
Association for Information Systems Association for Information Systems

AIS Electronic Library (AISeL) AIS Electronic Library (AISeL)

SAIS 2020 Proceedings Southern (SAIS)

Fall 9-11-2020

A Brief History of Software Development and Manufacturing A Brief History of Software Development and Manufacturing

Ashish Kakar
Texas Tech University, ashish.kakar@ttu.edu

Akshay Kakar
University of Houston, akakar@central.uh.edu

Follow this and additional works at: https://aisel.aisnet.org/sais2020

Recommended Citation Recommended Citation
Kakar, Ashish and Kakar, Akshay, "A Brief History of Software Development and Manufacturing" (2020).
SAIS 2020 Proceedings. 4.
https://aisel.aisnet.org/sais2020/4

This material is brought to you by the Southern (SAIS) at AIS Electronic Library (AISeL). It has been accepted for
inclusion in SAIS 2020 Proceedings by an authorized administrator of AIS Electronic Library (AISeL). For more
information, please contact elibrary@aisnet.org.

https://aisel.aisnet.org/
https://aisel.aisnet.org/sais2020
https://aisel.aisnet.org/sais
https://aisel.aisnet.org/sais2020?utm_source=aisel.aisnet.org%2Fsais2020%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
https://aisel.aisnet.org/sais2020/4?utm_source=aisel.aisnet.org%2Fsais2020%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

Kakar and Kakar Brief History of Software Development and Manufacturing

Proceedings of the Southern Association for Information Systems Conference, September 11th–12th, 2020 1

A BRIEF HISTORY OF SOFTWARE DEVELOPMENT
AND MANUFACTURING

Ashish Kakar
Texas Tech University
ashish.kakar@ttu.edu

Akshay Kakar
University of Houston

akakar@uh.edu

ABSTRACT

In this article we discover the roots and maturation of software development methods and practices through a
comparative study. We notice that the evolution of software development methods has mirrored the evolution in
manufacturing paradigms. Further, investigations reveal that the change software development methods have lagged
the change in manufacturing paradigms indicating the source of inspiration for software development and practices
is manufacturing and not the other way around. This investigation is useful and timely, especially in the context of
plan-driven versus agile methods conundrum. It helps us acquire an in-depth understanding of how software
development methods originated, why some of them have prevailed while others have not. Further, these insights
help us assess the relevance of current practices and methods of software development and predict their future
trajectory.

KEYWORDS

Software Development, Manufacturing, Agile Software Development, Plan-driven Software development

EVOLUTION OF SOFTWARE DEVELOPMENT AND MANUFACTURING PARADIGMS

While software development is less than a century old, manufacturing began when man first started making tools
and implements. It is not surprising therefore to discover that the evolution of software development methods has
trailed the evolution in manufacturing methods.

Craftsmanship and Code-and-fix

“In the 1950s, software developers were more like artists and craftsmen just as producers of physical products were
before the industrial revolution.” (Hannemyr, 1999) Formal methods of control such as division of labor and
productivity norms were not yet developed. Like the crafts there was scope for creativity and independence. Skilled
programmers like craftsmen had deep knowledge and understanding of their domain. They developed the software
iteratively and fixed the bugs in the code until the user was satisfied. The code-and-fix method survived because
software was not that complex and there was no better way for developing software. However, the code-and-fix
(Boehm, 1988) approach did not last long. As the use of software became ubiquitous and organizations relied on
computers for their business operations, this laissez faire approach was replaced with more disciplined methods. By
the mid-sixties, management wanted software development to be a managed and controlled process much like other
industrial activities (Hanemeyr, 1999).

Taylorism and Waterfall

To accomplish this, software development turned to a more than fifty-year-old paradigm, called "Scientific
Management" (Taylor, 1911). Frederick Winslow Taylor (1911) introduced Scientific Management with the aim of
controlling all work activities whether simple or complicated to improve manufacturing quality and productivity.
The methods suggested by Taylor focused on task simplification and time and motion studies by industrial engineers
aimed at increasing specialization and standardization of work.

