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Abstract

Biomarkers, also known as biological markers, are substances like transcripts, deoxyribonucleic acid (DNA), genes, proteins,
and metabolites that indicate whether a biological activity is normal or abnormal. Markers play an essential role in diagnosing
and prognosis of diseases like cancer, diabetes, and Alzheimer’s. In past years, in healthcare, an enormous amount of omics
data, including genomics, proteomics, transcriptomic, metabolomics, and interatomic data, is becoming available, which
helps researchers to find markers or signatures needed for disease diagnosis and prognosis and to provide the best potential
course of therapy. Furthermore, integrative omics, often known as multi-omics data, are also proliferating in biomarker
analysis. Therefore, various computational methods in healthcare engineering, including machine learning (ML) and deep
learning (DL), have emerged to identify the markers from the complex multi-omics data. This study examines the current
state of the art and computational methods, including feature selection strategies, ML and DL approaches, and accessible
tools to uncover markers in single and multi-omics data. The underlying challenges, recurring problems, limitations of

computational techniques, and future approaches in biomarker research have been discussed.

1 Introduction

With the initiation of precision medication and treatment
therapy, genes have become increasingly popular for accu-
rate diagnosis and prognosis of diseases in healthcare [1].
Biomarkers are commonly known as biological markers and
biomarkers, that is, the identifiers that can be used to clas-
sify a biological event or condition and track certain bio-
logical events or processes. Due to their properties, genes,
transcripts, proteins, and metabolites are categorized as
biomarkers. Biomarkers are of seven types, including risk
(markers showing a risk of getting a disease), diagnostic
(markers confirming the existence of disease), prognostic
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(markers predicting the recurrence of disease), predictive
(marker used to detect the reaction of the patient to specific
therapy), monitoring (markers that are monitored periodi-
cally), safety (markers used to measure the toxicity before
and after treatment) and response biomarkers (markers use
to measure the response) [2]. This study is focused only on
diagnostic, prognostic, and predictive biomarkers. Circular
RNAs are recently identified diagnostic markers in Hepa-
tocellular carcinoma patients [3]. Further, long non-coding
RNA (IncRNA), including H19 and UCA1, are recognized
as diagnostic and prognostic markers in gastric cancer [4].
Figure 1 shows the example of some common genes of dif-
ferent types of cancers. These genes are needed in the diag-
nosis and prognosis of cancer. The main focus of this survey
article is on diagnostic, prognostic, and predictive biomark-
ers identification. Numerous cutting-edge innovations, like
next-generation sequencing and microarray technologies,
have appeared in the last couple of decades, entering a new
age of omics in identifying biomarkers [5]. A large volume
of omics data, including genome, transcriptome, proteome,
and metabolome, have been created and used in various
projects like The cancer genome portal (TCGA) [6], Thera-
peutically Applicable Research to Generate Effective Treat-
ments (TARGET) [7] and International Cancer Genome
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Fig. 1 Examples of common
cancer biomarkers

Estrogen Receptor (ER)
Human Epidermal growth factor
Receptor-2(HER)
Progesterone Receptor (PR)

Estimated Glomerular Filtration
Rate(EGBR)
Anaplastic Lymphoma Receptor
Kinase (ALK)

Kirsten Rat Sarcoma (KRAS)

Microphthalmia-Associated
Transcription Factor (MITF)
Melanoma Antigen (Melan-A)

Consortium (ICGC) [8]. These omics resources are used
to identify signatures for disease diagnosis and prediction.
Sometimes, it is impossible to identify biomarkers using
a single type of omics data [9]. Consequently, integrated
omics or multi-omics is required for the discovery of bio-
markers. While the accessibility of multi-omics makes it a
lot easier to assess markers/signatures for disease diagnosis
and prognosis, identifying biomarkers that can accurately
recognize or detect diseases in the presence of tens of mil-
lions of genes and billions of variants is still a challenging
task [10]. The complexity of multi-omics data can be han-
dled by computational methods in healthcare engineering
[11], including machine learning (ML) and deep learning
(DL) approaches can be employed for the identification of
biomarkers. ML and DL technologies have been reviewed
for biomarker identification using single omics and multi-
omics datasets in this survey article. Features extracted and
gene-prioritization are treated as biomarkers that are further
passed to ML and DL for disease prognosis and diagnosis.

1.1 Motivation and Contribution

Identifying biomarkers is extremely difficult because of the
enormous size of multi-omics datasets in healthcare sci-
ence. Therefore, there is a need to study the literature on
biomarker identification using multi-omics data vastly. The
contributions of this research are:

e A thorough analysis was undertaken to examine the
importance of current approaches in improving bio-
marker identification.

e The study of existing feature selection techniques for bio-
marker identification, ML and DL techniques for diag-
nostic, prognostic, and predictive biomarker identifica-
tion using omics and multi-omics data is done.

e Tools required for biomarker identification using multi-
omics data, which can be easily accessible by the users,
are reviewed.
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e Based on available features, emerging methods and tools
are compared. For research groups and data scientists,
the comprehensive analysis aids in the selection of future
research directions.

1.2 Existing Studies and Our Research

In recent years, several authors have conducted surveys
on biomarker identification. For example, Swan et al. [12]
offers a study on identifying biomarker using proteomics
data with the help of ML. Qin et al. [13] proposed ML
algorithms to identify predictive biomarkers as molecular
networks using interatomic data. Further, popular intera-
tomic resources required for performing the experiments
are also discussed. Jagga et al. [14] presented various ML
and feature extraction techniques to discover diagnostic and
prognostic markers. Popular omics resources and projects
are also deliberated. Dragani et al. [15] reviewed various
ML algorithms to discover diagnostic biomarkers required
for early cancer prediction. Shi et al. [16] presented various
machine learning algorithms, including supervised, unsu-
pervised, and clustering algorithms, to identify diagnos-
tic, prognostic, and predictive biomarkers using integrated
omics data. Kaur et al. [17] identified the biomarkers using
various machine learning diagnostic, predictive, and prog-
nostic biomarkers identification tools. The comparison of
the proposed work with the existing studies is shown in
Table 1.

Following a review of current surveys, it was discov-
ered that omics data tools are often used to address diag-
nostic biomarkers. The current ML, DL, and feature selec-
tion approach for discovering prognostic, diagnostic, and
predictive biomarkers using omics and multi-omics data
analysis must be summarized. This survey incorporates
current methods and tools studies and is an improvement
on previous studies. The comparison of the current state-
of-the-art work with our presented research is shown in
Table 2 below.
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Table 1 Comparison of the proposed research with existing biomarker studies

Author [Ref] Omics Multi-omics Omics Biomarker identification ML DL Tools
resourees Diagnostic Prognostic Predictive
Swan et al. [12] v X X v x e v X X
Qin et al. [13] v X v X X v v X X
Jagga et al. [14] v X v v v X v X X
Dragani et al. [15] v X X v x X v X X
Shi et al. [16] X v v v v v v X e
Kaur et al. [17] X v X v v v v e v
Our survey v v v v v v v v v

1.3 Structure of Survey Paper

The study is divided into seven parts. Section 2 presents
background information, including a description of biomark-
ers and their various types, multi-omics data, and learning
used for biomarker identification. Section 3 discusses vari-
ous research questions and review techniques. A systematic
analysis of existing approaches for biomarker identification
using omics and multi-omics data is presented in Sect. 4.
Based on general features, the techniques are evaluated and
defined. Section 5 illustrates different biomarker identifica-
tion tools that are currently available. The analysis is out-
lined in Sect. 6, which includes open problems and future
study directions. Section 7 brings the study to a conclusion
and suggests future studies.

