feature, intense moisture transport. 
AR intensity is captured by the column-integrated 
water-vapour transport (IVT),
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where g is standard gravity, u and v the zonal and merid-
ional winds, respectively, q specific humidity, ps surface 
pressure and pt an upper-​atmospheric reference pressure 

Key points

•	Atmospheric rivers are important components of the meridional transport of 
atmospheric moisture. They influence the hydroclimate of a number of regions in  
the mid-​latitudes.

•	On land, atmospheric rivers are the source of both beneficial water resources and 
deleterious hazards (mudslides, floods and, in their absence on longer timescales, 
droughts).

•	The robust thermodynamic response of atmospheric moisture to climate change 
means that future atmospheric rivers will contain more moisture, but circulation 
changes and potential decreases in their precipitation efficiency must be considered 
in future impact studies.

•	At the global scale, much is still unknown about atmospheric rivers, including basic 
observations of their development, their interaction with large-​scale dynamics and 
their role in short-​duration, high-​volume melt events over the Arctic and Antarctic.

•	Future research on the mechanisms driving atmospheric rivers and their life cycles will 
be a critical advancement for further quantifying their response to climate change.
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(typically set between 500 and 200 hPa). For simplicity, 
we define IVT as the magnitude of water-​vapour trans-
port, but vector definitions also appear in the literature5. 
As specific humidity changes as a function of tempera-
ture and pressure alone under saturated conditions typi-
cal of ARs, IVT offers a valuable investigative framework 
for understanding ARs. Indeed, changes in IVT can be 
decomposed into distinct contributions from thermody-
namics (the change in atmospheric moisture content, q)  
and dynamics (the change in atmospheric motion,  
u and v), each of which is now discussed.

Thermodynamic responses. A natural starting point 
for understanding the change in the thermodynamic 
component of IVT is the Clausius–Clapeyron equation, 
which states that the water-​vapour content of saturated 
air, q∗, increases nearly exponentially with temperature 
T according to
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α(T) is the Clausius–Clapeyron scaling factor, 
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where L is the latent heat of vaporization and Rv is the gas 
constant of water vapour. Within the saturated environ-
ment at the core of an AR (where q ≈ q∗), Eq. (2) implies 
that the fractional change in humidity per degree of 
surface warming ΔTs is approximately given by
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where ΔT/ΔTs represents the magnitude of warming at 
a particular height relative to the surface. At the surface, 
where ΔT = ΔTs, specific humidity scales with tempera-
ture at the rate of the Clausius–Clapeyron scaling factor, 
α(Ts). This scaling is approximately 6.6% K−1 for surface 
temperatures characteristic of ARs making landfall in 
California in the present climate (Ts = 13 °C (refs52,60)).

Above the surface, however, the IVT response to 
warming is complicated by two factors. First, α is not 
constant but varies with temperature from ~6% K−1 in 
the tropical boundary layer to >7% K−1 at temperatures 
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Fig. 1 | Characteristics of a typical atmospheric river. 
 a | A plan view of the typical structure and orientation of  
an atmospheric river (AR). b | Vertical cross section through 
the core of the AR (A–A′). Green contours show the water 
vapour mixing ratio, red contours show water vapour 
transport and blue contours show the wind speed.  
c | An example of a strong landfalling AR from the Pacific 
Northwest on 06 November 2006 in ERA5 reanalysis data. 
Black contours show the magnitude of vertically integrated 
heat flux in units of W m−1 co-​located with the AR , drawn  
at intervals of 0.05 × 1011 W m−1. Coloured contours depict 
2-m surface temperature, drawn at intervals of 2 K. IVT, 
integrated vapour transport. Adapted with permission 
from ref.5, American Meteorological Society.
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below freezing61. Given that temperature decreases with 
height, α is, therefore, larger in the upper troposphere 
than at the surface, amplifying the change in specific 
humidity (q) aloft61. Second, an increase in q results in 
more latent heat being released as saturated air ascends, 
in turn decreasing the lapse rate with warming and, 
thus, increasing ΔT with height61–63. Under the saturated, 
moist-​neutral conditions of an AR, the combination of 
these factors implies a rate increase in column-​integrated 
water vapour that is substantially larger than that of near-​
surface water vapour: 9.5% K−1 compared with 6.6% K−1 
when Ts = 13 °C (ref.52)). While the larger increase in 
IVT relative to surface water vapour has been described 
as super-​Clausius–Clapeyron scaling64, it is, in fact, a 
straightforward consequence of Clausius–Clapeyron 
scaling applied to a saturated, moist-neutral environ-
ment. Therefore, the fractional change in integrated 
water vapour is a reasonable approximation to the 
thermodynamic contribution to IVT change64–66.

The vertical distribution of water vapour, wind 
speed and, consequently, water-​vapour transport 

within ARs is another factor subject to change in future 
climate scenarios. Mid-​level water-​vapour transport, 
for example, is an important process producing heavy 
precipitation on the lee side of the northern Sierra 
Nevada67,68. These studies have a specific regional 
focus; however, the importance of mid-​level transport 
in extending AR conditions inland of major topo-
graphic barriers can be generalized to many regions. 
Water vapour transported above the crest level is less 
likely to be lost due to forced ascent and rainout on the 
windward side of such barriers. Accurately modelling 
changes in the vertical distribution of water-​vapour 
transport is critical to predicting future hydroclimate, 
particularly over interior continental regions positioned 
downstream of topography.