As applied to software development, Scientific Management, led to the development of factory like concepts. R. W.
Bemer of General Electric (Bemer, 1969) was among its earliest proponents. He suggested that General Electric
adopt standardized tools to reduce variability in programmer productivity and keep a database of historical records
for management control. M. D. Mellroy of AT & T (Mellroy, 1968) emphasized systematic reusability of code for
enhancing productivity.

By the late 1960s, the term ‘software factory’ was in popular use and became associated with computer-aided tools,
management-control systems, modularization, and reusability (Cusumano, 1989). Attempts were made to introduce

Kakar and Kakar Brief History of Software Development and Manufacturing

Proceedings of the Southern Association for Information Systems Conference, September 11th–12th, 2020 2

statistical control in software engineering (Huh, 2001). Efficiency of software development processes were
measured through the use of control charts. Models such as CMM (Capability Maturity Model) gained popularity for
defining and improving software development processes (Huh, 2001).

Further new Taylorist approaches such as the waterfall model (Royce, 1970) and its variants gained popularity.
These methods promoted strong conformance to plan through upfront requirements gathering and systems design,
programming standards, code inspections and productivity metrics. They encouraged division of labor leading to
specialized roles of business analysts, system architects, programmers and testers.

Although a substantial improvement over “code-and-fix” approach, Taylorist methods have issues of addressing
customers’ real business needs and keeping with the development schedules (Kakar and Kakar, 2014; Kakar and
Kakar, 2017f). Under conditions of rapidly evolving customer needs, the approach of first defining requirements
fully and then delivering them to the customer after a long gap did not seem appropriate (Kakar and Kakar, 2018b;
Kakar and Kakar, 2018c; Kakar, 2015; Kakar and Kakar, 2017f, Kakar and Kakar, 2018d). With increasing problem
complexity, changing scope and requirements, and evolving technologies, developers, over time, came to realize that
software development projects using this approach may not accomplish the planned project objectives (Kakar,
2017d; Kakar and Kakar, 2017f).
Lean Manufacturing and Lean Software Development

Lean manufacturing originated on the shop-floors of Japanese manufacturers and in particular as a result of
innovations at Toyota Motor Corporation resulting from a scarcity of resources and intense domestic competition in
the Japanese market for automobiles. Lean production is based on four principles: (1) minimize waste; (2) perfect
first-time quality; (3) flexible production lines; (4) continuous improvement (Womack, Jones and Roos, 1990). The
lean approach focuses on creation of value by elimination of waste represented an alternative model to that of
capital-intensive mass production. The innovations included the Kanban method of pull production, the just-in-time
(JIT) production system, automated mistake proofing and high levels of participative employee problem-solving.

The positive outcomes of Lean manufacturing principles exemplified by the Toyota Production System in terms of
productivity, time-to-market, product quality and customer satisfaction aroused the interest of the software industry.
Lean principles were first applied to software development in the 90s (Freeman, 1992), well before the Agile
principles (see Table 3). Although the universal application of Lean principles to knowledge work like software
development is still under debate there is general acceptance that more lean principles could be virtually applied to
any domain.

Originally, the focus of lean software development was on making software development more efficient by
removing ‘waste’. Anything which did not add value to the customer was identified as waste such as adding extra
functionality or extra documentation. But later the principle of Just-in-Time (JIT) was applied in lean software
development practices such as not doing the requirements too far before one is ready to design, not doing design too
far before one is ready to code and not doing code until one is almost ready to test. The idea is to perform all these
tasks in small batches similar to the lean concept of “one-piece flow”. The essential principle underlying this
approach is to take our focus off productivity and put it towards time and the workflow by avoiding delays between
steps, eliminating large queues and making work more visible.
Agile Manufacturing and Agile Software Development

Although introduced in 2000s, the roots of Agile principles can be traced to both Lean and Agile manufacturing
paradigms introduced in the 1970s and 1990s respectively. Agile manufacturing is a further evolution of production
methodology following Lean manufacturing. The term agile manufacturing can be traced back to the publication of
the report 21st Century Manufacturing Enterprise Strategy (Iococca Institute, 1992). The origins of the “agility
movement” stems from US government concerns that domestic defense manufacturing capability would be
diminished following the end of cold war in 1989. The following phenomena underscore the reasons for putting
agility at the core of manufacturing strategy for the twenty-first century (Goldman et al., 1995):