2 Background
2.1 Biomarkers

Biomarkers are the molecules like genes, DNA, proteins,
and metabolite that signify whether a process going on in the
body is regular or irregular, and it can be used as a symptom
of any disease or disorder. Biomarkers are generated from
the cancer tissue, and they can be present in any part of
the body, including stool, blood, tumor tissue, urine, body
fluids, and any other tissue or cell. Biomarkers are found in
every disease, including cancer, multiple sclerosis, diabe-
tes, and heart diseases [18]. There are seven types of bio-
markers, including risk, diagnostic, prognostic, predictive,
monitoring, safety, and response biomarkers. Figure 2 shows
the types of biomarkers, and their explanation is described
below:

2.1.1 Risk Biomarkers
A biomarker shows the risk of getting a disease or

health issue in someone who might not currently have
the disease or health problem. A genetic biomarker that

determines whether a person has an elevated chance of
contracting cancer later in life is an example of a risk
biomarker. Risk biomarkers are most useful in clinical
practice for guiding prevention measures. One of the
commonly identified risk biomarkers is BRCA1/2 muta-
tion, which assesses the probability of producing breast
carcinoma [2].

2.1.2 Diagnostic Biomarkers

A marker that predicts or confirms the existence of a
disorder of interest or classifies people according to the
disease subtype is a diagnostic marker. For example,
diffuse large B-cell lymphoma patients can be divided
into subgroups of distinct tumor cell signatures using
gene expression profiling as a diagnostic biomarker
[19].

2.1.3 Prognostic Biomarkers

A prognostic biomarker predicts the occurrence of
a potential clinical condition, disease recurrence, or
relapse in an identified sample [20]. Biomarkers, includ-
ing tumor size, the percentage of lymph nodes active for
tumor cells, and the existence of malignancy, have been
used to predict prognosis in the future. High low-density
lipoproteins (LDL) cholesterol is an example of a prog-
nostic marker for a person who recently suffered from a
heart attack [2].

2.1.4 Predictive Biomarkers

A predictive biomarker is a marker used as a test to clas-
sify people who are more likely to react to a particular
medicinal substance or chemical product. A symptomatic
gain may increase longevity, or an adverse effect may be
the result [21]. A predictive biomarker is considered a
gene prioritization problem where the gene can signify
the occurrence of some particle disease with some known
disease genes [16].
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Table 2 Popular omics databases and repositories

Omics type Links Description
Genomics NCBI Genome https://www.ncbi.nlm.nih.gov/genome This database includes complete information of the
genomic data, including maps, assemblies, annota-
tions, and chromosomes
GOLD https://gold.jgi.doe.gov/ It provides complete information about genome
sequencing programs, as well as the metadata associ-
ated with them
JGI https://genome.jgi.doe.gov/portal/ It provides access to all the genomic databases along
with their annotations
EBI’s Ensembl http://asia.ensembl.org/index.html A browser for accessing and downloading genomic data
of humans, mouse and other species
GDV https://www.ncbi.nlm.nih.gov/genome/gdv/ A browser used for visualizing, exploring and retrieving
genomic data of humans and integrate genomic data
from various sources
dbGAP https://www.ncbi.nlm.nih.gov/gap/ A database of complete interaction between genomic
and phenotype in humans
ENCODE https://www.encodeproject.org/ It provides complete information about genomic data
of humans including mapping of DNA elements and
regulatory elements
dbVar https://www.ncbi.nlm.nih.gov/dbvar A database of structural variation of human genom-
ics and involve insertions, deletions, inversions and
complex variants
UCSC Genome Browser https://genome.ucsc.edu/ An online tool to analyze, download, and visualize
genomic data
Transcriptome Array Express https://www.ebi.ac.uk/arrayexpress/ It is a repository of gene expression dataset holding
databases from all microarray platforms
GEO https://www.ncbi.nlm.nih.gov/gds It is a data repository of genomics allowing download-
ing for various gene expression datasets
BioXpress https://hive.biochemistry.gwu.edu/bioxpress A database of gene expression and miRNAs in which
the expression levels are mapped to their genes,
Gene Expression Atlas  https://www.ebi.ac.uk/gxa/home It is a database of gene expression profiles collected
under different biological conditions
GEA https://www.ddbj.nig.ac.jp/gea/ A database of genetic, genomic and sequencing data
including microarray profiles
Proteomics PRIDE https://www.ebi.ac.uk/pride/archive/ An online public available large data repository of mass
spectrometry data based on proteomic data
YRC PDR http://www.yeastrc.org/pdr/ A protein data repository of images database including
localization of proteins in the image
Peptide Atlas http://www.peptideatlas.org/ It is a multi-organism, freely open database of peptides
discovered through tandem mass spectrometry prot-
eomics
GPMD https://gpmdb.thegpm.org/ A repository of evidence for detectingproteins, and
peptides using advanced tandem mass spectrometry-
based proteomics
ProteomicsDB https://www.proteomicsdb.org/ An online public database of mass spectrometry protein
data
Human Proteome Map  http://www.humanproteomemap.org/ A database developed by integrating sequencing results
of peptides
Metabolome = HMDB https://hmdb.ca/ A freely accessible database including metabolites
information
Human MetaboLights https://www.ebi.ac.uk/metabolights/ A database of derived information and metabolomics
experiments
BiGG http://bigg.ucsd.edu/ A database of metabolites and pathways developed for
humans and other different species
MetabolomeExpress https://www.metabolome-express.org/ A public repository for GC/MS metabolomics datasets

to be processed, interpreted, and shared
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Table 2 (continued)

Omics type Links Description
Interatomic METLIN https://metlin.scripps.edu/ A repository for mass spectrometry metabolite data
STRING https://string-db.org/ A freely available database of protein—protein interac-
tion
IntAct https://www.ebi.ac.uk/intact/ It's a freely accessible open-access data system and
analysis forum for molecular interactions
KEGG http://www.kegg.jp/ It is a repository of high-level functional data for vari-

ous species

NCBI National Cancer for Biotechnology information, GOLD Genomics Online Database, JGI Joint Genome Institute, GDV Genome Data
Viewer, ENCODE Encyclopedia of DNA elements, GEA Genomic Expression Archive, GEO Gene Expression Omnibus, PRIDE Proteomic
Identification Database, YRC PDR Yeast Resource center protein data repository, HMDB Human Metabolome Database, GPMD Global Prot-

eomic Machine Database
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Markers that are monitored
eriodicall
——— Safety p y
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——————— [

Markers use to measure
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Fig.2 Types of biomarkers

2.1.5 Monitoring Biomarkers

A marker that is measured periodically over time to
determine disease incidences, such as the emergence of
new disease symptoms, the deterioration of preexisting
anomalies, or changes in clinical outcomes or particu-
lar anomalies, is a monitoring biomarker. CA 125 is
an example of monitoring biomarker in ovarian cancer
patients to measure disease activity or burden before and
after surgery [2].