Dynamical responses. In contrast to expected thermo
dynamic responses, the response of atmospheric 
circulation to warming is much less certain69,70. As a con-
sequence, our discussion of dynamical responses of IVT 
is broader and focused on two aspects that are vitally 

Box 1 | Identification

Atmospheric rivers (ARs) are identifiable as transient features 
with extended geometry in instantaneous snapshots of daily and hourly 
moisture fields. However, while it is simple to separate ARs from 
background moisture visually, an automated method of identification 
becomes fundamental when understanding their behaviour over 
climatological timescales. To date, detection approaches have mainly  
been qualitative, regionally focused (particularly to the North Pacific) and 
subject to expert opinion. As a result, it has been challenging to compare 
detection algorithms.

In a future climate, the way ARs are identified is vital for diagnosing 
expectations of their hazards. The Atmospheric River Tracking Method 
Intercomparison Project (ARTMIP) is an ongoing, international effort that 
aims to quantify this uncertainty through the application of a variety of 
identification algorithms to common data sets155,156. Here, we explore  
how algorithm choice influences the month of maximum AR landfalling 
frequency for the western coastlines of the USA and Europe (see the 
figure).

The figure shows the collective agreement for algorithms across 
latitudes (along each coastline) and in the climatological month of 
maximum frequency. Identifying which locations and months are  
robust and which ones are not across algorithms can inform the level  

of uncertainty in a given analysis. This metric may be particularly 
important when assessing the seasonality shifts of the maximum 
frequency of occurrence expected to occur under global warming.  
While algorithms show excellent agreement in AR latitudinal distribution, 
this does not extend to the absolute number of ARs identified by each 
method. Disagreement in the total number is expected, as methodologies 
imposing strict requirements for AR identification detect significantly 
fewer ARs than those that impose less restrictive conditions. These 
distinctions are relevant because of their impact on metrics such as  
AR frequency.

Other standard AR metrics include storm intensity and duration and 
associated precipitation. These metrics are all somewhat dependent  
on methodological choices. AR intensity is particularly difficult to 
compare between methodologies, as most rely on intensity as a defining 
characteristic, and so it is slightly ‘baked in’ to the algorithm. For example, 
a method requiring that the intensity of an individual AR have a minimum 
value that is higher than the choice made in another algorithm will,  
by definition, detect stronger ARs. The value of ARTMIP is in the 
identification of the nuance in algorithm definitions. Moving forward, 
results from various ARTMIP subtopics can inform researchers on the  
most appropriate application for the various identification approaches.
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important to the impact of ARs on land: their location 
of landfall and intensity. These aspects are modified by 
changes in the large-​scale circulation patterns and by the 
energetics of the atmosphere.

Uncertainty in the mid-​latitude-circulation response 
originates from the many competing influences on the 
location of the eddy-​driven jet in a warming climate sys-
tem71. The jet stream is the guide against which cyclones 
propagate and, consequently, is closely related to the 
location of ARs and the high IVT that characterizes 
them. In the upper atmosphere, moistening of the trop-
ical troposphere leads to increased latent-​heat release 
and amplified warming relative to the lower troposphere. 
In the lower atmosphere, declining sea ice and other 
feedback processes act to amplify surface-​temperature 
increase in the polar region72,73. These changes have 
opposing effects on the meridional temperature gra-
dient, so that the temperature gradient increases in the 
upper troposphere and decreases in the lower tropo-
sphere. Shifts in the eddy-​driven jet with climate change 
depend on this ‘tug-​of-war’ between the two responses74 
and, thereby, remains a significant source of uncertainty 
for diagnosing changes in precipitation patterns75,76.

The preceding description is a much-​simplified 
picture of the complex and interwoven mechanisms 
that influence the response of large-​scale dynamics to 
warming77. Regional differences in the responses of 
the jet are certain78; however, generally, models show 
a poleward shift in the eddy-​driven jet, which leads 
to increased static stability in the subtropics79,80 and 
upward expansion of the storm track, all consistent with 
an increase in the upper-​level meridional temperature 
gradient71,81,82. The response of the eddy-​driven jet will 
shift future ARs poleward66. Those events occurring 
at lower latitudes may also be shifted equatorward, 
depending on the location and strength of the sub
tropical jet shift, which shows a similar poleward shift 
and strengthening with warming79.

Against this simplified framework, several compet-
ing effects may influence the intensity of IVT. Increased 
atmospheric moisture with warming drives the increase of 
latent-​heat release and, consequently, the intensification 
of IVT and associated extratropical cyclones83. At the 
same time, a reduction in the baroclinic instability due 
to a decrease in the meridional temperature gradient and 
increased efficiency of poleward moisture transport in a 
moister atmosphere may reduce the moisture transport84.

The separation between potential moisture sources 
may influence the sources of moisture contained within 
ARs. Over the eastern North Pacific, while over 70% of 
moisture within ARs was found to be locally sourced, 
at least 15% was found to be subtropical or tropical in 
origin85.

Precipitation responses. In climate models, there is a 
robust increase in global mean precipitation; however, 
how the response of ARs contributes towards this change 
is still uncertain and depends on many more factors 
than increased moisture alone86. In this section, we 
examine how the previously discussed thermodynamic 
and dynamic responses of IVT contribute to changes in  
AR-​related precipitation patterns.