1. Increasing market fragmentation

2. Growth in the need to produce to order

3. Shrinking product life cycles

4. Globalization of production

Kakar and Kakar Brief History of Software Development and Manufacturing

Proceedings of the Southern Association for Information Systems Conference, September 11th–12th, 2020 3

5. Distribution infrastructures which support greater customization

Leanness is usually seen as a precursor for fully agile manufacturing (Gunasekharan and Yusuf, 2002). While lean
production is based on four principles: (1) minimize waste; (2) perfect first-time quality; (3) flexible production
lines; (4) continuous improvement (Womack, Jones and Roos, 1990), the Lehigh study included four dimensions of
agile manufacturing 1.Enriching the customer; 2. Cooperating to enhance competitiveness; 3. Organizing to master
change; 4. Leveraging the impact of people and information (Goldman et al., 1995; Gunasekharan and Yusuf, 2002).

While the proposed definition of leanness is the maximization of simplicity, quality and economy, agile
manufacturing added flexibility and responsiveness to the definition (Gunasekharan and Yusuf, 2002). Various lean
approaches, such as mixed model scheduling and level scheduling (also referred to as heijunka), have been
developed for flexible production lines, but they work best under stable demand environments (Hines, Holweg and
Rich, 2004). As a result, various researchers have favored agile solutions (Goldman et al., 1995).

Agile manufacturing approaches focus on addressing customer demand variability by flexible assemble-to-order
systems and creating virtual supply chains (Hines, Holweg and Rich, 2004). Virtual supply chains are independent
firms with distinctive core competences which come together to exploit market opportunities and disband when they
are no longer valuable to each other. Further, agile manufacturing seeks to achieve competitiveness through rapid
response and mass customization. While lean manufacturing methods deliver good quality product to consumers at
low prices through removal of waste and excess inventory, agile manufacturing focus on rapidly entering niche
markets by developing capabilities to address specific needs of individual customers.

In line with these developments in manufacturing, ASD (Agile Software development) began as a countermovement
to the Taylorist software development processes like the Waterfall Model or the V-Model. There is a sharp contrast
between Taylorist and Agile software development approaches. Taylorist approaches are based on the principle that
the first step in a product/ system solution is to comprehensively capture the full set of user requirements to address
the business problem. This is followed by architectural and detailed design. Coding or construction is commenced
only after confirmation of requirement specification by the customer and completion and approval of architecture/
design. The customer is typically involved at the stage of requirements gathering and the final stage of product
acceptance (Kakar, 2014). As a result. the validation of the product happens only at the requirement gathering stage
and at the end of the long development cycle.

“On the other hand, agile projects work on minimum critical specification.” (Nerur, Mahapatra and Mangalraj,
2005) Agile projects start with the smallest critical set of requirements to initiate the project. They work on the
principle of developing working products in multiple iterations. “Users review actual working product at
demonstrations instead of paper reviews or review of prototypes done in plan-driven methods.” (Nerur, Mahapatra
and Mangalraj, 2005) These working products become the basis for further discussions and the team uses the latest
feedback from relevant stakeholders to deliver the business solution. As the solution emerges through working
products, the application design, architecture, and business priorities are continuously evaluated and refactored
(Kakar, 2018a; Kakar and Carver, 2012).

The evolution of software development approaches and the corresponding manufacturing paradigms are summarized
in Table 1.

Manufacturing Paradigms Software Development Approaches

Craftmanship (pre-1910s) Code and Fix (1950s)

Taylorism and Mass Production (1910s) Plan-driven approaches such as Waterfall or
V Model (1970s)

Lean Manufacturing (1970s) Lean Software Development (1990s)
Agile Manufacturing (1990s) Agile Software Development (2000s)

Table 1. Evolution of SDMs

The history of software development and manufacturing thus indicate that software development principles and
practices were adapted from manufacturing. We further assess the validity of this premise by comparing the
practices of two major software development methods - plan-driven (or Tayloristic) and agile methods - with the
corresponding practices in the two major manufacturing paradigms. Table 2 summarizes the findings for Tayloristic

Kakar and Kakar Brief History of Software Development and Manufacturing

Proceedings of the Southern Association for Information Systems Conference, September 11th–12th, 2020 4

methods of software development and manufacturing, and Table 3 summarizes the findings for agile methods of
software development and manufacturing.

