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ABSTRACT

Seed priming is a pre-germination treatment administered through various chemical, physical and biological agents,
which induce mild stress during the early phases of germination. Priming facilitates synchronized seed germination, bet-
ter seedling establishment, improved plant growth and enhanced yield, especially in stressful environments. In parallel,
the phenomenon of ‘stress memory’ in which exposure to a sub-lethal stress leads to better responses to future or recur-
ring lethal stresses has gained widespread attention in recent years. The versatility and realistic yield gains associated with
seed priming and its connection with stress memory make a critical examination useful for the design of robust
approaches for maximizing future yield gains. Herein, a literature review identified selenium, salicylic acid, poly-ethylene
glycol, CaCl2 and thiourea as the seed priming agents (SPRs) for which the most studies have been carried out. The aver-
age priming duration for SPRs generally ranged from 2 to 48 h, i.e. during phase I/II of germination. The major signal-
ling events for regulating early seed germination, including theDOG1 (delay of germination 1)–abscisic acid (ABA)–heme
regulatory module, ABA–gibberellic acid antagonism and nucleus–organelle communication are detailed. We propose
that both seed priming and stress memory invoke a ‘bet-hedging’ strategy in plants, wherein their growth under optimal
conditions is compromised in exchange for better growth under stressful conditions. The molecular basis of stress mem-
ory is explained at the level of chromatin reorganization, alternative transcript splicing, metabolite accumulation and
autophagy. This provides a useful framework to study similar mechanisms operating during seed priming. In addition,
we highlight the potential for merging findings on seed priming with those of stress memory, with the dual benefit of
advancing fundamental research and boosting crop productivity. Finally, a roadmap for future work, entailing identifi-
cation of SPR-responsive varieties and the development of dual/multiple-benefit SPRs, is proposed for enhancing SPR-
mediated agricultural productivity worldwide.
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I. INTRODUCTION

Plants face multiple environmental stresses throughout their
lifespan that not only reduce their growth, but also negatively
affect crop productivity. These stresses include both abiotic
factors like drought, salt, temperature, nutrient deficiency,
light, and ozone (O3), as well as biotic agents including path-
ogens, pests and competition with weeds. Further, under field
conditions, various stresses occur in combinations that mag-
nify stress severity (Pandey et al., 2017; Zandalinas, Fritschi &
Mittler, 2020). According to the National Climate Assess-
ment (NCA)-USDA, the highest losses in global crop produc-
tion can be attributed to abiotic stresses (~50%), followed by
weeds (~34%), insects (~18%) and pathogens (~16%)
(https://www.neefusa.org). Among abiotic factors, drought
and heat contribute to yield losses of 63–87 and 42%, respec-
tively in maize (Zea mays); 57 and 31% in wheat (Triticum aes-

tivum) and 53–92 and 50% in rice (Oryza sativa) in varied
regions across the globe. Drought alone can reduce crop pro-
duction by 45–69, 46–71 and 60% in chickpea (Cicer arieti-
num), soybean (Glycine max) and sunflower (Helianthus annuus),
respectively (Fahad et al., 2017). Soil salinity is similarly detri-
mental, significantly reducing the yield of various crops
(Zorb, Geilfus & Dietz, 2019). In recent years, heavy metal-
induced toxicity has achieved prominence, not only in reduc-
ing yield but also quality of crops like rice, mustard (Brassica
juncea) and soybean (Muehe et al., 2019; Rai et al., 2019). A
major challenge for plant scientists is to minimize stress-
induced crop losses to meet global food supply for an increas-
ing world population, which is projected to reach 9 billion by
2050 (https://www.un.org).

Currently, multiple strategies are used to enhance crop
yield under stress conditions (Table 1). The most traditional
andwidely accepted approach is the development of improved
cultivars using crop breeding (Moose & Mumm, 2008). How-
ever, this is time-consuming and dependent upon the avail-
ability of germplasm with desirable traits. Such cultivation of
naturally stress-resistant plants has been suggested as a means
to diversify agriculture (Zhang, Li & Zhu, 2018b). Comple-
menting this approach is the use of transgenic technology/
genome-editing, which involves the genetic manipulation of
single/multiple genes. In recent years, various genes have been
targeted to develop genetically modified crops (GMCs) with
enhanced yield under field conditions. For example, a triple
mutation in the PLY1, PLY4 and PLY6 abscisic acid (ABA)
receptors resulted in an approximately 30% increase in seed
yield in rice (Miao et al., 2018). Similarly, the OsGS3, OsGW2

and OsGn1a triple mutants of two elite rice varieties J809 and

L237 showed a 68 and 30% increase in yield per panicle,
respectively (Zhou et al., 2019). Recently, CRISPR-Cas9
(clustered regularly interspaced short palindromic repeats-
CRISPR-associated protein 9) was used to introduce muta-
tions in cis-regulatory elements of OsTB1 (TEOSINTE
BRANCHED1) that positively regulated the expression of
several pleiotropic traits such as culm strength, number of
spikelets per panicle and tiller number (Cui et al., 2020). In
tomato (Lycopersicon esculentum) and rice, mutation in LIN

(a MADS-box family member) alters inflorescence charac-
teristics resulting in increased seed yield (Soyk et al., 2017).
Isopentenyl-transferase (IPT)-overexpressed cotton (Gossypium
hirsutum) show enhanced drought tolerance and significant
increase in seed cotton production by 27–44%, particularly
when subjected to pre-flowering water-deficit stress conditions
(Zhu et al., 2018). Inmaize, ARGOS8 (AUXIN-REGULATED
GENE INVOLVED IN ORGAN SIZE 8) variants under
drought-stress conditions showed significant yield improvement
of nearly 5 bushels per acre (4%) compared to wild-type plants
(Shi et al., 2017). Genetic technology has also been used in de novo
domestication, leading to a significant increase in fruit size as
well as fruit number in wild tomato (Zsögön et al., 2018).
Taken together, transgenic technology in combination

with CRISPR/Cas9-based genome editing tools is likely to
accelerate the development of new crop varieties. However,
regulatory restrictions (Halford, 2019; Mackelprang &
Lemaux, 2020) mean that the multilocation field trials of
transgenic crops are still limited (Table 1). Moreover, it
remains difficult to convince farmers to change their pre-
ferred varieties because of likely variations in agronomic
practices and consumer acceptance. An alternative is a
chemical-based non-genetic approach wherein plant biore-
gulators (PBRs) are used as foliar sprays to enhance stress tol-
erance and crop yield (Srivastava et al., 2016; Kerchev
et al., 2019). The foliar application of PBRs, while effective,
remains labour intensive, especially in larger field areas and
dense crop plantations (Table 1).
Seed priming represents a versatile approach for mitigat-

ing stress-induced damage in widely cultivated local crop
varieties. In this approach, seeds are allowed to imbibe a
chemical/biological priming agent and then cultivated using
normal agronomic practices (Farooq et al., 2019). Although,
the priming treatment is given only for a short duration dur-
ing initial seed germination, its effects can last for the entire
life cycle of the plant. Most priming agents synchronize seed
germination and enable plants to survive better under
adverse environmental conditions. However, the signalling
events operating during the initial phases of seed germination
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and the molecular mechanisms associated with seed priming
remain poorly understood. In addition, a deeper understand-
ing of the molecular links between seed priming and stress
memory could guide the design of improved strategies for
enhancing crop productivity in a resource-efficient manner.
To this end, the present review summarizes the available
information on dose, priming duration and biological
responses of diverse set of seed priming agents (SPRs). The
major signalling events operating during the initial phases
of seed germination and the molecular mechanisms associ-
ated with seed priming are discussed. In addition, molecular
and genome-level changes are highlighted to integrate
understanding of seed priming effects with studies on stress
memory. Finally, a working model is proposed for the better
implementation of SPR-based technology, for enhancing
crop growth and productivity at a wider scale.