In regions with little topographic relief, the local pre-
cipitation rate, P, is approximately equal to the column-​
integrated condensation rate during a strong landfalling 
AR event with large IVT,
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where ω is the vertical velocity in pressure coordinates, 
dq/dp the vertical gradient in specific humidity following 
a moist adiabat and θe the equivalent potential temper-
ature. Given that moist-​neutral stratification is a gen-
eral characteristic of strong ARs, ω is not expected to 
change much under warming87. For a generally strong 
AR event in which ascent extends through the full depth 
of the troposphere, constant ω therefore implies that  
P will scale with warming at roughly the same rate as 
near-​surface q (that is, ΔP/(PΔTs) ≈ α(Ts)). Consequently, 
precipitation from ARs will increase at a lower rate than 
IVT under warming. For example, in a comparison of 
the historical period to end-of-the-century Represen
tative Concentration Pathway 8.5 (RCP 8.5) in a large 
ensemble of model simulations, the number of extreme-​
precipitation AR days increased by 28%, compared with 
35% for the total number of AR days88.

In many regions, however, orographic processes will 
act to enhance AR-​related precipitation through interac-
tions between the large-​scale flow and local topography. 
In the Sierra Nevada mountain range of California, for 
example, windward slopes receive around four times 
more precipitation during ARs compared with lower 
elevations upstream. Similar examples of orographic-​
precipitation enhancement are also observed in 
Norway31,89, New Zealand39, Japan25 and much of the 
western coastlines of North90–92 and South America27,28,93. 
In these and other mountainous regions, orographic 
processes could strongly influence the response of AR 
precipitation to warming.

Recent studies have identified several mechanisms 
that could affect the amount and distribution of AR 
precipitation in mountainous regions under warming. 
For example, due to basic thermodynamics, the vertical 
structure of condensation over a mountain’s windward 
slope will shift upward with warming, essentially requir-
ing air to be lifted higher to reach condensation61. This 
process shifts the spatial pattern of precipitation down-
wind and drives a sub-​Clausius–Clapeyron increase 
(an increase of 9.3% compared with non-​orographic 
precipitation at 13.1%) in the total precipitation across 
the mountain. While regional-​climate-model simula-
tions provide some evidence of these thermodynamic 
effects94,95, other changes, such as mountain-​wave 
dynamics96 and hydrometeor growth and fallout63,97,98, 
are also thought to influence AR-​precipitation responses. 
This complexity points to the need for further analysis 
of the mechanisms governing orographic precipitation 
and its response to climate change — an effort that 
will be substantially aided by greater availability of 
high-​resolution simulations99 (Box 2).

Theory further suggests that an increase in water-​
vapour transport above crest level, as might be expected 
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given higher atmospheric-​moisture content and a 
deepening troposphere, will increase the frequency 
with which ARs penetrate inland across significant topo
graphic barriers100. Consequently, inland regions such 
as the western USA are anticipated to have a greater 
availability of atmospheric moisture. Nevertheless, this 
inland penetration of atmospheric moisture does not 
guarantee higher precipitation, given dependence on 
air-​mass saturation (more moisture is needed to achieve 
this in a warmer world) and the interactions between 
these air masses and dynamical mechanisms that force 
vertical ascent101.

The moistening of the atmosphere and the thermo
dynamic response of IVT to warming is, therefore, 
expected to increase precipitation related to ARs overall. 
Dynamic responses seem to have the largest effect on 

location, rather than on intensity. The poleward migration 
of ARs and potential modification of moisture-​source  
regions will shift associated precipitation patterns.

Atmospheric river trends and projections
While physical theory has provided valuable insight into 
warming-​related changes in ARs, the short duration of 
the satellite record and lack of observations over regions 
where they develop hinders the identification of trends  
in their behaviour. Evidence of change, therefore, exists in 
the form of regional case studies, trends in precipitation  
extremes and long-​term reanalysis records.

Many studies have focused on understanding 
observed changes in ARs along the western coastline of 
North America, motivated by unprecedented hydrocli-
matic volatility over the last decade102. Here, AR activity  

Box 2 | Model resolution

Over the last decade, increases in computational resources have paved the 
way for the improved model resolution of global climate models (GCMs). 
Through the intercomparison of multidecadal simulations, several high-​
resolution GCM campaigns have evaluated increases in spatial resolution 
on model performance157–161. However, only a few studies have shown the 
potential application of these GCMs for research focused on atmospheric 
rivers (ARs), generally when the spatial resolution is finer than 60 km 
globally108,110,162–164. In addition to better-​resolved AR characteristics, 
increasing spatial resolution is also shown to result in more realistic 
climate processes, which, in turn, affect AR location, intensity and 
frequency of occurrence165.

The figure shows an example of the impact of model resolution on 
precipitation patterns for a landfalling AR event in central Chile on  
11 July 2006 (ref.27), simulated by three runs of the HadGEM3-GC3.1  
model166,167 at increasing spatial resolution (left to right, approximately 250, 
100 and 50 km Coupled Model Intercomparison Project Phase 6 (CMIP6) 
nominal resolution, respectively). For comparison, each model is overlaid 
by daily precipitation from the same high-​resolution-analysis product 
(NCEP Climate Forecast System (CFSv2) at 0.31° resolution) in contour 
(starting at 10 mm day−1 and increasing in increments of 10). Comparison  
of the three panels shows improvement in both the location and 
magnitude of precipitation with increasing spatial resolution, most  
evident in the co-​location of model-​simulated precipitation with the 
highest concentration of precipitation in CFSv2 in central Chile.