2.1.6 Safety Biomarkers

A biomarker is assessed before or after access to a therapeu-
tic drug or an environmental agent to determine the probabil-
ity, occurrence, and severity of toxicity as an adverse impact.
Serum creatinine is an example of a safety biomarker in
patients on medications that impair kidney function [22].

2.1.7 Response Biomarkers

A biomarker indicating patient’s biological reaction to a
medical substance or an environmental agent is a response
biomarker. For example, plasma microRNAs act as a Hodg-
kin lymphoma response biomarker [23].

As biomarkers are molecules, omics and multi-omics data
are required for their identification.

2.2 Multi-omics Data

In recent years, multi-omics data have been used as molecu-
lar biomarkers using the integration of omics data types,
including genomic, transcriptomic, proteomic, metabolites,
and interatomic, for the prognosis and diagnosis of some
specific diseases [24]. The discovery of disease biomarkers
with multi-omics data would aid in the stratification of vari-
ous patient cohorts, but it would also include early diagno-
sis knowledge that may enhance patient care and possibly
mitigate adverse outcomes [25]. There are different tools and
techniques available for multi-omics data integration, which
can be used for biomarker identification, disease diagnosis,
and progression [26]. The types of omics data are discussed
below.

2.2.1 Genome

The whole sequence of DNA in an organism, including all of
its chromosomes, is referred to as a genome. Genomics seeks
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to characterize and quantify all of the genes of an organism
and their interrelationships and effects on the organism. The
primary goal of genomics research in medicine is to find
genetic variants linked to disease, therapeutic response, and
patient prognosis [25].

2.2.2 Proteome

The entire universe of proteins in the cell is called proteome.
Proteomics is a technique for detecting protein expression
variations in response to a particular stimulus at a specific
time and determining protein structure networks at the tis-
sue, organism, or cell level [27]. Proteomics is based on
three vital technical elements: a tool for fractionating com-
plex protein or peptide combinations, mass spectrometry
(MS) for acquiring the data needed to classify specific pro-
teins, and computational biology for analyzing and assem-
bling the MS data [28].

2.2.3 Transcriptome

A transcriptome is a collection of mRNA, miRNA, and
IncRNA molecules in which their sequence produced in a
particular cell is called “transcriptome.” RNA lies between
proteins and DNA and acts as the primary function of DNA
readouts [29]. RNA-Seq technique is used to profile the tran-
scripts or raw data.

2.2.4 Metabolome

The metabolome contains a complete collection of small-
molecule groups called metabolites, including carbohy-
drates, amino acids, sugars, and fatty acids. Similarly,
quantitative measurements of metabolites are performed
using the MS technique like proteins. Metabolomics tasks
are executed at different metabolite levels, and any relative

distributions and disturbances signify the disease when they
occur outside of the normal range [30].

2.2.5 Interatomic

An interatomic is a multi-dimensional description of func-
tional associations between molecules inside a cell or
throughout the whole organism. A protein—protein inter-
action comes under this category of omics data [31]. The
popular omics resources, databases, and repositories, along
with their description and links, is shown in Table 2

2.3 Learning for Biomarker Identification

Machine learning analysis in biomarker identification deals
with the different types of omics data and their integration
for disease prediction and prognosis and guides treatment
therapies based on the identified biomarkers [14]. Figure 3
shows ML and DL’s workflow for the biomarker identifica-
tion using multi-omics data. The steps involved in learning
are data preprocessing, feature extraction, biomarker iden-
tification, and modeling, and are discussed.

2.3.1 Data Preprocessing

It is the method of transforming or encoding multi-data so
that the computer can quickly process it. Data preprocess-
ing, including data cleaning in which the missing values and
noisy values are removed; data transformation in which the
data is converted into some specific range using normaliza-
tion and selection techniques; and data reduction in which
the high-dimensional multi-omics dataset is reduced to low
dimensional dataset [32]. The attribute selection and dimen-
sionality reduction techniques are described below under
feature selection and extraction.

Set of features
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866 t
$

Learning
Algorithm

Search
Strategy t
Subset of 8 8
features I —> 8
Evaluate
Performance
set

Evaluate
Performance

868
866
$

Optimal feature

(a) Filter Method

Set of features

Generate a subset

688
Algorithm

Selecting the best features

(b) Wrapper Method

Set of features

8668688
1

' Generate a subset

=

Evaluate
Performance

Evaluate
Performance

Selecting the best features

(c) Embedded Method

Fig. 3 Feature selection methods
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2.3.2 Feature Extraction and Selection

Feature Extraction reduces the feature space of high dimen-
sional multi-omics data to low dimensional feature space
[33]. This low dimensional feature space consists of impor-
tant information only required for biomarker identification,
disease detection, and prognosis. There are different tech-
niques available for the extraction of features for integrated
omics, including Principal Component Analysis (PCA)
[34], Canonical Correlation Analysis (CCA) [35], and Lin-
ear Discriminant analysis [35], and Non-Negative Matrix
Factorization (NNMF) [36]. However, these techniques
integrate only linear multi-omics data. In case non-linear
integration is required, these fail to work, for example, in
integrating gene expression and interatomic data. The Non-
linear feature extraction techniques are required to integrate
non-linear data. These are Kernel Principal Component
Analysis (KPCA) [37], Locally Linear Embedding (LLE)
[38], t-distributed Stochastic Neighbor Embedding (t-SNE)
[39], and auto-encoders [40]. However, feature extraction
only returns a subset of features. Some relevant features need
to be selected for biomarker identification, which is done
using feature selection.

Feature selection is a method of electing valuable and
informative features by removing duplicate and noisy fea-
tures [41]. Feature selection techniques are of three types,
including filter, wrapper, and embedded methods and are
shown in Fig. 3. The filter method works by assigning a rank
to the features and selecting only higher-rank features. Dif-
ferent filter method techniques include Pearson Correlation
Coefficient (PCC), chi-square, t-test, and Analysis of Vari-
ance [42], which works by finding the correlation between
the features and target variable. In biomarker identification,
chi-square and t-test are used by various researchers to rank
the differentially expressed genes and select the top-ranked
genes [43—-45]. However, there is a disadvantage to filter
selection. In the filter method, each feature works indepen-
dently, i.e., they do not interact with each other. Neverthe-
less, there is a complex relationship between the features in
omics data, so the filter method does not work correctly in
this scenario. Also, the filter method works independently of
the classifier, resulting in poor performance of the selected
features [46]. Wrapper methods are used to overcome these
disadvantages. Wrapper methods work by selecting the
features iteratively and evaluating their performance using
a classifier. Initially, there was no feature set. Each time a
feature is added and performance is checked. This is done
until the most relevant features are not selected [33]. The
wrapper method selects the features in two ways, including
forward feature selection and backward feature selection.
Some of the standard techniques of the wrapper method are
Recursive Feature Elimination (RFE) [47], Sequential Fea-
ture Elimination (SFE) [48], and Genetic Algorithms [49].