II. THE USE OF SPRs IN CROPS

Seed priming is a technique that has been in use for more
than 100 years. Seeds are soaked in a SPR only for a short
duration which does not extend to radicle protrusion. The
primed seeds can then be either dried to their original water
content for storage or can be sown directly into the field. In
general, primed seeds display characteristics like improved
vigour, synchronized germination and better crop establish-
ment, which are all known to be positively related to the
resource-use efficiency and yield of crops (Finch-Savage &

Bassel, 2016). A diverse range of SPRs are currently in
use (Fig. 1). Considering their chemical nature and mode
of action, SPRs can be classified as salts, hormones, physio-
logical/non-physiological chemicals, nano-particles, physi-
cal treatments and biological agents. A multitude of effects
at physiological, molecular, biochemical and metabolic
levels together combine to improve the performance of
SPR-treated plants. In brief, SPR treatments activate vari-
ous enzymes like hydrolases, proteases, α-amylase and
dehydrogenases, which facilitate endosperm weakening
and stored reserve mobilization, to improve seed vigour.
In addition, stress-responsive transcription factors, DNA-
repair proteins and metabolites like sugar, antioxidants
and osmolytes are also upregulated, together contributing
to the stress-tolerant phenotype of SPR-treated plants
(Farooq et al., 2019). SPR treatment is also thought to cre-
ate a priming memory in plants, imparting improved resil-
ience against stress conditions (Savvides et al., 2016).
Together, this field of seed priming, collectively termed
‘primeomics’ (Balmer et al., 2015), has opened up new
research avenues for those interested in maximizing crop
productivity.

We identified a total of 117 research articles published
between 2015 and 2020 on 39 different type of SPRs (see
online Supporting Information, Table S1 for a full list of
these publications and the search string used. From each
publication, we recorded the SPR used, the dose range,
priming duration and biological response. For publications
where responses to more than one SPRs were reported, we
used either data from the one SPR with the largest response

Table 1. Advantages and disadvantages of approaches used for enhancing stress tolerance in crops

Approach Advantages Disadvantages

Genetic Traditional or
marker-assisted
crop breeding

Easy commercialization due to fewer
regulatory restrictions.

Can be accomplished with basic laboratory
infrastructure.

Dependent on the availability of
germplasm with desired trait.

Time-consuming and labour intensive.

Transgenic
technology/
genome-editing

Can introduce single/multiple genes into
plants from related or unrelated species.

Regulatory gene(s) can be utilized to impart
tolerance to multi-stress conditions.

Inducible promoters can be used to express
desired gene(s) only at specific time or
developmental stage.

Can accelerate the process of domestication
of wild species.

Commercialization is low due to
regulatory restrictions.

Can cause metabolic imbalance or off-
target effects.

Requires skilled manpower and
advanced laboratory infra-structure.

Non-genetic Foliar application of
plant
bioregulators
(PBRs)

Ease of use for locally cultivated varieties.
Cost-effective

Increased chemical load to agricultural
land.

Difficult to implement at larger scales,
especially for densely cultivated crops.

Dependent upon crop/variety-specific
dose-optimization studies.

Seed priming Ease of use for locally cultivated varieties.
Cost–benefit ratio is high as treatment is
applied only to seeds.

Minimal ecological disturbance in the field.

Dependent upon crop/variety-specific
dose-optimization studies.

Biological Reviews (2021) 000–000 © 2021 Cambridge Philosophical Society.

Plant germination under stress 3



Fig. 1. Overview of seed priming agents (SPRs), their dose range and priming duration. On the basis of their chemical nature and
mode of action, widely used SPRs are here classified either as salt (SaltP), hormonal (HormonalP), chemical (ChemoP),
nanoparticle (NanoP), physical (PhysicalP) or biological (BioP) agents. Data were derived from a total of 117 research articles
published between 2015 and 2020 on 39 different types of SPRs (see Table S1 for references and details of biological response
scores). (A) Number of research articles, (B) dose range, (C) priming duration, and (D) biological response score for all SPRs. Blue
triangles in B denote data points where different concentration units are applicable: for GoldNP (parts per million), cold (�C), laser
and UV (W/m2), electric (KV/m), magnetic (mT), heat (�C), bioextracts (%) and bacteria (1000 million colony forming units/ml).
For solid matrix and hydro priming, concentration units are not applicable (NA). In C, the area between the red dotted lines
indicates the priming duration for the majority of seed priming agents. BABA, β-amino butyric acid; PEG, poly-ethylene glycol;
MSB, menadione sodium bisulfite; SNP, sodium nitroprusside; UV, ultraviolet. Superscript NP indicates nanoparticles; superscript
NT indicates nanotubes.
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or, where two SPRs had comparable seed germination/phe-
notypic responses, we used data from both (see Table S1).
Where suitable information was reported, the biological
response was calculated as the percentage change (primed
versus non-primed) in six key plant growth and crop yield
parameters: rate of seed germination (RG), plant biomass
(PB), chlorophyll content (CC), enzymatic/non-enzymatic
antioxidants (EA), osmolyte accumulation (OA) and seed
yield/plant (SY). We then calculated the average biological
response in response to SPR treatment for each study
(Table S1).

On the basis of publication number, the SPRs for which the
most studies are available are selenium (Se), salicylic acid (SA),
poly-ethylene glycol (PEG), CaCl2 and thiourea (TU) (Fig. 1A).
The priming doses used for SPRs in the salt category appear
relatively high compared with other SPRs (Fig. 1B). The prim-
ing duration most commonly used ranged from 2 to 48 h post-
imbibition (Fig. 1C). On the basis of the biological response
scores, the SPRs with the highest values (with a more than
100% change) were CaCl2, SA, gibberellic acid (GA), ethyl-
ene, selenium, PEG, H2O2, magnetic and silver nanoparticles
(Fig. 1D). The summary of previous studies in Fig. 1 could pro-
vide a framework for developing single or multiple SPR-based
formulations for crops. A recent review has considered individ-
ual SPRs in detail, outlining their common and overlapping
effects (Farooq et al., 2019). Therefore, herein we focus on
the stress-ameliorating potential of the five SPRs for which
our review identified the most research has been conducted.

(1) Selenium

Se is an essential trace element for human and animals, but
causes toxicity in excessive amounts. The United States
Department of Agriculture (USDA) and the Agency for
Toxic Substances and Disease Registry (ATSDR) set
benchmark values of 55 and ≥900 μg day−1 as the recom-
mended dietary allowance and toxic level respectively.
Owing to its antioxidant properties, in animals Se has roles
in reproduction, immune responses and thyroid hormone
metabolism (Srivastava et al., 2016). Whether Se has an
essential role in plants is still unclear as they lack selenopro-
teins such as glutathione peroxidase (GPX). Chemically, Se
is similar to sulphur, and thus is taken up by plants via sul-
phur transporters and is metabolized via the sulphur assim-
ilatory pathway (Gupta & Gupta, 2016). Use of Se as a
SPR (dose range: 0.0043–0.34 mM; priming duration:
24 h post-imbibition) has been investigated in rice. It shows
an ameliorative potential in the presence of arsenic
(As) [an ubiquitous environmental toxin and a recognized
group-1 carcinogen (IARC, 2004)]: Se priming enhanced
antioxidant potential, α-amylase activity, soluble sugar
content and essential micronutrient uptake (Wang
et al., 2016a; Hussain et al., 2016b; Moulick, Santra &
Ghosh, 2018c). In addition, root-to-shoot and shoot-to-
grain accumulation of As was reduced (Moulick, Santra &
Ghosh, 2018a,b), suggesting that Se priming may represent

an effective approach for producing rice containing low
levels of As.