High-​resolution GCMs are better able to simulate atmospheric-​
moisture transport over ocean basins, which contribute to increases  
in precipitation over land168. These improvements are, in part, due to 

better-​resolved eddy-​driven jet163,169 and topography that is more  
realistic in both location and altitude170. Related to increased  
resolution of topography, high-​resolution GCMs better capture 
high-​impact-precipitation frequency and intensity111,171,172.  
Improvements in the vertical profile of temperature and precipitation  
in mountain regions are also connected to better-​resolved AR impacts  
on the snowpack173.

The practice of using CMIP5 models to study changes in AR 
characteristics needs to be critically considered, as many exist at 
resolutions coarser than 60 km. More research is needed to quantify where 
improvements in model representation are sourced, as research has shown 
that the impact of resolution can vary among GCMs170. Beyond increases 
in horizontal resolution, the vertical resolution of models should also be 
explored. For example, improvements in long-​range forecasts of North 
Pacific AR activity at the sub-​seasonal-to-​seasonal scale have been made 
due to increased vertical resolution and a corresponding improved 
representation of the quasi-​biennial oscillation174,175.

Studies focusing on the impacts of resolution changes will soon be 
possible with the new High Resolution Model Intercomparison Project 
(HighResMIP99), for which multiple atmosphere–ocean-​coupled GCMs are 
run over a multidecadal period, with spatial resolutions ranging between 
25 km and 50 km globally, higher than those of the CMIP6 simulations. Such  
‘weather-​resolving’ GCMs will allow an examination of high-​impact events 
in the context of climate variability and change. Retrieving information on 
ARs from HighResMIP would particularly benefit impact projects aiming to 
monitor water resources and predict flooding, such as the Advanced 
Quantitative Precipitation Information project over California.

Precipitation (mm day–1)0 75

b HadGEM3-GC31-MM (100 km)a HadGEM3-GC31-LL (250 km) c HadGEM3-GC31-HM (50 km)
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has been increasing since 1948 (refs103,104), possibly  
linked to the warming of sea-​surface temperatures in 
the western Pacific attributable to anthropogenic climate 
change105. For instance, a 20% increase in AR days has 
been observed in British Columbia106. In addition to 
increased activity, the temperatures of landfalling ARs 
to the US West Coast have risen since the 1980s, ranging 
between 0.69 and 1.65 °C over the entire region, depend-
ing on season and latitude60. Elsewhere, understanding 
of observed changes is extremely limited.

Global climate models (GCMs), however, offer an 
opportunity to understand projections of AR charac-
teristics (including intensity, frequency and location) 
in a warming climate. GCMs are excellent tools to 
investigate the links between ARs and the large-​scale 
circulation, and identify the thermodynamic processes 
involved throughout the lifetime of ARs. To date, most 
projection studies have relied on simulations from the 
Fifth Coupled Model Intercomparison Project (CMIP5), 
with a horizontal grid spacing of roughly 1.5–2.5°  
(150–250 km). This resolution is technically high enough 
to detect ARs but is too coarse to capture the fine-​scale 
features involved within ARs, including interactions with 

orography. An expanded discussion of the limitations of 
current simulations is found in Box 2.

Globally, a comparison between the historical  
(1979–2002) and future (2073–2096) periods identified a 
50% increase in AR frequency of occurrence — of nearly 
equal magnitude in the northern and southern hemi-
spheres107 (Fig. 2). Projections also reveal a total decrease 
in the total number of AR events but an increase in 
those events’ width and length in a future climate107. It 
should be noted, however, that those increases may be an 
artefact of the increases in IVT with warming.

Many studies also use GCMs to examine the 
regional characteristics of ARs in a warming cli-
mate11,34,52,64,66,88,108–113. In Europe, for example, the num-
ber of AR days is anticipated to increase by 127–275% 
under RCP 8.5 (ref.64) when comparing 1974–2004 to 
2070–2099. Similarly, along the western coast of the 
USA, the frequency of IVT days above the historical 99th 
percentile is projected to increase by up to 290% over 
the same time period113, consistent with the projected 
increases shown elsewhere109,110. A summary of these 
regional changes is shown in Fig. 2 and Table 1, revealing 
the high degree of uncertainty or absent information 

Frequency Location Precipitation Flooding AR frequency
increases

North
America
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extremes

Snow/ice
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America
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Antarctic Peninsula/West Antarctica  
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Fig. 2 | Projected changes and impacts in atmospheric rivers. Summary schematic of the main changes to atmospheric-​
river (AR) characteristics and impacts under warming. Red and blue symbols reveal increases and decreases, respectively; 
for frequency, red refers to a poleward movement and blue an equatorward movement of landfall. Light red and blue 
symbols with ‘?’ indicate uncertainty in the projection. Grey symbols indicate unknown changes. Background shading 
illustrating AR frequency increases is based on Espinoza et al.107.
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Table 1 | Summary of atmospheric river responses to warming