 Tayloristic Practices of Mass
Production

Adaptations by Plan-driven methods of Software
Development

 Goals and Means

1 Efficiency of Production Process Focus on Cost, Quality, Schedule

2 Focus on Time and Motion Study, Task
Simplification

Adherence to Productivity Norms e.g. Lines of Code (LOC)/
Programmer week, Preventing schedule slippage, Low Defect/
1000 LOC

3 Specialization through Division of Labor Specialized Roles: Designers, Programmers, Testers

4 Standardization, Common Parts Coding Standards, Code Reuse

 Process Strategy

1 Defined Production Process Upfront Planning, Defined Process

2 Long Production Runs Long gap between requirements capture and delivery of IS
product

3 Management control of production process Reviews, Audits and Inspection

4 Push approach, Assembly line Sequential phases, Waterfall approach

5 Automation of Production Process e.g.
CAM (Computer Aided Manufacturing)

Automation of development processes: e.g. CASE (Computer
Aided Software Engineering) Tools

 Quality Control

1 Objective: Meeting Product Specifications System Requirement Specification and Verification

2 Means: Defect Detection and Correction,
Statistical Control

End of Line Testing. Statistical Process Control

Table 2. Tayloristic practices adopted by Software Development

ASD practices from Lean Manufacturing ASD practices from Agile Manufacturing

Minimizing waste (adapted from Poppendieck and
Poppendieck, 2003)

Enriching the customer
(Beck 1999; Scrum Alliance 2008)

Overproduction: Develop only critical user stories Co-creation of software with customer
Inventory: Story cards are detailed only for current
iteration

Creating a common way to view the system by using the
system metaphor

Use of User Stories – feature descriptions written from
the customer perspective.

Use of user stories – feature descriptions written from
the customer perspective

Extra Processing Steps: Code directly from stories; get
verbal clarification directly from customer

Burndown charts – project progress is measured by
number of user stories completed

Motion: Have everyone in the same room; customer
included

Incremental releases of working products allow
functionality to be released to the customer early

Defects: Both developer and customer tests Leveraging Impact of People and Information
(Beck 1999; Scrum Alliance 2008)

Transportation: Work directly with customers Product Vision

Kakar and Kakar Brief History of Software Development and Manufacturing

Proceedings of the Southern Association for Information Systems Conference, September 11th–12th, 2020 5

Table 3. Practices adopted by ASD from Lean/ Agile Manufacturing principles

DISCUSSION AND CONTRIBUTION

As Jacobson and Spence (2009) point out, theoretical roots help us glean the methodology-independent “truths” of
software development. This comparative study, a first of its kind, traces the origins and maturation of the concepts
and practices in the disciplines of manufacturing and software development and finds noteworthy similarities
between them (Table 3). The study provides evidence that the evolution of software development has trailed the
developments in manufacturing. From Table 2, we can see that although evolution in software development methods
lags evolution in manufacturing paradigms, it eventually catches up. Further, the lag time is progressively reducing.
This discovery has useful implications for research and practice. Three benefits are readily identifiable.

Firstly, the increasing popularity of Agile Software Development (ASD) compared to plan-driven methods have
perplexed many. Many still believe that ASD methods are a passing fad. However, the findings of this study show
that ASD can be viewed as a natural progression of evolution in software development methods (see table 2).
Additionally, this study also shows that ASD is currently at the apex of evolution in software development methods
and is likely to increasingly displace plan-driven methods of software development as lean/ agile manufacturing
paradigms have displaced Tayloristic principles of mass production over the last century.

Secondly, the findings of the comparative study provide a glimpse of the future trajectory in evolution of software
development methods. ASD methods are not without limitations. Agile methods continue to be seen as restricted to
small, co-located development teams and not well-suited for developing large enterprise software. The answer to
addressing these limitations may lie in tracking the relevant practices of manufacturing from where many of the
current software development practices in general and ASD practices in particular are drawn.