(2) Salicylic acid

Salicylic acid (SA; o-hydroxy benzoic acid) is a plant hor-
mone known for its ability to induce systemic resistance
in response to plant pathogens. However, over a narrow
dose range, it can also regulate growth processes by induc-
ing low-level accumulation of reactive oxygen species
(ROS), which serve as secondary messengers in plants
(Dempsey & Klessig, 2017). The seed priming effects of
SA (dose range: 0.5–0.725 mM; priming duration: 3–24 h
post-imbibition) have been demonstrated in crops like
maize and rice under chilling, cadmium and nutrient-
deprived stress conditions (Table S1). At the biochemical
level, SA priming leads to enhanced antioxidant capacity,
α-amylase activity, soluble sugar content and respiration
rate (Wang et al., 2016a,b; Hussain et al., 2016b). A syner-
gistic compatibility with other SPRs, such as H2O2, has
also been demonstrated. For instance, in maize, combined
SA+H2O2 priming upregulated the expression of GA
biosynthesis- (ZmGA20ox1 and ZmGA3ox2), GA signalling-
(ZmGID1 and ZmGID2) and ABA catabolism-related
(ZmCYP707A2) genes, leading to higher seed germination
rate under chilling stress conditions (Li et al., 2017). In rice,
SA priming alters the global transcriptome by modulating
the expression of various photosynthesis- and defence-
related genes under submerged stress conditions. In addition,
strong overlap between the SA- and Se-priming-induced
transcriptome was reported (Hussain et al., 2016c). It will be
interesting to evaluate potential additive effects of combined
treatment of SA and Se.

(3) Polyethylene glycol

Polyethylene glycol (PEG) reduces the water potential and
hence can be used to induce dehydration stress in plants.
PEG seed priming (dose range: 2.5–52.5 mM; priming dura-
tion: 4–168 h post-imbibition) can mediate enhanced growth
and tolerance in crops like rice, wheat and sorghum (Sorghum
bicolor) (Table S1). One possible mechanism to explain PEG-
mediated priming is that it limits water uptake inside the
seeds and hence slows the progress of germination-related
processes. This may ensure minimal DNA/protein dam-
age during the transition of seeds from a dehydrated to
rehydrated state. However, at high doses, PEG can cause
seeds to lose their germination ability. PEG-primed plants
show robust antioxidant capacity and higher accumula-
tion of compatible solutes compared to non-primed plants
(Zhang et al., 2015; Abid et al., 2018; Boucelha, Djebbar &
Abrous-Belbachir, 2019). In Brassica napus, PEG priming
upregulates the expression of genes like LEA4-1, LEA4-5
and ABI5 (Kubala et al., 2015) and modifies structural
features of seeds, such as the formation of microcracks
and the induction of additional void spaces (Lechowska
et al., 2019). In wheat, long-lasting impacts of PEG seed
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priming have been demonstrated: total grain production
in primed plants was higher than in non-primed individ-
uals (Abid et al., 2018).

(4) CaCl2

Seed priming potential of CaCl2 (dose range: 15–198 mM;
priming duration: 6–48 h post-imbibition) has been reported
in wheat, rice and chickpea (Table S1). As for PEG, CaCl2
increases the osmotic or solute potential of the germination
solution and thus slows the rate of germination. In addition,
Ca2+ has a well-known signalling-dependent effect on seed
germination (Kudla, Batistic &Hashimoto, 2010). Both these
factors make careful optimization of dose and duration essen-
tial for implementing CaCl2 seed priming. In wheat, CaCl2-
primed plants showed a significant improvement in growth,
yield and cost–benefit ratio, especially under terminal
drought (Farooq et al., 2017b; Tabassum et al., 2018) and salt
(Tabassum et al., 2017) stress conditions. These effects were
associated with lower oxidative damage and improved
plant–water balance in chickpea and bean (Vicia faba) plants
under chilling (Farooq et al., 2017a) and cadmium (Nouairi
et al., 2019) stress, respectively. CaCl2 priming also supports
the cultivation of zero-tillage wheat and can facilitate rice–
wheat inter-cropping systems (Nawaz et al., 2016).

(5) Thiourea

TU is a thiol-based ROS scavenger and anti-nitrification factor
and its seed-priming potential (dose range: 6.5–16.5 mM; prim-
ing duration: 6–24 h post-imbibition) has been demonstrated in
various crops including wheat, mungbean (Vigna radiata) and
cluster bean (Cyamopsis tetragonoloba) (Table S1). Since, ROS are
required for the survival of plants (Mittler, 2017), the dose and
duration of TU exposure should be carefully considered. Using
a supplementation approach, TU-mediated effects have been
studied at multiple organizational levels. At the physiological
level, TU improved source-to-sink relationships leading to
increased crop yield. At the molecular level, it improved cellular
energetics, co-ordinated calcium and ABA signalling, main-
tained water homeostasis, enhanced antioxidant defence,
improved sulphur metabolism and microRNA (miRNA)–
hormone balance (Srivastava et al., 2014, 2016, 2017). In wheat,
seed priming with TU leads to a uniform germination pattern
with better seedling establishment (Chattha et al., 2017). Seed
priming with TU can also be combined with later foliar applica-
tion tomaximize yield benefits in plants like cluster bean (Meena
et al., 2016) and niger (Guizotia abyssinica) (Namrata et al., 2018).

The priming potential of SPRs has been successfully demon-
strated in major crops including rice, wheat and maize. Despite
having their own specific effects, a common feature of SPRs is
that their beneficial effects tend to be limited to a particular dose
range. Hence, a precise crop/variety-level dose optimization is
best practice for using SPRs in crop cultivation.

III. MOLECULAR BASIS OF SEED PRIMING IN
PLANTS

Although, the molecular basis of seed priming has not been
explored in detail, changes at the messenger RNA (mRNA)
as well as protein levels have been investigated in response
to selected SPRs. For instance, the targeted transcriptomic
profiling of genes encoding antioxidants [ANS (anthocyanin
synthase), CAT (catalase), SOD (superoxide dismutase), APX
(ascorbate peroxidase) and GR (glutathione reductase)],
osmolytes [P5CS (pyrroline-5-carboxylate synthase) and
PDH (proline dehydrogenase)], an ion-transporter [NHX
(sodium/hydrogen antiporter)], ABA biosynthetic enzymes
[NCED3 (9-cis-epoxycarotenoid dioxygenase 3)] and tran-
scription factors [TRAB-1 (transcription factor responsible
for ABA regulation 1), WRKY-71 (WRKY DNA-binding
protein 71),OsEm (late embryogenic abundant protein)] have
been performed in response to priming with spermine (Spm)
and spermidine (Spd) in rice. Most of these genes were found
to be upregulated even at the seedling stage, coinciding with
greater accumulation of endogenous Spm and Spd under
NaCl stress conditions (Paul & Roychoudhury, 2017). Simi-
larly, increased expression ofOsNHX1was observed in sodium
selenite-primed rice seedlings, resulting in a higher K+/Na+

ratio under NaCl stress conditions (Subramanyam, Du
Laing & Van Damme, 2019). In contrast to Spm/Spd,
PEG-mediated amelioration of nano-Zinc oxide stress in rice
was associated with reduced expression levels of genes encod-
ing antioxidants (Salah et al., 2015).
SPR treatment also can affect genes related to calcium sig-

nalling and hormone metabolism. Seed priming with cal-
cium compounds [Ca(OH)2, Ca(NO3)2, and CaCl2] and
sodium hydro sulphide (NaHS) trigger expression of calcium
signalling-related genes such as CBL10 (calcineurin-B-like
10) in rice (Singh, Banerjee & Roychoudhury, 2019) and
CDPK (Ca2+-dependent protein kinase) in squash Cucurbita

pepo (Valivand, Amooaghaie & Ahadi, 2019), respectively.
Dual priming with SA+H2O2 upregulated the expression
of GA biosynthetic genes like ZmGA20ox1 and ZmGA3ox2,
and downregulated the GA catabolism gene ZmGA2ox1,
while promoting expression of the ABA catabolism gene
ZmCYP707A2. In addition, the GA signalling mediators
ZmGID1 and ZmGID2 were upregulated, together promoting
seed germination in maize under chilling stress conditions
(Li et al., 2017). The activation of GA-biosynthetic genes
together with increased production of active GA was observed
under NaCl-priming mediated accelerated seed germination
in tomato (Nakaune et al., 2012). Additionally, DNA damage
repair-related genes were upregulated in response to bioprim-
ing which improved seed germination and seedling establish-
ment in Medicago truncatula (Forti et al., 2020).
Seed priming has also been combined with triggering of