Study Frequency Location Precipitation Precipitation 
extremes

Flooding Snow/ice 
melt

North America

Curry et al.149 – – – – ↑ –
Dettinger52 ↑ – – – – –
Dominguez et al.154 ↑ – – – – –
Espinoza et al.107 ↑ – – – – –
Gao et al.64 ↑ – – – – –
Gershunov et al.103 – – ↑ – – –
Gershunov et al.177 – – – ↑ – –
Gonzales et al.60 – – – – ↑ –
Hagos et al.88 ↑ – – ↑ – –
Islam et al.148 – – – – ↑ –
Mahoney et al.100 – – ↑ – ↑ –
Mallakpour et al.178 – – – – ↑ –
Payne and Magnusdottir108 ↑ ↑ ↓ – – – –
Pierce et al.179 ↑ – – – – –
Polade et al.114 – – – ↑ – –
Shields and Kiehl110 ↑ ↑ ↓ – – – –
Singh et al.150 – – ↑ – ↑ ↑

Swain et al.102 – – – ↑ – –
Radiĉ et al.109 ↑ ↑ ↑ ↑ – –
Warner et al.113 ↑ – ↑ ↑ – –
East Asia

Kamae et al.25 – – ↑∗ – – –
Kamae et al.162 ↑ ↓ – – – –
South America

Loikith et al.180 – – – ↑ – –
Valenzuela and Garreaud93 – – – ↑ – –
Viale and Nuñez26 – – ↑∗ – – –
New Zealand

Kingston et al.38 – – – ↑∗ ↑∗ –
Little et al.39 – – – – – ↑∗

South Africa

Blamey et al.29 – – ↑∗ – – –
Sousa et al.112 – ↓ ↓ – – –
Europe

Espinoza et al.107 ↑ – – – – –
Gao et al.66 ↑ ↓ ↑ ↑ – –
Lavers et al.32 – – – ↑∗ – –
Lavers et al.33 – – – ↑∗ – –
Lavers and Villarini34 – – ↑∗ ↑∗ – –
Pasquier et al.181 – – – ↑ – –
Ramos et al.11 ↑ – – – – –
Shields and Kiehl110 ↑ – – – – –
Sousa et al.115 – ↑ ↑UK and ↓Iberia – – –
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outside of the western coastlines of North America and 
Europe.

Figure 3 shows a comparison of thermodynamic 
(left column) and dynamic (right column) responses of 
IVT to warming. The calculations use data from a high-​
resolution data set of historical simulations and RCP 8.5 
projections of the end of the 21st century. The panels 
show the dominance of thermodynamic changes over 
those from dynamics, in line with results from the UK 
and the western coastline of North America64,65,108,110,113.

Also revealed, however, is the uncertainty in diag-
nosing dynamical responses due to biases in the mean 
position of the jet in the CMIP5 models64. As discussed 
previously, dynamical changes are most discernible at 
lower latitudes, where the projected expansion of the 
subtropics and the poleward shift of the jet have the most  
influence. For example, in Mediterranean climate zones 
of the lower mid-​latitudes, poleward shifts in the storm 
track are projected to also shift the distribution of AR 
landfalls, resulting in a decrease in both the amount and 
frequency of winter precipitation66,114,115. One exception 
is California, where many GCMs predict a southward 
migration of the mid-​winter storm track caused by an 
El Niño-​like shift in climatological sea-​surface tem-
peratures108,110. This effect is partly compensated in  
the annual mean by poleward storm-​track changes  
in the spring and fall64. Significantly, even in most of the 
Mediterranean climates that are affected by storm-​track 
shifts, the strongest ARs are still projected to intensify 
at roughly the Clausius–Clapeyron rate expected from 
thermodynamics alone114. Combined with a decrease in 
total precipitation in these regions, this result implies 
a substantial increase in precipitation volatility, charac-
terized by an increase in the frequency of both wet and 
dry extremes108,110,114,116. In addition to an increase in sub
seasonal variability, CMIP5 models projected a sharpen-
ing of the seasonal cycle of AR frequency in California 
that contributes to a sharpening of the seasonal cycle 
of extreme precipitation in the region, with important 
implications for floods and fire hazards117.

Impacts of atmospheric rivers on land
Hydrological impacts. The interaction of topography 
with the intense moisture transport found in ARs 

generally tie them to substantial hydrological impacts 
when they make landfall. These impacts are primarily 
felt through influences on water resources and through 
precipitation-​related hazards, such as floods and land-
slides. Indeed, ARs have both beneficial and destructive 
characteristics, as indicated by a recently developed 
AR scale that quantifies the transition from beneficial 
precipitation and fewer hazards (AR categories 1–2) to 
heavy precipitation and numerous hazards (AR catego-
ries 4–5)54. Here, we discuss the observed hydrological 
impacts of ARs.

On the global scale, ARs contribute approximately 
22% of the global run-​off, reaching 50% in certain 
regions118. The western coast of the USA is one such 
region, where the visibility of AR impacts has resulted in 
a wealth of hazard-​related literature summarized in Fig. 2 
and Table 1. Here, ARs are associated with numerous 
wintertime extreme-​precipitation events, which, in 
turn, have been connected to riverine flooding. For 
instance, ARs have been found to control the upper tail 
of peak flood-​frequency distribution119 and account for 
80–90+% of the annual maximum peak discharge in 
1,375 long-​term stream gauges120. In the Russian River, 
northern California, all seven floods that exceeded the 
monitor stage between 1997 and 2006 were further 
linked to ARs121, as were 46 of 58 annual maximum 
flood peaks in four basins in western Washington122. 
The impacts of ARs are not limited to riverine flooding; 
40–60% of annual sea-​level maxima at several sites 
along the West Coast were also connected to AR storm 
events123.