For example, in its fully developed form, agility in manufacturing exemplifies the collaborative capability of an
organization to proactively establish virtual manufacturing (Gunasekaran and Yusuf, 2002) where a group of
independent geographically distributed firms form suitable and temporary alliances based on complementary
competencies to address customer/ market needs. Currently the agile principles and practices do not even provide
the basic guidelines and processes for sub-contracting or outsourcing, leave alone address the sophisticated
processes of a full-blown virtual manufacturing. But aligned with the developments in manufacturing, ASD in future

Flexible Production Lines (Beck 1999; Scrum
Alliance 2008)

Open Work Space

Iterative evolutionary development Co-location of development team
Dedicated integration computer; Automated builds Paired Programming
Multi skilled employees Cooperating to enhance competitiveness

(Beck 1999; Scrum Alliance 2008)
Project Velocity measured by number of user stories
completed provides visibility

Daily Stand up Meetings, face-to-face communication
promotes tacit knowledge sharing (also see Kakar,
2017a)

Practices for first-time quality
(Beck 1999; Scrum Alliance 2008)

User representative on the development team

Test driven development Promoting collective ownership
Working products in each iteration Concertive rather than bureaucratic control (also see

Kakar, 2017b)
Integrate code frequently Organizing to master change

(Beck 1999; Scrum Alliance 2008)
ASD practices for continuous improvement

(Beck 1999; Scrum Alliance 2008)
Self-organizing teams (also see Kakar, 2017c)

Sprint Reviews Making customer available as part of ASD team
Periodic refactoring of existing code Policy of moving people around
Project retrospectives Recruiting and developing multi-skilled employees

Kakar and Kakar Brief History of Software Development and Manufacturing

Proceedings of the Southern Association for Information Systems Conference, September 11th–12th, 2020 6

will likely incorporate the advanced collaborative practices of virtual manufacturing as it evolves to address the
challenge.

Thirdly, a need continues to be expressed amongst both practitioners and researchers for a coherent understanding of
what constitutes agility in software development. By tracing the roots of the concept of agility in manufacturing and
discovering their implementation in agile principles and practices this study identifies eight facets of agility - 1.
Organizing to master change; 2. Enriching the customer; 3. Cooperating to enhance competitiveness; 4. Leveraging
the impact of people and information; 5. Minimize waste; 6. Perfect first-time quality; 7. Flexible production lines;
and 8. Continuous improvement. Future research may develop individual scales and/ or a composite agility index
based on these 8 facets of agility to measure the agility of ASD projects to pinpoint areas of improvement.

REFERENCES

1. Baker, J. (1996). “Agility and Flexibility, What 'the Difference?,” Working Paper (5:96), Cranfield University.
2. Bemer, R. W. (1969) "Position Papers for Panel Discussion -- The Economics of Program Production,"

Information Processing 68, Amersterdam, North-Holland, pp. 1626-1627.
3. Boehm, B. W. (1988). “A spiral model of software development and enhancement,” Computer,(2: 5), pp. 61-72.
4. Cusumano, M. A. (1988). The software factory: an interpretation (3). Afred P. Sloan School of Management,

Massachusetts Institute of Technology.
5. Goldman, S.L., Nagel, R.N. and Preiss, K. (1995). Agile Competitors and Virtual Organizations: Strategies for

Enriching the Customer. Van Nostrand Reinhold, New York, NY, USA.
6. Gunasekaran, A. and Yusuf, Y.Y. (2002}. “Agile manufacturing: a taxonomy of strategic and technological

imperatives,” International Journal of Production Research (40:6), pp. 1357–1385.
7. Hannemyr, G. (1999). “Technology and Pleasure: Considering Hacking Constructive,” First Monday (4), pp. 2.
8. Hines, P., Holweg, M. and Rich, N. (2004). “Learning to evolve: a review of contemporary lean thinking,”

International Journal of Operations & Production Management (24:10), pp. 994-1011.
9. Huh, W. T. (2001). “Software process improvement: operations perspectives,” In Management of Engineering

and Technology, PICMET'01. Portland International Conference (1), pp. 428-429.
10. Iacocca Institute. (1992). 21 st Century manufacturing strategy, Lehigh University, Bethlehem, PA.
11. Jacobson, I. and Spence, I. (2009). “Why we need a theory for software engineering,” Dr. Dobb’s Journal.