plant immunity using biologically active compounds such as
heat-stable metabolites isolated from root-associated Bacillus

spp. This technology, termed seed defence biopriming
(SDB), has been demonstrated to induce the expression of
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resistance marker genes related to SA, ethylene, and jasmonic
acid (JA) signalling, resulting in increased mortality of the
insect pest Spodoptera litura in cucumber (Cucumis sativus) tissues
(Song et al., 2017). Whole-genome transcriptomic profiling
was performed in 4-day-old rice seedlings under submergence
stress with and without Se or SA priming. The pathway and
gene ontology term enrichment analyses revealed that
functional categories related to secondary metabolism, devel-
opment, cell, transport, protein, and metal handling were
over-represented after Se or SA priming (Hussain et al., 2016a).
Recently, the mechanism by which β-aminobutyric acid
(BABA) mediates seed priming has been studied using an
iTraq (isobaric tags for relative and absolute quantitation)-
based proteomics approach. This analysis of differentially
expressed proteins indicated a more rapid activation of SA-
and Ca2+-dependent defence signalling. In addition, BABA
priming also alters sugar metabolism to provide more sub-
strates for the synthesis of secondary metabolites, which pro-
tected mango (Mangifera indica) fruit from pathogen attacks
(Li et al., 2019c).

It is thus clear that SPR treatments affect levels of hor-
mones, signalling mediators, transcription factors and
defence genes/proteins during the early stages of seed
germination. Further, a more rapid and/or stronger acti-
vation of defence responses upon subsequent exposure to
stress in plants derived from primed seed indicates the
potential for future exploration of the presence of ‘stress-
memory’-related molecular components arising in
response to SPR treatment.

IV. ROLES OF MOLECULAR SIGNALLING IN
THE CONTROL OF SEED DORMANCY AND
GERMINATION

The most frequently used priming duration for various SPRs
ranges from 2 to 48 h, and is applied at the onset of seed ger-
mination (Fig. 1C). During this time, the seed undergoes a
series of complex molecular events which are essential for
its transition from a quiescent to metabolically active state.
The process of seed germination is triphasic, consisting of
an initial rapid phase of water imbibition (phase I), followed
by a plateau phase of stable water uptake (phase II) and con-
cluding with a burst of water uptake, elongation of the
embryonic axis and radical emergence (phase III).
The period over which these phases take place is crop-
specific and varies significantly among the model plant
A. thaliana and crops like rice, wheat and maize (Fig. 2A).

In general, phase I is dominated by the activation of
repair mechanisms to restore any dehydration-induced
damage that took place during seed maturation. Such
damaging events include the conversion of aspartyl resi-
dues of proteins to isoaspartyl, progressive loss of telo-
meric sequences, DNA strand breakage and loss of
proper DNA confirmation (Weitbrecht, Muller &
Leubner-Metzger, 2011). During repair, protein

isoaspartyl residues are reconverted to aspartyl by the
action of isoaspartyl methyl transferase. In addition, vari-
ous genes encoding for DNA ligases,
formamidopyrimidine-DNA glycosylase, 8-oxoguanine
DNA glycosylase/lyase and poly-ADP-ribose polymerases
(PARPs) are upregulated to repair damaged DNA (Rajjou
et al., 2012).

Following this, seeds enter into phase II, wherein water
uptake remains stable and the testa (seed coat) ruptures. Dur-
ing imbibition, ROS accumulate inside the seed, leading to
carbonylation of storage proteins like cruciferin, and reserve
mobilization (Ventura et al., 2012). Thioredoxin (Trx), a reg-
ulatory disulphide protein, plays a major role in the reduc-
tion of protein disulphide bonds in starchy endosperms and
embryos, thereby contributing towards their mobilization
and the reductive activation of enzymes that support seed
germination. This phase is also characterized by the synthesis
of proteins using newly transcribed mRNAs and the
synthesis of new mitochondria to enable the generation of
sufficient energy to complete germination (Oracz &
Stawska, 2016; Sano, Rajjou & North, 2020). Another char-
acteristic feature of this phase is the increased biosynthesis of
methionine, which not only supports the translation of new
proteins, but also acts as a precursor for S-adenosyl methio-
nine (SAM). SAM is a universal methyl group donor and sup-
ports major biosynthetic pathways to regulate seed
germination (Rajjou et al., 2012). Phases I and II are together
referred to as seed germination sensu stricto, during which
imbibed seeds maintain their desiccation tolerance and
retain the ability to recapitulate their maturation processes,
even under unfavourable conditions (Nonogaki, 2019a).
Hence, phases I and II represent the best timing for imple-
menting SPR treatments.

Phase III involves a rapid increase in water uptake,
enabling cell elongation as well as DNA replication and cell
division. Additionally, the endosperm specifically expresses
cell wall remodelling proteins like endo-β-1,4-mannanase,
endo-β-1,3-glucanase, expansins, xyloglucan endo transgly-
cosylase, pectin methylesterase and polygalacturonase,
which likely have roles in endosperm tissue weakening
(Nonogaki, 2014). Endosperm weakening may facilitate
radicle emergence – the culmination of successful seed
germination.

These molecular changes occur in seeds as early as 1–2 h
post-imbibition (HPI). In A. thaliana, more than 12000
mRNA transcripts are stored in dry seeds, and at 6 HPI the
seed transcriptome is significantly different from that of dry
seeds (Nakabayashi et al., 2005). Similarly dynamic changes
in the seed transcriptome have been demonstrated in rice
(Howell et al., 2009), wheat (Yu et al., 2014) and maize
(Jimenez-Lopez et al., 2011). The stored mRNAs are
responsible for maintaining seed germination ability in the
presence of various transcriptional inhibitors (Rajjou
et al., 2004). The preferential oxidation of polysome- associ-
ated stored mRNAs has been shown to prevent the transla-
tion of seed germination inhibitory proteins. By contrast,
monosome-bound mRNAs, which have features such as
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Fig. 2. Phases of seed germination phases and major signalling events controlling early seed germination/dormancy.
(A) Illustration of triphasic seed germination. Germination begins with phase 1 (P-I) in which there is initial rapid water
imbibition, followed by a plateau (phase II; P-II) of stable water uptake, and concluding with phase III (P-III) in which
elongation of the embryonic axis and radical emergence occurs. (B) The delay of germination1 (DOG1)–abscisic acid (ABA)–
heme pathway for regulating seed dormancy/germination. DOG1 pre-mRNA undergoes alternative polyadenylation at
proximal (pPAS) and distal (dPAS) sites to produce shorter (shDOG1; favours seed dormancy) and longer (lnDOG1; favours
seed germination) versions of DOG1, respectively. Heme-bound shDOG1 interacts with and suppresses protein phosphatase
2Cs (PP2Cs) like ABA hypersensitive germination 1/3 (AHG1/3). Additionally, canonical abscisic acid (ABA) signalling, with
components like pyrabactin resistance like (PYL) ABA receptors and ABA insensitive 1/3 (ABI1/3) PP2Cs, is also activated.
PP2C inhibition activates SNF1-related protein kinase 2 (SNRK2), which activates the transcription of ABA responsive genes
through ABA binding factors (ABFs). As the seed germinates dPAS is preferred and lnDOG1 is predominant. This form has
less affinity for PP2Cs. PP2Cs suppress SNRK2s, reducing the expression of ABA responsive genes and thus support
germination. (C) The role of ABA–giberellic acid (GA) antagonism in the regulation of seed germination. Higher levels of ABA
and GA facilitate dormancy or germination, respectively. ABA favours the transcription and translation of ABA insensitive
3 (ABI3) which suppresses ODR1 [reversal of the RDO (reduced dormancy) phenotype] and thereby removes
ODR1-mediated suppression of ABA biosynthesis. Simultaneously, GA signalling genes are repressed by DELLA proteins like
GA-insensitive (GAI) activated by phytochrome interacting factor 4 (PIF4)-mediated phytochrome B (PHYB) photoreceptors.
Another GA-suppressing DELLA protein is repressor of GA (RGA). RGA degradation by the 26 s proteasome is mediated by
GA induced SLEEPY1 (SLY1) F-box containing proteins. GAs also mediate de-repression of the transcription factor GAMYB,
thereby increasing α-amylase synthesis that enhances seed vigour by mobilizing stored starch. (D) The role of nucleus–
organelle communication during seed germination. In mitochondria, blockage of electron transport (as seen under cyanide
treatment) from Complex III (CIII) to Complex IV (CIV) leads to the generation of nitric oxide (NO) which acts as retrograde
signal to supress NCED transcription. Redox imbalances also induce heat shock proteins (HSP24.7) that impair cytochrome c
oxidase (COX) maturation and promote germination in an ABA-independent pathway. The synthesis and transport of
pentatrico-peptide repeat-containing proteins (PPRs), which act as RNA-editing factors for various mitochondrial genes,
represent an anterograde route for regulating seed germination. Another metabolite 30-phosphoadenosine 50-phosphate (PAP)
acts as a chloroplast retrograde signal that is activated upon redox inactivation of SAL1 (a catabolic phosphatase for PAP).
PAP represses seed germination in an ABA-independent manner.
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shorter transcripts, low GC% (guanine–cytosine %) in
UTRs (untranslated regions), weak secondary structure
and a GAAGAAGAA motif in 5’UTRs, are relatively more
stable. In A. thaliana, ~17% of monosome-associated mRNAs
are translationally upregulated during early seed germination
and encode for proteins responsive to water deprivation and
cell cycle arrest (Bai et al., 2020). Neo-synthesizedmRNAs con-
tribute to the energy demand and thereby, facilitate seed ger-
mination (Sano et al., 2019). We provide an integrated view of
major signalling events responsible for regulating seed dor-
mancy and germination in Fig. 2B–D, and discuss these in
the following sections.