Various authors have worked on wrapper methods for bio-
marker identification, for example, RFE is used to identify
miRNA biomarkers [50], and hybrid wrapper methods are
used in multi-omics data to identify diagnostic markers [a4].
There is complete interaction between features and classifier.
Therefore, it solves the problem of the filter method, but the
wrapper method leads to overfitting. The embedded methods
have been introduced to solve this problem. The embedded
method combines the function of both the filter and wrapper
method. It works by integrating the feature selection algo-
rithm with the training algorithm and selecting the feature
subset [51]. Least Absolute Shrinkage and Square Estimator
(LASSO) is one of the most common techniques of feature
selection which is implemented by several researchers in
diagnostic and prognostic biomarker identification [52-54].

2.3.3 Modelling

Both ML and DL can be used in the modeling of a dataset.
ML is a data processing technique that automates the growth
of analytical models. It is a branch of artificial intelligence
that allows computers to learn from their mistakes, interpret
data, identify patterns, and make educated decisions with
little or no human interference. [55]. ML is of four types
supervised learning, unsupervised learning, semi-supervised
learning, and reinforcement learning. In supervised learning,
a computer is trained with well-labeled data. Some of the
datasets have already been labeled with the correct answer.
Afterward, the machine provides the test data, which is ana-
lyzed by the supervised learning algorithm that generates an
accurate result from classified data. Supervised Learning can
be a classification problem or regression problem [56]. In
classification, the outcome variable is a class or categorical
variable, and in regression, the outcome variable is a real
value. There are different supervised learning algorithms,
including SVM, Linear regression, Random Forest (RF),
Adaboost, K-Nearest Neighbor (KNN), Naive Bayes (NB),
and Decision Tree [57]. On the other side, Unsupervised
learning is training a computer to work on knowledge that
is neither categorized nor labeled. The machine works by
organizing the unlabeled data into groups or clusters based
on similarities, variations, and discrepancies without any
previous data knowledge. Hierarchical clustering and
K-mean clustering are unsupervised learning algorithms
[58]. Semi-supervised is a mixture of both supervised and
semi-supervised learning, but in this, the labeled data is of
minimal size compared to unlabeled data [59]. Reinforce-
ment learning is about taking the proper steps to optimize
the incentive in a given situation. Various algorithms and
computers use it to determine the best possible action or
direction in a given scenario [55]. Deep Learning is a form
of ML inspired by the human brain's structure. Deep learn-
ing analyzes data using a predetermined conceptual form to
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draw similar results as humans. Deep learning uses a multi-
layered system of algorithms known as neural networks [60].
The neural network’s architecture is focused on the configu-
ration of the human brain. Neural networks can be trained
to recognize trends and interpret various kinds of data in
the same way our brains do. The brain attempts to compare
new knowledge to existing items once we encounter it. Deep
neural networks operate on the same principle. Classifica-
tion, clustering, regression, and many other tasks can be
performed in neural networks. We can aggregate or filter
unlabeled data using neural networks based on the similarity
between the samples. The are many algorithms available in
DL comprising convolutional neural network (CNN), recur-
rent neural networks (RNN), U-net, deep belief networks
(DBN), long short term memory (LSTM), and many more
which help in the classification and prognosis of diseases
[61]. The complete workflow of biomarker identification
using ML and DL is shown in Fig. 4.

In this research, classification is used for disease diagno-
sis, regression for disease prognosis, and feature selection
and extraction are used as biomarker identification. Once
the biomarkers are identified, they are passed to machine
and deep learning algorithms which further classify them
into diagnostic, prognostic, and predictive markers. Their
survival analysis is checked with various models for prog-
nostic markers, including univariate cox, multi-variate cox,
and LASSO model. The risk score is calculated from which
higher risk markers are identified as prognostic markers.

Based on this, drugs and treatment therapies can be recom-
mended. On the other side, predictive markers are consid-
ered a gene-prioritization problem from which a biomarker
can be discovered from some known disease biomarkers.
Several gene-prioritized algorithms have been reviewed for
the identification of predictive markers. The complete tax-
onomy of biomarker identification is shown in Fig. 5.

2.4 Biomarker Identification Research Evolution

The first biomarker identified was a protein biomarker
discovered by Bence-Jones in 1847 in multiple myeloma
patients [62]. It was approved by FDA in 1986 when they
are reported again in serum markers of myeloma patients
[63]. In 1867, Sir Michal Forster identified urinary amyl-
ase marker in pancreatic cancer patients. The biological
marker term was introduced in 1950 and gained popularity
in the 1980s [64]. Carcinoembryonic antigen (CEA) was
identified by Dr. Joseph gold in 1965 and was discovered in
the malignant tissues of cancer patients [65]. In the 1970s,
three more markers, i.e., Cancer Antigen (CA) CA 199, CA
15-3, and CA 125, were discovered in colorectal, breast,
and ovarian cancer patients. Furthermore, prostate-specific
antigen (PSA) was discovered in the 1980s, and till now, a
variety of biomarkers have been discovered [65]. The com-
plete history of biomarkers is shown in Fig. 6 below. Fig-
ure 7 shows the trends of the biomarker identification using
multi-omics data, which shows an increase in 2018-2021.

Transformation

Data Preprocessing

Gene-Signatures

A

X

=5 Fs
(=,
. Pred iction [ Deep Leamning ]
Performance Learning Biomarkers

Fig. 4 Workflow of biomarker identification using ML and DL
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It also shows the percentage of publications in biomarker
identification using multi-omics data. In this research, clas-
sification is used for disease diagnosis, regression for disease
prognosis, and feature selection and extraction are used as
biomarker identification. Once the biomarkers are identified,
they are passed to machine and deep learning algorithms
which further classify them into diagnostic, prognostic, and
predictive markers. Their survival analysis is checked with
various models for prognostic markers, including univariate
cox, multi-variate cox, and LASSO model. The risk score
is calculated from which higher risk markers are identified
as prognostic markers. Based on this, drugs and treatment
therapies can be recommended. On the other side, predictive
markers are considered a gene-prioritization problem from
which a biomarker can be discovered from some known dis-
ease biomarkers. Several gene-prioritized algorithms have
been reviewed for the identification of predictive markers.
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The complete taxonomy of biomarker identification is shown
in Fig. 5.