The effects of ARs also extend beyond the western 
coast of the USA, albeit with decreasing (yet hydro
logically important) magnitudes. For example, in 
semi-​arid north-​eastern Arizona, ARs dominate heavy 
precipitation events, explaining 64–72% of precipitation 
exceeding the 98th percentile. This excess rainfall 
contributes to rain-​on-snow events, increased run-​off 
and 45% of annual maximum flows to inland basins124. 
Over the central part of the USA, ARs are further found 
to account for 20–70% of the heaviest daily precipita-
tion extremes and more than 70% of flood events125, 
including catastrophic floods in the Midwest in  
June 2009 (ref.126) and in Tennessee in May 2010 (ref.127). 

Study Frequency Location Precipitation Precipitation 
extremes

Flooding Snow/ice 
melt

Antarctic Peninsula/West Antarctica

Bozkurt et al.46 – – – – ↑∗ –
Gorodetskaya et al.44 – – – ↑∗ – –
Wille et al.51 – – – – ↑∗ –
Greenland/Arctic

Hegyi and Taylor50 – – – – ↓∗ –
Lavers et al.182 – – – – – –
Mattingly et al.183 ↑∗ – – – ↑ –
References for the material included in Fig. 2 to summarize the responses and impacts of atmospheric rivers to warming. Upward-​
facing arrows indicate increases and downward-​facing arrows indicate decreases. Asterisks next to arrows indicate where changes 
are uncertain, but where observational precedent exists.

Table 1 (cont.) | Summary of atmospheric river responses to warming
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In the south-​east, as much as 41% of non-​summer 
heavy-​precipitation events (above 100 mm day −1) are 
connected to ARs41. In addition to precipitation impacts, 
hazards related to ARs also manifest in damaging winds, 
with the majority of insurance losses in excess of 1 billion 
USD linked to ARs23.

ARs are further associated with precipitation 
extremes over much of western Europe, where obser-
vations show the importance of topography for driving 
precipitation from landfalling events22. Compared 
with what is observed in the western USA, AR-​related 
impacts reach far inland in western Europe. Broadly, 
ARs contribute up to 30% of precipitation, but exact 
distributions are sensitive to seasonal variability22. Over 
the UK, ARs are a dominant contributor to wintertime 
precipitation extremes (50% compared with only 20% 
in the summer months) and floods32. In a study of nine 
different river basins, for example, 40–80% of flood 
events were associated with persistent ARs33. Similarly, 
over Norway, ARs contribute 56 of 58 of the most 
extreme daily-​precipitation events128 and also tied to 
costly flood events over that region31. Over the Iberian 
Peninsula, the association with ARs is more nuanced, 
with a clear zonal gradient in the importance of their 
landfall to precipitation extremes35; some studies indi-
cate a weak relationship between summertime precipita-
tion extremes and ARs17, whereas others reveal that ARs 
still play a significant role in the summertime, at least 
in Portugal, explaining 9 of 10 precipitation extremes 
between 1950 and 2007 (ref.129).

Elsewhere, the influence of ARs has been studied 
comparatively less. However, evidence suggests that 
80% of days with heavy precipitation conditions  
(46 days total) over the central Andes are attributable 
to AR conditions26. Here, AR events are distinguished 
from other precipitation-​producing phenomena by 
an increase in the intensity of moist upslope flow, 

a

b

c

d

e

Thermodynamic

W
es

t P
ac

ifi
c

N
or

th
 P

ac
ifi

c
So

ut
h 

Pa
ci

fic
N

or
th

 A
tl

an
ti

c
So

ut
h 

A
tl

an
ti

c

f

Au
st

ra
la

si
a

Dynamic

100–100
IVT (kg m–1 s–1)

Fig. 3 | Decomposition of integrated vapour transport. 
Thermodynamic (left column) and dynamic (right column) 
responses to warming for the West Pacific (part a), 
Australasia (part b), South Pacific (part c), North Pacific  
(part d), North Atlantic (part e) and South Atlantic (part f). 
The panels show the average response over all available 
Atmospheric River Tracking Method Intercomparison 
Project (ARTMIP) catalogues that participated in the  
Tier 2 project based on high-resolution (0.25°, 3-hourly) 
climate-​change simulations from the International CLIVAR 
C20C+ Detection and Attribution project176. A full list of 
algorithms included in this figure can be found in the 
supplementary material. Stippling in the right column 
indicates agreement in the sign of the change between 
80% of algorithms. There is no disagreement in the sign of 
the change in the thermodynamic response, so stippling  
is not shown in the left column. The historical climatology 
of integrated vapour transport (IVT) for landfalling 
atmospheric rivers is illustrated in black contours (contours 
starting at 200 kg m−1 s−1 and increasing in intervals of 50). 
The decomposition methodology follows that of ref.64, in 
which IVT is rescaled so that the left column shows the 
change in moisture between Representative 
Concentration Pathway 8.5 (RCP 8.5) and the historical 
period, and the right column shows the change in winds 
between RCP 8.5 and the historical period.
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producing rainfall accumulations that are more than 
twice those for non-​AR conditions27,28. South African 
wintertime precipitation has been further linked to 
persistent AR activity, with approximately 70% of 
the top 50 daily-​precipitation extremes experienced 
during AR events29. ARs have also been documented 
to impact the hydrology of East Asia; ARs account  
for between 14% and 44% of precipitation falling 
during the extended summer over Taiwan, southern 
China, the Korean Peninsula, and central and western 
portions of Japan25.