(1) DOG1–ABA–heme regulatory module

In plants, dormancy restricts the progression of seeds into or
through germination, even under favourable conditions
(Chahtane, Kim & Lopez-Molina, 2017). Endosperm-derived
ABA is essential to repress the growth of the embryo and hence
is critical for maintaining seed dormancy. ‘Dry-after ripening’
is another process by which seeds lose dormancy and acquire
the capacity to germinate. Similar to seed germination phases
(Fig. 2A), dry-after ripening time is also variable across differ-
ent plants and is maternally regulated (Piskurewicz et al., 2016).
Among the genes/regulatory network(s) known to regulate
seed dormancy (Nonogaki, 2014, 2019a, b; Han &
Yang, 2015), theDOG1–ABA–heme (DAH)module has been
elucidated in great detail (Fig. 2B). Delay of germination
1 (DOG1) is a key seed dormancy inducer protein that inter-
acts physically with clade A protein phosphatases 2C
(PP2Cs) such as ABA hypersensitive germination1 (AHG1)
and AHG3, through its N-terminal DSYLEW residue (posi-
tions 13–18), thus inhibiting their activity. Both AHG1 and
AHG3 repress protein kinases such as SNF1-related protein
kinase 2 (SnRK2), that are essential for the progression of
ABA signalling. Hence, AHG1/3 and DOG1 can be consid-
ered as negative and positive regulators of ABA signalling,
respectively. This is supported by studies on the ahg1/3

double-mutant, which displays higher SnRK2 activity and
delayed seed germination (Nishimura et al., 2018).

In addition to the DOG1–PP2C pathway, canonical ABA
signalling wherein ABA binds with pyrabactin resistance1/
PYR1-like (PYR1/PYLs) receptors to inhibit PP2Cs like
abscisic acid insensitive 1 (ABI1) and ABI2 to de-repress
SnRK2s that target ABA binding factors (ABFs), is also oper-
ational in seeds. For example, PYL12 and PYL1 have been
demonstrated to regulate seed dormancy in rice (Miao
et al., 2018). DOG1 also has the capacity to bind with the
C-terminal of heme at His245 and His249. Heme binding
is not essential for DOG1 to bind with AHG1/3, suggesting
the existence of an AHG1/3-independent pathway by which
the DOG1–heme complex regulates seed dormancy
(Nishimura et al., 2018). Although the exact mechanism is
not clear, the DOG1–heme complex is proposed to enhance
ABA sensitivity by stabilizing germination-suppressing tran-
scription factors (Nonogaki, 2019b).

The post-transcriptional-level regulation of DOG1 is also
known. DOG1 has both distal and proximal poly-A sites
which are responsible for generating exon-3-harbouring
long-DOG1 and exon-3-lacking short-DOG1, respectively.
The genomic DNA corresponding to exon-3-DOG1 also con-
tains a promotor element for transcribing antisense-DOG1
(asDOG1), which functions to fine-tuneDOG1 expression. Both
long-DOG1 and short-DOG1 are of biological significance as
they act as negative and positive regulators of seed dormancy,
respectively (Cyrek et al., 2016). The active transcription of
long-DOG1 also promotes H2B-monoubiquitinylation at the
asDOG1 promoter which act as repressive marks, thereby
reducing asDOG1 expression. The contrasting phenotypes of
A. thaliana mutants fy-2 (reduced dormancy) and cpl1

(enhanced dormancy), which have lower and higher levels of
asDOG1, respectively (Kowalczyk et al., 2017), indicate that
asDOG1 acts as a secondary regulator of seed dormancy.

A chromatin remodeller PICKEL (PKL) has been shown
to induce the deposition of H3K27me3 repressive marks on
the DOG1 promoter element, inhibiting its transcription.
The pkl mutant of A. thaliana exhibits enhanced seed dor-
mancy (Tong et al., 2020). Ethylene response factor
12 (ERF12) and topless (TPL) both repress DOG1 expression
by occupying its promoter, suggesting the presence of cross-
talk between DOG1 and ethylene-dependent pathways
(Li et al., 2019d). Another transcription factor, Leucine zipper
transcription factor 67 (bZip67) also interacts with the DOG1
promoter and represses its expression, especially under low-
temperature conditions (Bryant et al., 2019). The pseudo-
phosphatase reduced dormancy 5 (RDO5) directly interacts
with DOG1, adding further complexity to the regulation of
seed dormancy (Xiang et al., 2016). Seed dormancy 4-like
(AtSdr4L) has been shown to inhibit seed dormancy by pro-
moting GA biosynthesis, although its exact function is
unknown. The dog1/atsdr4l double-mutant showed enhanced
seed dormancy, similar to that of the atsdr4l single-mutant,
suggesting that AtSdr4L functions downstream of DOG1
(Cao et al., 2020).

Given its multifaceted regulation, the DAH module has
been proposed to act as a core hub to ensure seed germina-
tion only under favourable growth conditions.

(2) ABA–GA antagonism

The central and antagonistic relationships between ABA and
GA, in terms of regulating seed dormancy (Fig. 2C) are well
documented (Tuan et al., 2018; Vishal & Kumar, 2018), and
have been demonstrated in response to SA-mediated seed
priming in maize (Li et al., 2017). A higher level of GA
(~10-fold more than ABA) is a major driving force behind
the phase II to III transition during seed germination. The
expression of major ABA biosynthetic genes including ABA1

(ABA-deficient 1), ABA2/3, NCED6 (90-cis-epoxycarotenoid
dioxygenase 6) and NCED9 is downregulated post-imbibition;
while genes related to ABA catabolism such as CYP707A1
(ABA 80-hydroxylases) and CYP707A2 are upregulated. ABA
insensitive 3 (ABI3), ABI4 and ABI5 represent important
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ABA-responsive transcription factors that establish seed dor-
mancy. ABI3 represses the expression of ODR1 (reversal of
the RDO phenotype) which negatively affects the expression
of NCED6 and NCED9 as well as ABA levels in freshly har-
vested seeds (Liu et al., 2020).