3 Review Method

Following the methods of Kitchenham et al. [66], a thorough
study of tools and techniques required for biomarker identifica-
tion using multi-omics data analysis is conducted to summarize
current work and highlight scientific limitations. The analysis
process begins with several research problems to be answered,
as outlined in Sect. 3.1. The fundamental goal of this study is to
address the most recent approaches and tools used for identify-
ing biomarkers by responding to the research problems. Vari-
ous keywords have been used to search the articles in different
libraries required for literature review. Lastly, the data collection
process is simplified by using an inclusion—exclusion process.
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3.1 Research Problems

This survey gives detailed information about the most
recent tools and technologies required for biomarker
identification by responding to the following research
problems.

P1: What do you mean by biomarkers, and what are its
various types?

P2: What do you mean by multi-omics data?

P3: What are feature extraction and selection techniques?

What are its types, and why are they needed?

P4: What strategies have been developed for identifying
biomarkers using omics and multi-omics data?

P5: What are the tools developed for biomarker identi-
fication using multi-omics data?

Pé6: In the field of biomarker identification, what are the
current problems and opportunities?

3.2 Article Resources

The different online sites have been used to search the
articles from various publications, including Springer,
IEEE explore, Google Scholar, Elsevier, Web of Sci-
ence, Science Direct, and Wiley Online Library.
Various documents like research articles, conference
papers, survey articles, editorial materials, and book
chapters can be retrieved from the aforementioned
resources.

3.3 Criterion Used for Searching

We start with the title “biomarker identification”, “biomarker

identification in multi-omics”, “techniques used for biomarker

identification in multi-omics data”, “tools for biomarker

Fig. 8 Data inclusion and exclu-
sion process

1500

identification in multi-omics data”. Using these keywords,
different string has been formed and are shown as below:

e “Biomarker identification” 4+ “omics”

e “Biomarker identification” + “multi-omics”

e “Diagnostic biomarker identification” + “omics” +
“machine learning”

e “Prognostic biomarker identification” + “omics” +
“machine learning”

e “Predictive biomarker identification” + “omics” +
“machine learning”

e “Diagnostic biomarker identification” + “multi-omics”
+ “machine learning”

e “Prognostic biomarker identification” + “multi-omics”
+ “machine learning”

e “Predictive biomarker identification” + “multi-omics” +
“machine learning”

e “Biomarker identification” + “multi-omics” + “deep
learning”

e “Biomarker identification” + “multi-omics” +” tools”

Scientific papers from numerous publications, journals,
chapters, and conferences have been included in the search.

3.4 Inclusion-Exclusion Process

In the data inclusion and exclusion method, 98 studies were
chosen for this study. The discovery process begins with
a search string that returns unrelated papers to the report.
Figure 8 depicts the beginning of the process, which starts
with 1510 research papers returned. With the title-based
exclusion, the count is decreased to 704. The number is
reduced to 420 based on the related abstract. Since consid-
ering the entire text, only 180 articles remained. Ultimately,
98 research articles were chosen for the literature review.

Current Status of Biomarker Identification using Keywords

Total articles searched using keywords

704

806 excluded based on title

284 excluded based on abstract

240 excluded based on text

82 excluded based on redundancy and
challenges
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4 Biomarker Identification Literature
Review

In this section, a thorough review of feature selection tech-
niques required for identifying biomarkers using multi-
omics data set is performed, followed by the identifying
biomarkers using omics and multi-omics data with the help
of ML and DL.

4.1 Feature Selection and Extraction Techniques
for Biomarker Identification

Feature Selection and extraction work by reducing feature
space's dimensionality and selecting the most relevant fea-
tures. The complete description of feature extraction and
selection is discussed in Sect. 2. Here we discussed some of
the work done by the authors on feature selection techniques.
Malik et al. [67] used maximal-relevance and minimal redun-
dancy (mRMR) feature selection technique on gene expres-
sion and DNA methylation data to reduce their dimensional-
ity. A sample of prostate cancer patients has been taken, then
passed to preprocessing and mRMR method, which selects
the most relevant genes as the top-ranked markers. Fujita
et al. [68] used a feature selection method to discover bio-
markers using a multi-omics dataset. The authors took the
dataset in three matrix forms and applied the INMF method,
which generates four clusters by reducing the dimensional-
ity of the matrices. This method also reduces noisy values
and selects the relevant features, further passed for training
purposes. This method successfully identifies the candidate
genes and finds the association between the genes and the
drugs given for treatment. Jia et al. [69] used PCA to reduce
the dimension of enormous feature space from miRNA,
mRNA, DNA, and single nucleotide polymorphisms (SNP)
data of pancreatic cancer and identified 12 risk biomarkers.
First, the dimensionality is reduced using PCA, and then
the most relevant features are selected using Filter methods,
including chi-square and t-test. The proposed method iden-
tified 12 markers successfully. These methods work well
for linear multi-omics data integration only. For non-linear
integration, non-linear methods are required, as explained in
Sect. 2. Southekal et al. [70] used the t-SNE feature extrac-
tion method to identify markers from Gene expression and
DNA methylation dataset of 35 cancer types. Dataset was
taken and passed to preprocessing and t-SNE algorithm to
reduce dimensionality. Further, a filter method identified
a correlation between the features and selected top-ranked
genes. The survival analysis was performed to check the risk
scores for the selected genes based on selected genes. Simi-
larly, Moon et al. [71] use deep learning auto-encoders with
Kernel PCA to identify candidate biomarkers using integra-
tive omics datasets. The authors used the DNA methylation
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and Gene Expression dataset and passed it to preprocessing
stage to remove the noisy values. Further, the preprocessed
data is passed to PCA and stacked auto-encoder to convert
the data from multi-dimensional space to a single dimension.
Then the differentially expressed genes are identified, perfor-
mance is checked, and candidate markers are selected related
to the disease. Hamzeh et al. [72] used to filter and wrapper
methods to identify prostate cancer patients’ biomarkers. At
first, preprocessing of the dataset is performed, passed to
filter methods including Information Gain and chi-square
test to rank the genes. Further, the wrapper method mRMR
method to select the most relevant biomarkers. Multiple
algorithms of ML, including NB, RF, and KNN, have been
used to check the performance. Further, feature extraction/
selection and ML and DL algorithms are used in the next
section to identify different types of biomarkers (Prognos-
tic, Diagnostic, and Predictive Biomarkers) using omics and
multi-omics datasets.

4.2 Biomarker Identification Using ML and DL
for Omics Data

The biomarker identification is divided into three sections:
identification of diagnostic, prognostic, and predictive bio-
markers using omics data with the ML and DL approaches.