ARs frequently contribute to compound events (the 
combination of multiple climate drivers that contri
bute to societal or environmental risks and which may 
increase in the future130), particularly when heavy pre-
cipitation occurs together with or in close succession 
to other natural hazards. Specifically related to ARs are 
their ties to precipitation extremes and warm, moist air. 
For example, in October 2011 in the Bernese Alps of 
Switzerland, the combined effect of a heavy snowfall 
event followed by the passage of an AR resulted in a 
rapid increase of temperatures and melting of snow-
pack131. The resultant flooding of the valley below had 
costly impacts on the infrastructure and security of that 
region. In California, several studies have connected 
post-​fire debris flows132 and landslides133 to the incidence 
of landfalling ARs, either in their interaction with water-​
resistant wildfire burn scars or by saturation of the soil. 
The potential for secondary hazards that outweigh the 
initial impact of ARs is also possible.

Despite the hazardous effects of ARs, they can also 
be beneficial by providing precipitation that is essential 
for water supply and resources52. Over the west coast of 
the USA, for example, ARs are thought to provide an 
average of 30–50% of annual precipitation52,90 and have 
been responsible for ending 33–74% of droughts in the 
region134, including the persistent California drought 
from 2012 to 2016 (ref.135). Indeed, it has been deter-
mined that, in regions currently frequented by ARs, the 
recurrence of droughts would increase by up to 90% in 
the absence of ARs118, due to both the immediate precip-
itation responses and the longer-​term persistence of soil 
moisture after the event itself136.

ARs are significant contributors to the snowpack, 
and, hence, water resources in regions where snow 
makes up a substantial fraction of the water supply year-​
round. For example, ARs contribute between 30–40% of 
the total season accumulation of snow water equivalent 
(SWE) across the Sierra Nevada90. Unlike non-​AR events 
that build the snowpack over multiple storms through-
out the cold season, as few as 1–2 extreme AR-​related 
snowfall events dominate contributions to SWE in the  
Sierra Nevada. In contrast, ARs making landfall in  
the US Pacific Northwest produce average gains in SWE 
given topographical differences and a subsequent larger 
fraction of rain30.

Because of their warmer temperatures, ARs dispro-
portionately contribute to rain-​on-snow events that 
increase the ratio of streamflow to precipitation137,138.  
In general, snowpack ablates more during AR than 
non-​AR events because of the higher temperatures, but 
increased long-​wave radiation also plays a secondary 

role139. The importance of rain-​on-snow events in con-
tributing to run-​off is demonstrated by the significant 
increase of the run-​off-to-​precipitation ratio with (74%) 
and without (43%) pre-​existing snowpack during AR 
landfall in the western USA139. Overall in the western 
USA, ARs explain 30–60% of the variability of annual 
run-​off and sharpen the seasonality of water-​resources 
availability in the west coast mountain watersheds 
by reducing the fraction of winter precipitation that 
accumulates as snowpack on April 1st139. In Europe, 
by contrast, rain-​on-snow events are not as well doc-
umented. Nevertheless, limited case studies exist, such 
as in the Bernese Alps, Switzerland, where an AR event 
on 10 October 2011 caused substantial damage due to 
flooding131.

Trends in projected impacts. Given the substantial hydro-
logical impacts of ARs in the present climate, and the 
projected changes in AR characteristics expected in 
the future, in this section, we outline how precipitation 
processes and impacts may also change. In many moun-
tainous regions influenced by landfalling ARs, warm-
ing is expected to alter hydrological regimes and water 
resources. Increases in the ratio of rainfall to snowfall 
during the wet season will increase the likelihood of 
wintertime flooding140. With warmer temperatures, the 
timing of the peak snowmelt occurs earlier in the cold 
season, which has the effect of reducing streamflow in 
late spring or early summer141–143. Contraction of the 
snowmelt season towards winter and early spring reduces 
the energy available for melt, which can lead to a reduc-
tion in the snowmelt rate, with potential implications for 
streamflow, soil moisture and ecosystems144.

Climate change may further exacerbate the impacts 
of AR storms on the snowpack and rain-​on-snow 
events. However, the visibility of any trends is highly 
dependent on climatological temperatures145, which, 
in turn, depend on the surface elevation. This nuance 
is apparent in high-​resolution regional-​climate simula-
tions, which project less frequent rain on snow at lower 
elevations (a decrease of between 2 and 20 days year−1), 
but the opposite at higher elevations (an increase of 
between 2 and 10 days year−1) in the western USA146. At 
lower elevations, similar projections show a decline in 
the snowpack, which reduces the chance of the coexist-
ence of rainfall and snow146. However, warming has less 
of an effect on snowpack at higher elevations, while a 
shift from snowfall to rainfall may enhance the chance 
of rain on snow. These same simulations also indicate 
an increase of flood risk between 20% and 200%, with 
the most considerable changes found in high-​altitude 
mountains, including the Sierra Nevada, the Colorado 
River headwaters and the Canadian Rocky Mountains. 
It should be noted that the studies reviewed here do not 
isolate AR-​induced versus non-​AR-induced changes. 
However, the fact that rain-​on-snow events happen more 
under AR conditions suggests that the projected changes 
in rain on snow are relevant. These results motivate a 
more in-​depth analysis of changes in snowpack, rain on 
snow and flooding in the future.