In contrast to ABA, GA biosynthesis genes, including
GA3ox1 (gibberellin 3-oxidase 1) and GA3ox2, are upregulated
immediately after imbibition. GA signalling regulators include
gibberellin-insensitive dwarf 1 (GID1; a GA receptor), GA-
insensitive (GAI), repressor of GA (RGA), repressor of GA-like
2 (RGL2), SLEEPY1 (SLY1; a F-box-containing protein),
SNEEZY and SPINDLY (SPY), which co-ordinate in a series
of molecular and biophysical events ultimately leading to seed
germination (Ravindran & Kumar, 2019). In A. thaliana, GAI,
RGA, RGL1, RGL2, and RGL3 represent the five major
DELLA proteins. Of these, RGL2 is the major DELLA factor
which stimulates ABA biosynthesis by inducing ABI5 (ABA-
insensitive 5; a bZIP transcription factor) expression and
stabilizing ABI5 and hence, is a key negative regulator of
GA functioning. GA-dependent degradation of DELLA pro-
tein, via the 26S proteasome mediated by SLY1, allows the
transcription factor GAMYB to activate α-amylases during
seed germination. The α-amylases catalyse the hydrolysis of
starch to glucose and thus provide energy required for seed
germination. Additionally, GA induces the expression of
EXPANSIN2 (EXPA2), which mediates cell elongation and
cell-wall loosening, both vital components of testa rupture
(Bassel, 2016). NAC25, a RGL2 target protein, has been iden-
tified as an upstream component that regulates EXPA2
expression (Sanchez-Montesino et al., 2019). Like RGL2,
SPY is another negative regulator involved in GA signalling.
It encodes O-linked N-acetylglucosamine (O-GlcNAc) and
regulates RGA activity through O-GlcNAc modification
(Nelson & Steber, 2018). In addition, the GA pathway is inte-
grated with light-induced signalling. Phytochrome B (PhyB) is
a light-absorbing photoreceptor which transduces light signals
to phytochrome-interacting factor 1 (PIF1); PIF1 can then
directly induce RGA and GAI transcription to repress GA sig-
nalling. RVE1 (Reveille1) is another myeloblastosis (Myb)-like
transcription factor that functions to reduce GA levels by
directly repressing GA3ox2 expression. In addition, RVE1
can also abolish RGL2–SLY1 interaction and hence, inhibit
seed germination (Yang et al., 2020a). Recently, PIF1–RVE1
interaction has been demonstrated and genetic studies confirm
that RVE1 can promote the DNA-binding ability of PIF1 to
induce ABI3 expression, thereby repressing seed germination
(Yang et al., 2020b).

Apart from PIF1, a few other candidates have also been
characterized that are dual-targeted to both ABA and JA
signalling pathways for regulating seed dormancy. For
instance, OsGLP2-1 (germin-like protein 2-1) responds
antagonistically in response to ABA and GA supplementa-
tion in rice. ABI5-dependent enhanced expression of
OsGLP2-1 has been demonstrated to deepen seed dormancy
(Wang et al., 2020a). COP9 signalosome (CSN) is a con-
served heteromeric protein complex known to regulate the
CULLIN-RING family of ubiquitin E3 ligases (CRLs),

including the SCF sub-family of E3s. The csn mutants
csn1-10 and csn5a-1 exhibit defects in the timely degradation
of RGL2 and hence appear hyper-dormant. In addition,
CSN5A can mediate the degradation of ABI5, which func-
tions downstream to RGL2 (Jin et al., 2018). Taken
together, ABA–JA co-regulators can function to fine-tune
the timing of seed germination.

(3) Nucleus–organelle communication

The first evidence of organelle-dependent control of seed germi-
nation arose from the ancient practice of using cyanide (CN; a
mitochondrial respiration inhibitor) to break seed dormancy
(Hendricks & Taylorson, 1972). This paradoxical phenomenon
of poisoning seeds to stimulate germination indicated that acti-
vation of the alternative respiration pathway is essential for seed
germination (Yentur & Leopold, 1976). CN inhibits the activity
of complex-IV (COX; cytochrome c oxidase); as a consequence,
the electron flow from complex III to IV is disrupted. The pre-
mature termination of electron flow leads to the formation of
NO, which functions as a mitochondrial retrograde signal to
suppress the nuclear transcription of NCED, the rate-limiting
enzyme of the ABA biosynthesis pathway (Nonogaki, 2019b).
In cotton, redox imbalance within mitochondria has been
shown to activate synthesis of the temperature-responsive
heat-shock protein GhHSP24.7, which impairs COX matura-
tion and enhances seed germination in an ABA-independent
manner (Ma et al., 2019). In addition, COX biogenesis in mito-
chondria is dependent upon anterograde signalling from the
nucleus. This includes the active biosynthesis of pentatrico-
peptide repeat containing proteins (PPRs) that function as
RNA editing factors (Nonogaki, 2019b). Another metabolite
30-phosphoadenosine 50-phosphate (PAP) acts as a chloroplast
retrograde signal that is activated through the redox inactiva-
tion of SAL1 (a catabolic phosphatase for PAP). The exogenous
supplementation of PAP repressed seed germination in both the
wild type and abi1-1mutant in combination with either ABA or
paclobutrazol (a GA biosynthesis inhibitor), but not by itself.
This suggests that PAP-mediated retrograde signalling can
bypass ABI1 signalling to activate ABA-dependent gene expres-
sion and restore seed dormancy (Pornsiriwong et al., 2017).
Taken together, the initial phases of seed germination,

during which SPR treatments are applied, are under the
co-ordinated regulation of multiple signalling mechanisms
(Fig. 2B–D). Unfortunately, with the exception of ABA–GA
antagonism, the modulation of such mechanisms by SPRs
has not been explored in detail, even for the most commonly
used SPRs, and this represents a significant issue that should
be the focus of future research efforts.

V. STRESS MEMORY AND SEED PRIMING: TWO
FACES OF THE SAME COIN

Plants face recurrent stresses throughout their life cycle. As
an adaptive mechanism, plants retain ‘memories’ of
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previously encountered stress that help them to confront
impending stresses more rapidly and more efficiently. Such
stress memories can be induced artificially through pre-
exposure to low-dose stresses termed ‘priming cues’. The
induced stress memory is called ‘acquired tolerance’ and it
can be retained either in the short term (somatic memory),
or may be transferred to succeeding generations (inter-
generational memory), or in some cases, inherited across gen-
erations (trans-generational memory). Multiple mechanisms,
including chromatin remodelling, alternative transcript splic-
ing, metabolite accumulation and autophagy have been used
to explain somatic memory in plants (Fig. 3). However,
chromatin-dependent regulation is considered a key mecha-
nism for regulating stress memories in plants (Baurle, 2018;
Friedrich et al., 2019; Baurle & Trindade, 2020).

The basic unit of chromatin is the nucleosome, composed
of a 147-bp segment of DNA helix wrapped around a histone
protein octamer (Luger et al., 1997). Each nucleosome con-
sists of two molecules each of the four histones, H2A, H2B,
H3, and H4, linked by a strand of DNA with which the linker
histone H1 may be associated (Kornberg, 1974). Apart from
these canonical histones, plants also possess variant histones
which have minor differences in their amino acid sequences.
At the chromatin level, stress memory is conferred by differ-
ent epigenetic modifications including post-translational his-
tone modifications, changes in nucleosome occupancy,
replacement of canonical histones with their variants and
DNA methylation. These epigenetic modifications alter the
overall accessibility of genes for transcription. While some
histone marks such as H3K4me3 and H3K4me1 are charac-
teristic of transcriptionally active genes, H3K27me3 contrib-
utes towards transcriptional silencing of repressed genes
while others like H3K9me2 andH3K9me3 are mainly concen-
trated in chromocentres and serve a constitutively repressive
function (Ramirez-Prado et al., 2018). Active (H3K4me3) and
repressive (H3K27me3) histone marks function independently
and are not mutually exclusive on memory-related target loci
(Liu, Fromm & Avramova, 2014).