4.2.1 Diagnostic Biomarkers

Diagnostic markers are the markers used to confirm the
presence of disease and identify the markers in different
sub-types of cancer. For example, Zhao et al. [73] used the
machine learning algorithm RF to identify novel diagnos-
tic biomarkers in hepatocellular carcinoma. miRNA genes
of 373 patients were downloaded from TCGA data and
passed to the Random Forest model for biomarker identi-
fication. The experiment was validated on the GSE63046
dataset. The results found that the proposed method identi-
fied five diagnostic biomarkers. Kloten et al. [74] presented
a technique to discover the new markers in breast cancer
patients. The authors examined the promoter methylation
of seven putative tumor suppressor genes (ITTHS5, SFRP1,
WIF1, SFRP2, RASSFIA, SFRPS, and DKK3). Our find-
ings showed that ITIH5 and DKK3 promoters methylation
as possible biomarkers achieve a precision of 93%. Rehman
et al. [75] proposed machine learning algorithms to vali-
date the importance of miRNA as breast cancer biomarkers.
miRNA sample of breast cancer patients has been taken and
passed to the preprocessing stage to eliminate all the missing
values from the dataset. It is further given to feature selec-
tion techniques comprising LASSO, Chi-Squared (CHI2),
and Information Gain (IG) to rank the features according to
their importance. The training of these samples is performed
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using machine learning algorithms comprising RF and
SVM, and it was investigated that 11 top-ranked miRNAs
as biomarkers can be beneficial in predicting breast cancer
and are treated as diagnostic biomarkers. Alkhateeb et al.
[76] introduced machine learning algorithms to identify the
transcripts for prediction and guide the treatment related to
prostate cancer progression. Transcripts dataset have been
taken and passed to preprocessing stage for cleaning the
dataset, which is then passed on featuring extraction tech-
nique to obtain the differentially expressed genes. Machine
learning algorithms, including SVM, RF, NB, and Decision
Tree (DT), were used for modeling, and it has been evident
that SVM outpaced with 90% accuracy. It was also found
that HEATRS5B, DDC, GABPB1-AS1, NREP, PTGFR,
SCARNAZ22, FLVCR2, DOCKO9, IK2F3, CLASP1, and
USP13 are the potential biomarkers used for the progression
of prostate cancer. Jin et al. [77] developed a model using
a semi-restricted Boltzmann machine named ECMarker to
predict biomarkers for the different stages of diseases like
the early prediction of cancer. Gene-expression of non-small
lung cancer patients was taken, and the ECMarker model
was applied, which achieved an accuracy of 85%. The nine
genes are identified as the diagnostic biomarkers, includ-
ing KRAS, ALK, BRAF, PIK3CA, NRAS, AKTI, RET,
EGFR, and ROSI. It was also used to prioritize biomarkers
genes responsible for the early prediction of lung cancer.
Tyanova et al. [78] discriminate between three breast cancer
subtypes using a protein expression dataset to detect pro-
tein biomarkers using a machine learning model. Embedded
feature selection techniques were followed by training and
cross-validation using a SVM model. The experiment was
performed, and it was identified that the detected biomarkers
correctly classified the breast cancer subtypes with an AUC
value of 91%. A total of eight markers (Her2, Grb7, MCMS5,
STMNI1, GLS, RCL1, C90RF114, and ENO1) are detected
as diagnostic biomarkers. Xie et al. [43] used ML methods to
identify diagnostic biomarkers using a metabolomics data-
set. A sample of 110 patients was collected from the Hubei
Taihe Hospital and passed to PCA to select the metabolites.
Then the Statistical analysis is performed considering only
those metabolites having a value less than 0.05. Further,
the selected metabolites were passed to ML comprising RF,
KNN, SVM, NN, NB, and Adaboost, and it was found that
NN performed best with accuracy, specificity, sensitivity,
and AUC value of 99%. It was also found that ten metabo-
lomics biomarkers including L-Kynurenine, Proline, Sper-
midine, Palmitoyl-1-carnitine, Amino-hippuric acid, Pheny-
lalanine, Taurine, L-Valine, o-Tyr, Carnitine plays a critical
function in tumor diagnosis. Muazzam [79] used deep neural
networks (DNN) to identify diagnostic biomarkers using the
RNA-Seq dataset of breast cancer patients. First, the size of
the dataset is reduced and then passed to the Stacked De-
noising encoder for biomarker identification. Further, the

identified biomarkers are passed to DNN to classify cancer
patients. Pathway analysis identifies three genes (PIK3C2G,
PCDHBS8, WNT10A) in multiple cancers. Khattri et al. [44]
proposed an ML algorithm for identifying diagnostic mark-
ers using transcriptomic data from Pancreatic Adenocarci-
noma (PDAC) patients. Dataset was collected from Array
Express and GEO and passed to preprocessing and t-test
to discover genes. The identified genes were then passed to
SVM to classify cancer patients. The experiment was per-
formed, and the tested result proved that the proposed frame-
work successfully identified nine genes comprising IFI27,
CTSD, ITGBS, EFNA4, PLBD1, GGH, HTATIP2, CTSA,
and IL1R2 with 97% accuracy. Liu et al. [45] presented two
multilayers feed-forward NN using DL to identify markers
using a DNA methylation dataset. The t-statistics test was
passed to LASSO and the RF algorithm to identify genes.
This test identifies 12 CpG markers and 13 promotor mark-
ers. Further, these markers are passed to the Deep learning
model, which achieved a sensitivity of 92% for CpG markers
and 89% for promotor markers. Toth et al. [80] presented
a random forest-based classification model to detect bio-
markers for prostate cancer. DNA methylation dataset was
downloaded from TCGA and passed to the preprocessing
and feature extraction stage to extract the relevant features.
It was then given to the random forest model to identify the
biomarker for prostate cancer. The results are evaluated, and
it was proved that the random forest-based modeling identi-
fied the top 30 methylation genes and performed best with
an AUC value of 77%.