12. Kakar, A. K. S., & Carver, J. (2012). Best practices for managing the fuzzy front-end of software development
(sd): Insights from a systematic review of new product development (NPD) literature. In Proceedings of
International Research Workshop on IT Project Management (p. 14).

13. Kakar, A. K. (2014). When form and function combine: Hedonizing business information systems for enhanced
ease of use. In 2014 47th Hawaii International Conference on System Sciences (pp. 432-441). IEEE.

14. Kakar, A. K. (2015). Investigating the penalty reward calculus of software users and its impact on requirements
prioritization. Information and Software Technology, 65, 56-68.

15. Kakar, A. K. (2017a). Do reflexive software development teams perform better?. Business & information
systems engineering, 59(5), 347-359.

16. Kakar, A. K. (2017b). Investigating the prevalence and performance correlates of vertical versus shared
leadership in emergent software development teams. Information Systems Management, 34(2), 172-184.

17. Kakar, A. K. (2017c). Assessing self-organization in agile software development teams. Journal of computer
information systems, 57(3), 208-217.

18. Kakar, A. K. (2017d). How do perceived enjoyment and perceived usefulness of a software product interact
over time to impact technology acceptance?. Interacting with Computers, 29(4), 467-480.

19. Kakar, A. K., & Kakar, A. (2017e). A General Theory of Technology Adoption: Decoding TAM from a User
Value Perspective. Southern Association of Information Systems.

20. Kakar, A. K., & Kakar, A. (2017f). COSTS LOOM LARGER THAN GAINS: AN INVESTIGATION OF
CONSUMERS’ONLINE VERSUS INSTORE SHOPPING PREFERENCES. AMA Winter.

Kakar and Kakar Brief History of Software Development and Manufacturing

Proceedings of the Southern Association for Information Systems Conference, September 11th–12th, 2020 7

21. Kakar, A. K. S. (2018a). Engendering cohesive software development teams: Should we focus on
interdependence or autonomy?. International Journal of Human-Computer Studies, 111, 1-11.

22. Kakar, A., & Kakar, A. K. (2018b). Assessing Shopper's Penalty Reward Calculus in Online versus Instore
Shopping. e-Service Journal, 10(3), 24-45.

23. Kakar, A., & kumar Kakar, A. (2018c). Is team cohesion a double edged sword for promoting innovation in
software development projects?. Pacific Asia Journal of the Association for Information Systems, 10(4).

24. Kakar, A. K., & Kakar, A. (2018d). IS THE TIME RIPE FOR BRANDING OF SOFTWARE PRODUCTS.
25. Mellroy, M . D. (1968) “Mass produced software components”, Report NATO Conference. on Software

Engineering, Garmisch, pp. 138-152.
26. Nerur, S., Mahapatra, R., and Mangalaraj, G. (2005). “Challenges of migrating to agile methodologies,”

Communications of the ACM, pp. 72–78.
27. Poppendieck, M., and Poppendieck, T. (2003). Lean software development: An agile toolkit. Addison-Wesley

Professional.
28. Royce, W. W. (1970). “Managing the development of large software systems,” In proceedings of IEEE

WESCON (26, 8).
29. Taylor, F. W. (1911). The principles of scientific management, New York: Harper and Bros.
30. Womack, J., Jones, D. and Roos, D. (1990). The Machine that Changed the World, Rawson Associates, New

York, NY.

	A Brief History of Software Development and Manufacturing
	Recommended Citation

	A BRIEF HISTORY OF SOFTWARE DEVELOPMENT AND MANUFACTURING
	Abstract
	Keywords
	Evolution of Software Development and Manufacturing Paradigms
	Craftsmanship and Code-and-fix
	Taylorism and Waterfall
	Lean Manufacturing and Lean Software Development
	Agile Manufacturing and Agile Software Development

	Discussion and Contribution
	References