The deposition of active histone marks is known to be regu-
lated in a stress-dependent manner. For instance, heat-stress
priming activates a transcription factor HsfA2 (HEAT
SHOCK FACTOR A2) which functions to deposit H3K4me
on the promoters of heat-stress memory-related genes includ-
ing APX2 (ascorbate peroxidase 2) and HSP21 (heat-shock
protein 21). The unspliced transcripts of APX2 and HSP21

accumulate, even without increased levels of HsfA2, and con-
tribute to acquired thermotolerance (Lamke et al., 2016a).
Similarly, JA priming induced MYC2 (a basic helix–loop–
helix domain-containing transcription factor) functions
resulting in deposition of H3K4me3 on the promoters of
ABA-dependent genes, and leading to enhanced dehydration
tolerance in JA-primed plants (Liu & Avramova, 2016). The
enhanced deposition of H3K4me3 in the promoters of several
stress-responsive loci was also demonstrated in cold-primed
potato (Solanum tuberosum) plants (Zeng et al., 2019). Besides
methylation, cold-priming-dependent activation of COR

(COLD RESPONSIVE) genes was associated with increased

histone acetylation and reduced nucleosome occupancy
(Park et al., 2018a). Among histone variants, H2A.Z deposition
has been implicated in responses to temperature fluctuations
in the ambient range (Kumar & Wigge, 2010). In A. thaliana,
H2A.Z has been associated with both active as well as repres-
sive chromatin states (Sura et al., 2017); however, a direct role
of H2A.Z in regulating stress-induced somatic memory has
not been demonstrated.

The accessibility of genomic DNA for transcription is also
affected by nucleosome occupancy, which reflects the frac-
tion of cells from a population wherein a specific DNA frag-
ment is occupied by a histone octamer. While most genomic
DNA is occupied by nucleosomes, many functional regions
including promoters, enhancers and terminators have low
nucleosome occupancy, and some regions are nucleosome-
free (Struhl & Segal, 2013). To address this, multiple types
of chromatin remodelling ATPase complexes exist, which
catalyse the disruption of DNA–histone contacts, leading to
nucleosome sliding or eviction. According to conserved
ATPase domains, chromatin-remodelling ATPases are
divided into four major subfamilies including INO80/
SWR1, CHD, ISWI (imitation switch) and SWI/SNF
(switch/sucrose non-fermentable), although many additional
types of chromatin remodellers exist in plants (Han
et al., 2015). In A. thaliana, one such remodeller is FORGET-
TER1 (FGT1), with fgt1 mutants displaying reduced levels
of heat-induced gene expression during the memory phase.
FGT1 interacts with the SWI/SNF and ISWI sub-families
and modulates the occupancy of nucleosomes in promoter
regions of several heat-stress memory genes including Hsa32,
which encodes a heat-stress-associated 32-kDa protein
(Brzezinka et al., 2016). PICKLE (PKL) is another chromatin
remodeller identified from A. thaliana which enables plants to
retain cold stress memory (Yang et al., 2019). Thus, FGT1
and PKL1 represent connecting links for mediating heat and
cold stress memory, respectively, at the chromatin level. In
the absence of recurrent stress, the activation of stress-induced
memory could impart a penalty on the plants. Hence, plants
also possess mechanisms to erase active chromatin marks.
For instance, in A. thaliana, a H3K4 demethylase JUMONJI
17 (JMJ17) was shown to act as a negative regulator of dehy-
dration stress tolerance (Huang et al., 2019). However, the
exact role of JMJ17 in modulating dehydration stress-induced
memory has not been investigated.

The genome-wide reprogramming of active (H3K4me3) and
repressive (H3K27me3) histone marks has also been demon-
strated in response to salt-induced priming (Sani et al., 2013).
One of the best-characterized target loci responsible for salt
stress-induced memory is Δ1-pyrroline-5-carboxylate synthe-
tase 1 (P5CS1), which encodes a rate-limiting enzyme for proline
biosynthesis (Szabados & Savoure, 2010). Elevated levels of
H3K4me3 on P5CS1 chromatin cause stronger induction of
P5CS1 gene expression during the memory phase (Feng
et al., 2016). Apart from P5CS1, bZIP17 (basic-leucine zipper
17) and HRD3A (Hmg-CoA reductase degradation 3A), which
are important in the unfolded protein response (UPR) and
endoplasmic reticulum-associated degradation (ERAD),
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respectively, also remain upregulated during the memory
phase after low-dose salt exposure in A. thaliana (Tian
et al., 2019). These results clearly suggest that higher accu-
mulation of proline, coupled with activation of the UPR
and ERAD, enables primed plants to show better growth
in response to future salt exposure. In A. thaliana, drought
stress priming also induced accumulation of H3K4me3 on

the promoters of major drought-responsive genes including
RD29B (responsive to desiccation 29B) and RAB18 (respon-
sive to ABA 18). The transcription initiation form of RNA
polymerase II (Ser5P; serine 5 phosphorylated Pol II) also
persists at these loci, indicating that the stalled Pol II acts
as ‘active marks’ while the transcriptional memory persists
(Ding, Fromm & Avramova, 2012).

Fig. 3. Molecular mechanisms underlying stress memory in plants. Exposure to low-dose sub-lethal stress (priming dose) primes the plants
to face recurring lethal stress (triggering dose) in a better manner than naïve or non-primed plants. At themolecular level, priming is known
to induce various mechanisms including chromatin remodelling, alternative transcript splicing, metabolite accumulation and autophagy,
which together regulate stress memory in plants. At the chromatin level, stress priming induces the deposition of active histone marks
(H3K4me3, H3K4me3, and acetylation) at stress memory-dependent target loci. By contrast, more repressive marks (H3K27me3 and
H3K9me3) are found in non-primed plants. The replacement of canonical histones with variants like H2A.Z and low nucleosomal
occupancy contribute to RNA polymerase II-dependent transcriptional activation in primed plants. In addition, a greater number of
splice variants are formed which significantly increases the coding capacity of primed plants. The accumulation of various cellular
metabolites, including sugar and lipids and autophagy-target proteins, along with better communication between chloroplast/
mitochondria and nucleus further contribute to the ‘alert’ phenotype of primed plants.
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Chromatin-independent mechanisms also operate to reg-
ulate stress-induced somatic memory in plants. For instance,
chloroplast-to-nucleus ROS signalling (Van Buer, Cvetkovic &
Baier, 2016) and upregulated expression of the aquaporins
PIP1;4 and PIP2;5 (plasma membrane intrinsic proteins)
(Rahman et al., 2020) have been demonstrated to be impor-
tant under cold acclimation in A. thaliana. Heat-stress
induced thermo-memory is also linked with alternative
transcript splicing, which is considered a key mechanism
for increasing the coding capacity of plant genomes
(Srivastava et al., 2018). In A. thaliana, global splicing rear-
rangement has been observed in response to heat (Ling
et al., 2018) as well as cold (Vyse et al., 2020) stress priming.
Intron splicing efficiency in HsfA2, which generates an
alternative splice variant lacking a nuclear export signal,
has been shown to be associated with the loss of heat-
stress-induced memory in tomato (Hu et al., 2020).