4.2.2 Prognostic Biomarkers

Prognostic markers are used to predict the occurrence of a
potential clinical condition, disease recurrence, or relapse in
an identified sample. The work done by the various authors
in prognostic markers is described as follows. Ma et al. [81]
proposed machine learning algorithms to identify 16 gene
prognosis markers to predict lung adenocarcinoma (LUAD).
Clinical and RNA-seq dataset from the TCGA portal was
used for the experiment. At first, survival-related genes
were identified using Cox and random survival forest (RSF)
method, and then prognostic-related genes were identified
from integrated clinical and RNA-seq data. Furthermore,
to validate the results, GEO was used. The experiment was
performed and compared with existing prediction models.
The result was calculated using three metrics comprising
hazard ratio (HR), concordance index (CI), and p-value, and
it is evident from the results that the proposed method out-
performs with the c-index value of 67%. It was also found
that 13 new biomarkers, including PITX3, LINC00908,
GJB3, MELTF, CRCT1, LOC105370802, BAIAP2L2,
GABRA2, RHOV, ARF3, KRT18, TRIM7, ZNF710.AS1
and LOC100996732 were identified as compared to existing
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studies. Hossain et al. [82] used machine learning algorithms
to discover biomarkers related to ovarian cancer. Clinical
and Gene-expression information of OC patients has been
integrated and passed to ML models, which discover the
biomarkers affecting Ovarian Cancer patients. Cai et al.
[83] used a machine learning algorithm random survival
forest to identify prognostic biomarkers of HCC patients.
Gene signatures from two HCC datasets were used and
passed to a random survival forest to predict the gene sig-
natures. Then a Protein—Protein Interaction (PPI) network
is generated, and it identifies RAD21, CDK1, and HDAC2
markers. Further to check the validity of identified mark-
ers, a multi-variate Cox survival analysis was performed,
showing that CDK1 is the only prognostic marker for HCC
patients. Ghosal et al. [84] use ML algorithms to identify
the prognostic markers in noncoding RNAs dataset. First,
data is passed to a statistical test to identify the differen-
tially expressed genes, then passed to the multi-variate cox
regression model. Further, four ML algorithms comprising
LASSO, elastic net, cart, and ridge were used to classify the
sample into five cancer subtypes. Then Kaplan—-Meier analy-
sis identified five lincRNAs (LINC00472, RP4-806 M20.3,
RP1-40E16.9, RP11-254F7.2 RP11-455B3.1) as prognostic
markers. Li et al. [85] used weighted gene-coexpression net-
work analysis (WGCNA), LASSO, and multi-variated cox
analysis for the identification of prognostic markers using
the RNA-Seq dataset of cervical cancer (CC) patients. The
proposed algorithms identified two biomarkers, including
ACAP1 and RASGRP1, by calculating their risk score using
the LASSO cox algorithm of machine learning. Liu et al.
[86] aimed to identify prognostic genes of Osteosarcoma
using machine learning. RNA-Seq samples of 94 Osteosar-
coma were collected and passed to ML to identify prognos-
tic markers. The experiment was performed, and the results
evidenced that the proposed framework identifies four mark-
ers (RPL7AP28, RPL11-551L14.1, RP11-326A19.5, and
RP4-706A16.3). Yu et al. [50] identify miRNA prognostic
markers using ML algorithms. A sample of 119 patients was
collected from the TCGA database, where data from TCGA
is used as a validation set. At first, differentially expressed
miRNAs were calculated using a p-value. The optimal fea-
ture subset is selected using Recursive Feature Elimination
(RFE). The selected optimal features are passed to the SVM
model, classifying the patients into early-stage and last-stage
samples. Then the risk is calculated using the survival analy-
sis method univariate cox regression model, which identi-
fies five prognostic markers. Xing et al. [87] used survival-
related cox regression analysis models to identify prognostic
small nucleolar RNAs (snoRNAs). The data is passed to
LASSO regression, and snoRNAs having a p-value less than
0.5 are selected as candidate biomarkers. Then these markers
are passed to Cox proportional hazard model (multi-vari-
ate) to identify the prognostic markers. Further, correlation
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analysis was performed to validate the identified markers.
The presented approach identified five snoRNAs as prog-
nostic markers. Long et al. [88] proposed a deep learning
method to identify prognostic markers in cervical cancer
patients. Dataset was downloaded from GEO and Array and
passed to statistical analysis test to identify differentially
expressed genes. These genes are passed to a deep learning
model for cancer classification. Further, survival analysis
is also calculated using cox models, and it identified two
genes (ZNF281, EPHBO6) as the prognostic markers for cer-
vical cancer. Using a deep multilayer perceptron network
algorithm, Wong et al. [89] identify prognostic genes for
glioblastoma (GBM). Gene expression data was collected
and passed to partial likelihood to calculate the loss func-
tion required for survival analysis. The features extracted
were then passed univariate and multi-variate regression
models, identifying the ten prognostic makers comprising
TNR, POSTN, BCAN, TMSB15B, GAD1, SCG3, NNMT,
PLA2G2A, ELAVL4, and CHI3L1 by calculating the con-
cordance index value.

4.2.3 Predictive Biomarkers

A predictive biomarker is a test that can classify people who
are more likely to react to a specific medicinal substance or
chemical product. A symptomatic gain may increase longev-
ity, or an adverse effect may be the result. In this research,
a predictive biomarker is considered as a gene prioritiza-
tion problem where the gene can signify the occurrence
of some particle disease with some known disease genes.
Therefore, the work done on gene prioritization algorithms
is discussed in this section. Nam et al. [90] designed a Gene
Ranker method to identify genes using a gene expression
dataset. First, a PPI network was created and used as a base
network. Then, the network is generated using WGCNA.
An integrated network is generated and passed to the gene
ranker algorithm to generate a score. The higher rank genes,
including OTC, B3GNT9, and Clorf167 are identified as
the predictive markers. The ten known genes, including
CSNK2A3, IFNL2, UCN3, POU3F4, TIW1, IL22, UCN2,
PSG1, HTRA1, and CD68 are also identified. These genes
have a strong relationship with the above-mentioned identi-
fied genes. Zhao et al. [91] presented a graph convolutional
network (GCN) to prioritize protein coding genes using the
IncRNAs dataset. The IncRNA dataset was used and passed
to the feature selection technique in which the gene expres-
sion and position of the gene is identified, and the gene
network is created. This network is then passed to a graph
convolutional network, which prioritizes the target genes of
IncRNAs. The method is also validated and compared with
existing methods, and it is found that GCN works well with
an AUC and AUPR value of 90% and 91%, respectively.
Zhang et al. [92] proposed a network-based Deep-learning



A Systematic Review on Biomarker Identification for Cancer Diagnosis and Prognosis in...

Approach for identifying genes by prioritizing them. First,
a human molecular interaction network (HMIN) was con-
structed in which nodes represent the proteins corresponding
to their gene and edges represent the interaction between the
genes. This network is then passed to a graph convolutional
network (GNN), which trains the dataset and prioritizes the
genes based on their influence on the patients. The experi-
ment was performed, and it is evident from the results that
the proposed framework works well by selecting ten genes,
including RUNXI1T1, MAG12, GRIA3, MVCRP2, AKAP6,
PTPRD, AUTS2, MYO9A, AB12, and PLXNA?2 respec-
tively. Jiang et al. [93] presented a generative adversarial
network (GAN) with de-noising auto-encoder (DAE) as the
generator and multilayer perceptron Multilayer Perceptron
(MLP) as a discriminator (GAN-DAEMLP) to prioritize
genes by taking miRNA dataset. The dataset sample was
taken and passed to GAN-DAEMLP, which calculates the
disease and non-disease prediction score. Finally, a risk
score is calculated, and a genes risk list is generated. The
experiment was performed, and it is proved from the results
that the GAN-DAEMLP performed best by selecting ten
disease-related genes. Table 3 shows the work done by vari-
ous authors using ML and DL for omics data.

4.3 Biomarker Identification Using Machine
and Deep Learning for Multi-omics Data

As single omics is not enough for the correct discovery of
biomarkers, multi-omics analysis is required. This section
performs biomarker identification from multi-omics data
using ML and DL for each diagnostic, prognostic and pre-
dictive marker.