The winter of 2016–2017 was an extremely wet 
year in California, with record extreme precipitation 
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associated with an abnormally high number of intense 
ARs making landfall57. Probing the hydrological con-
ditions of this wet year with and without historical 
and future warming, land-​surface-model simulations 
show that historical warming has already reduced the 
Sierra Nevada SWE by 20% and increased early-​season 
run-​off by 30%147. Snowpack loss will continue under 
future warming, resulting in a more extreme run-​off 
related to a smaller snow-​to-rain ratio, rather than to 
increased snowmelt144,146. Altogether, historical warming 
has already exacerbated extreme run-​off in the Sierra 
Nevada in the above-​normal AR winter of 2016–2017 
(ref.57). Under future warming, similar winter conditions 
suggest an even larger increase in flood risk.

Investigations of projected impacts specific to ARs 
are scarce but are consistent with the more general 
review summarized above. British Colombia’s Fraser 
River is an example of a mid-​latitude basin influenced 
by nearby topography and by ARs. By the end of the 
21st century under RCP 8.5, peak flow in this basin is 
increasingly decoupled from springtime snowmelt due 
to the decline in winter snowpack, and, instead, coupled 
to AR-​related precipitation extremes148. Further work 
suggests that the increased frequency and intensity of 
projected ARs affecting this basin manifests as more 
frequent and larger wintertime flows, and an increase in 
the likelihood of flooding149. Similar results were found 
on the Salt River and Verde River basins in Arizona150. 
Compared with the present, ARs affecting middle and 
high elevations in the Pacific Northwest are expected to 
result in more liquid than solid precipitation, potentially 
exacerbating the flood risk100.

Summary and future perspectives
In this Review, we have identified key AR characteristics 
that are likely to change with anthropogenic warming. 
Our focus here has been to connect ongoing theoretical 
research on precipitation extremes with knowledge of 
ARs. Within a theoretical framework, future ARs are 
expected to carry more moisture, though moisture 
increases do not necessarily translate to increases 
in moisture transport, as storm-​track changes and 
jet shifts also play a role. Areas with elevated terrain 
are most susceptible to increases in precipitation 
extremes attributable to ARs; however, in the absence 
of topography, effects are expected to scale in line with 
Clausius–Clapeyron61 and thermodynamic responses 
(Fig. 2). Projections further reveal increases in frequency 
and a general poleward shift in landfall location. When 
combined with enhanced atmospheric moisture and 
warmer temperature, the hydrological impacts of ARs 
may also be exacerbated (Fig. 3).

Despite a strong theoretical basis for understanding 
AR projections in the future, simulations of sufficient 
resolution to represent AR processes remain limited. 
Circulation drivers that modulate AR landfall location 
and duration, for example, are vital to understanding 
AR impacts on land151, but are a key source of uncer-
tainty. Dynamic contributions to changes in IVT are 
much smaller, but may increase in importance in the 
transition regions between the expanding subtropics and 
the mid-​latitudes. Uncertainty in projecting changes in 

the transition regions is strongly tied to uncertainty in 
projecting changes in tropical circulation and high-​
latitude processes, pointing to the fundamental chal-
lenge in modelling convection and cryosphere processes, 
respectively, in Earth-​system models.

Given their importance to water resources, the 
ability to forecast AR impacts at extended ranges is 
essential, especially when factoring in the relatively 
long timescales needed for resource mobilization. 
Regions that rely on ARs for the replenishment of 
reservoirs and snowpack can feel their absence just as 
much as their presence. However, questions remain 
about the processes that contribute to their evolution 
before landfall, limiting forecasting capabilities. Thus, 
increased understanding of such processes — including 
diabatic effects of ARs on downstream weather-​system 
development17 — is rapidly needed to improve predic
tion and, thereby, water-​resource management. It is  
well known that current models do not accurately rep-
resent the effects of latent-​heat release83. Given the pro-
jected increases in atmospheric moisture and, therefore, 
in IVT related to ARs, there is an urgent need to better  
understand how they interact with large-​scale circu-
lation. This insight is particularly relevant in under-
standing the interactive feedbacks between ARs and 
cyclone intensification83, which have implications on 
their precipitation signatures on land.

Although ARs are beneficial water resources, they 
can also have devastating and costly effects on human 
populations. An emerging area of research focuses on 
the intersection between the physical and human-​related 
impacts associated with ARs. In the US West Coast, for 
example, flood damages linked to even a small increase 
in AR intensity can translate to large economic losses152. 
The interrelation between human activities, such as 
expansion of human development153 and modification 
of surface processes, means that new approaches are 
needed to communicate AR impacts. Model frame-
works that bridge physical impacts with economic costs 
and policy development can be useful in this regard154. 
Similar approaches are needed to pass scientific under-
standing to stakeholders, such as water managers and 
policymakers, especially for weather extremes that are 
projected to worsen in the future.

AR characteristics over the North Pacific and impacts 
to the US West Coast serve as a test bed for the develop-
ment of our knowledge of their impacts and variability. 
Figure 3 reveals robust understanding of the changes and 
impacts in this region, but an absence of understanding 
or high degree of uncertainty elsewhere. For instance, 
South America, South Africa and East Asia are strongly 
impacted by ARs, but our knowledge here is highly 
constrained by inadequate observational networks or 
field campaign data, as well as lack of model validation. 
Exploration of ARs at the global scale, therefore, repre-
sents the next frontier, including the high latitudes where 
analysis is urgently needed, given links to surface melt 
and glacial mass balance. Global and region-​specific 
catalogues from the many ARTMIP subprojects represent 
an excellent resource for this work.
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