The stress-induced accumulation of cellular metabolites
can also act as a ‘metabolic imprint’ that modulates
plant responses during the memory phase (Schwachtje
et al., 2019). Priming with glucose, a fundamental signalling
and metabolic molecule, induces the accumulation of
Hikeshi-like protein 1 (HLP1); the latter facilitates the depo-
sition of active H3K4me3 on thermo-memory-related loci
including HSP70 and hence positively regulates acquired
thermotolerance in A. thaliana (Sharma et al., 2019).
Enhanced production of branched-chain amino acids, raffi-
nose family oligosaccharides, lipolysis products and tocoph-
erols is also observed in thermo-primed plants (Serrano
et al., 2019). In response to cold-priming, raffinose accumu-
lates significantly and regulates plant memory towards freez-
ing stress (Zuther et al., 2019). Apart from metabolite
accumulation, salt-primed cells were shown to have a thicker
cell wall with higher lignin content, suggesting that the
adjustment of physical properties is important for regulating
salt stress-induced memory in A. thaliana (Chun et al., 2019).
In coffee (Coffea canephora), prior exposure to drought is asso-
ciated with higher activities of ribulose-1,5-bisphosphate
carboxylase/oxygenase (RuBisco) and extensive metabolite
re-programming, which enable the plant to face recurrent
drought efficiently (Menezes-Silva et al., 2017). In plants,
the process of autophagy functions to degrade stress-induced
proteins and other biomolecules during the recovery phase
(Su et al., 2020). Hence, autophagy could act as negative reg-
ulator of stress-induced memory, as substantiated by the
improved thermo-memory in autophagy mutants of
A. thaliana (Sedaghatmehr et al., 2019). Apart from model
plant A. thaliana, stress-induced memory has been reported
in various crops including sugar cane (Saccharum officinarum)
(Marcos et al., 2018), maize (Virlouvet et al., 2018), rice
(Li et al., 2019a) and wheat (Wang et al., 2020b) (Table S2).

The phenotypic effects observed in response to somatic
stress memory overlaps with those of seed priming, despite
the fact that SPR treatments are given only during the early
hours of seed germination. A detailed comparison between
seed priming and stress memory is provided in Table 2.
Although, a diverse range of SPRs are in use (Fig. 1), unlike

stress memory, the mechanistic information about seed prim-
ing is still limited. While most SPRs are expected to have spe-
cific effects, a unified mechanism can be proposed wherein
SPR treatment generates a mild (sub-lethal) stress inside the
seed that prepares the emerged plant to face recurrent stres-
ses more efficiently. This is supported by two observations:
(1) primed seed show a synchronized germination pattern;
and (2) during the early hours of post-priming, growth of
seedlings from primed seed is slower than that of non-primed
seed. It is thus likely that seed priming forces plants to begin
germination under stress. During seed-to-seedling transition,
the prevailing stress marks can be imprinted on the genome
just as in stress-primed plants, leading to improved stress tol-
erance. It will be interesting to focus future work on under-
standing whether the mechanistic knowledge about stress
memory (Fig. 3) provides a framework to understand the
molecular basis of seed priming.

VI. WAYS FORWARD FOR IMPLEMENTING
SEED PRIMING AT A WIDER SCALE

Despite the availability of SPRs with proven agronomic util-
ity, the maximum potential of seed priming has still not been
realized, especially at a global level. In Fig. 4, we plot the dis-
tribution of all articles that we identified on seed priming
(Table S1) and somatic stress memory (Table S2), according
to the study species and country of origin. Although we argue
above that both seed priming and stress memory share a
comparable phenotype (Table 2), research in these areas
has not followed a common trajectory. SPR-based research
is dominated by developing countries such as India, China
and Pakistan on three major staple food crops: rice, wheat
and maize (Fig. 4A). By contrast, most stress memory
research has been carried out in Germany, China and the
USA, using the model plant Arabidopsis thaliana (Fig. 4B).
One possible reason for this difference could be that research
in Asian countries, especially India and Pakistan, has
focussed more on crop plants, so as to meet the food demands
of a growing population. Interestingly, China is dominant in
both fields. One objective of the present review was to
enhance interactions between plant scientists studying SPRs
and stress memory, to the advantage of both fields. On the
one hand, for traditional studies of stress memory, the results
of SPR studies may have translational relevance. On the
other hand, a deeper understanding of the molecular basis
of actions of SPRs will suggest potential cellular targets/sig-
nalling pathways/signalling networks to be applied to field
stress scenarios. These could be targeted through Crispr/
Cas9-assisted transgenic or molecular breeding approaches.
Thus, a combined approach to studying stress memory and
SPRs could enrich both fundamental and applied aspects of
crop stress responses.

Differences in responses to SPR treatments are expected
according to plant species or variety. We suggest that system-
atic screening should be performed to promote the cultivation
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of local varieties that respond best to seed priming, so as to
maximize the cost–benefit ratio for farmers. Additionally, the
precise conditions for seed priming, such as ambient light
levels, temperature, nutrient medium and whether samples
are shaken, require optimization to ensure reproducible
results. Development of dual/multiple SPR-based

formulations is another option to maximize yield benefits. In
parallel, genome-wide association studies (GWASs) should
be performed to identify the genetic basis of SPR-dependent
actions. The ultimate objective will be to identify naturally
occurring genotypes with an inherent capacity to produce reli-
able SPR-dependent phenotypes.

Table 2. Comparison between seed priming and somatic stress memory in plants

Seed priming Stress memory

Similarities
Exposure to various agents at the time of seed germinationmakes
plants more efficient in terms of responding to stress
conditions.

Exposure to a sub-lethal stress prepares plants to face future or
recurring lethal stress in a better manner.

The growth of primed plants can be compromised under optimal
growth conditions.

Priming cues in the form of mild stress can reduce growth in the
absence of recurrent stress.

Plants grown from primed seed show increased stress tolerance at
the whole-plant level.

Stress-induced memory is widespread and active in all tissues.

Dissimilarities
Nature of the priming treatment and subsequent stress need not
be the same.

Nature of priming cue and actual stress is the same; except in cases of
cross-tolerance.

Memory phase is long term, ranging from weeks to months. Memory phase is short-term, ranging from hours to days.
Performed during the initial stages of seed germination when
most metabolic and defence pathways are inactive.

Performed at seedling or vegetative stages of plants when they have
functional metabolism and an active defence system.

Seed priming is applied only once. Repeated exposure or stress-training is possible.
Molecular basis is largely unknown. Most studies are correlative. The underlying molecular basis is well investigated and involves

various mechanisms, including chromatin modification,
transcriptional splicing and metabolite accumulation.

Majority of research performed on crops, including rice, wheat
and maize.

Most stress memory research involves the model plant Arabidopsis
thaliana.

Fig. 4. World-wide status of seed-priming (A) and stress-memory-based (B) research, according to study species and country in which
the research originated. See Tables S3 and S4 for the detailed data.
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VII. CONCLUSIONS

(1) This review highlights the potential of seed priming strat-
egies to enhance plant performance under stressful condi-
tions. The five SPRs used most often in recent research (Se,
SA, PEG, CaCl2 and TU) were discussed.

(2) The average seed priming duration with SPRs ranged
from 2 to 48 h, i.e. during phases I and II of seed germina-
tion. The major signalling events controlling these early
phases of seed germination include DOG1–ABA–heme-
based regulation, ABA–GA antagonism and nucleus–
organelle communication.

(3) Since both seed priming and stress memory induce a
‘bet-hedging’ strategy in plants, they produce an overlapping
phenotype, compromising plant growth under optimal con-
ditions in lieu of better growth under stressful conditions.
The molecular basis of stress memory is detailed at the level
of chromatin reorganization, alternative transcript splicing,
metabolite accumulation and autophagy. We argue that this
could provide a framework to study similar mechanisms
involved in seed priming.

(4) Integration of seed-priming and stress-memory-related
research, identification of SPR-responsive varieties and
development of dual/multiple benefit SPRs are proposed
as a way forward for improving SPRs-mediated agriculture
productivity worldwide.
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