4.3.1 Diagnostic Biomarkers

Sinkalaet al. [94] proposed machine learning algorithms
that accurately identify the set of proteins, mRNAs, miR-
NAs, and DNA methylation biomarkers to classify the pan-
cancer into its subtypes. Sample of pan-cancer patients has
been obtained from TCGA and cBioPortal, which were then
passed on featuring an extraction technique called neighbor-
hood component analysis (NCA) which identifies marker
sets involving 49 methylated genes, 50 mRNAs, 20 miR-
NAs, and 14 proteins. After that, KNN and SVM models are
applied, which effectively classify the cancer subtypes with
99% and 97% accuracy, respectively. Hamzeh et al. [95] used
ML to calculate the Gleason score for prostate cancer and
to identify the potential biomarker for each Gleason group
accurately. mRNA and miRNA genes were taken from the
NCBI GEO repository and passed to hybrid feature selec-
tion techniques to extract features. The experiment was per-
formed, and it has been found that the proposed framework
works well with 93% accuracy. PIAS3 and UBE2V?2 were

also identified, which will strongly correlate with prostate
cancer progression. Xu et al. [96] identified biomarkers
related to cervical cancer using a hybrid feature selection
ML method by integrating multi-omics data. DNA meth-
ylation profiles of 12 types of cancer have been taken, and
adopted machine learning techniques were applied. The
results were evaluated, and it has been found that four can-
cer-specific markers comprising cg12205729 (GABRA?2),
cg07211381 (RAB3C), ¢g26490054 (SLC5A8), and
cg20708961 (ZNF257) could identify the tumor cells with
92% AUC value. Guo et al. [97] presented a deep learn-
ing framework using a denoising autoencoder to identify
subtypes of ovarian cancer and to identify genes related
to ovarian cancer. The multi-omics dataset was collected
using TCGA Assembler and integrated using denoising
autoencoder. Further, the dataset was passed to the k-mean
clustering technique to select the relevant features. These
features were then given to the L1-penalized logistic regres-
sion (LR) to recognize the subtypes. Long et al. [98] used
statistical learning and ML algorithms to identify biomark-
ers in pancreatic cancer patients. Transcriptomic, Genomic,
and protein datasets were taken and passed a statistical test.
Further, the identified survival analysis is performed using
the Cox survival model. The identified biomarkers were
also passed to the random forest model to classify cancer
into normal and tumor patients. The proposed framework
also shows that the protein expression of identified genes is
highly correlated in pancreatic cancer patients. As diagnos-
tic and prognostic markers, the proposed framework iden-
tified four genes, including LAMC2, ANXA2, ADAMO,
and APLP2. Long et al. [99] used Different random forest
features selection approaches comprising Boruta, AUC-RF,
and Vita to identify diagnostic biomarkers. Transcriptomic
data, including mRNA and miRNA sequencing data, was
passed on, featuring extraction techniques identifying eight
diagnostic biomarkers. Further, to check the performance
of identified signatures, ML algorithms including RF, LR,
NB, and KNN were used, showing that the identified mark-
ers are highly correlated in colorectal cancer. Feng et al.
[100] proposed joint kernel learning on the multi-omics
dataset to identify diagnostic genes from lung and liver
cancer. The isoform expression profile, DNA methylation,
and gene expression sample were collected and passed to
the KPCA method for feature extraction. Then the extracted
features were converted to kernel metrics using the Gauss-
ian Kernel function, which is then passed to the clustering
algorithm. The clustering algorithms divide the features
into clusters for different cancers. The proposed framework
identifies GMPS, EPHA10, C10orf54, and MAGEAG6 for
lung cancer and FAU, DEPDC6, VPS24, LOC100133469,
RCBTB2, and SLC35B4 for liver cancer. Kwon et al. [101]
proposed an ML algorithm to discover diagnostic signatures
in pancreatic cancer patients. miRNA and mRNA expression
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data samples are integrated and passed to the SVM model
to identify biomarkers. Further, validation is performed to
select more relevant features using two independent datasets,
including GEO and TCGA data repositories. This method
identifies six biomarkers and 705 multi-markers related to
the identified markers. Joshi et al. [102] proposed a DNN
named Sparse CRossmodel Superlayered Neural Network
(SCR-SNN) to integrate mRNA and DNA Methylation data
and the biomarker identification for lung cancer patients.
The dataset was passed to PCA for data filtering. Further
Biomarker selection is performed using SCR-SNN, includ-
ing LR with L1 penalty, L1-regulatized NN, and L1-regu-
larized cross modular NN. The proposed method identifies
15 markers, including WFDC5, TATDN1, LPP, CPLX2,
CXCL13, COLI17A1, CEL, CDSN, TMPRSS2, FOXDI1,
DSCI1, LPIN2, MMS4AS8, B3GALT2, and AQP10 as the
diagnostic markers for lung cancer patients. The proposed
method is also compared with exiting ML algorithms
employed on a single omics dataset. Cheng et al. [103] use
LR to identify diagnostic biomarkers using an integrated
omics dataset of HCC patients. Correlation between gene
expression and DNA profiles is performed using PCC.
The proposed method identified six profiles including
DSE (cg11481534), FAMS55C (cg03509671, cg21908638,
and cg11223367), NEBL (cg23565942), and GALNT3
(cg05569109) as the diagnostic markers with a sensitivity
value of 92%. Zhang et al. [104] used cox survival analysis
and the BayesNet model to identify diagnostic biomarkers
from breast cancer patients using a DNA methylation and
gene expression dataset. Dataset was collected and passed
to statistical tests to identify potential biomarkers. These
markers are then passed to the BayesNet model to classify
the patients from healthy candidates. Further, the candidate
markers are passed to the Cox regression model to iden-
tify the survival value, which identified seven differentially
methylated sites (DMSs) comprising TUFT1, TRERFI,
CCND1, SRGAPI, PER1, ENPP2, and PER1 as diagnostic
and prognostic markers. Zhang et al. [105] used the RF fea-
ture selection method to identify the diagnostic biomarkers
using osteoporosis patients’ IncRNAs, mRNAs, and miR-
NAs dataset. A network was created of 105 nodes passed to
functional analysis, which shows the involvement of DysCe-
Net in osteoporosis. Further, RF was used, which identified
25 features as diagnostic biomarkers. The identified genes
are also validated using the LOOCV method, which shows
that the identified genes show good performance in cancer
classification. Liu et al. [52] identifies diagnostic and prog-
nostic markers using machine learning algorithms, includ-
ing RF and LASSO-Cox, from epigenetic, transcriptomic,
and metabolomics dataset. 9398 CPGs and 2478 genes were
collected and passed to Random forest, which selected 134
CpGs and 54 genes from the integrated dataset. These are
then passed to LASSO for the identification of diagnostic
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markers. Moreover, prognosis analysis is performed using
univariate Cox and LASSO cox methods. The proposed
framework identifies five diagnostic and eight prognostic
markers, respectively.

4.3.2 Prognostic Biomarkers

Zhao et al. [106] suggested a technique to the rank gene by
calculating a score to identify the biomarkers. An integrated
dataset of 13 cancer types was taken, and gene ranking was
performed using the Cox (multivariate) proportional method.
The experiment was performed, and higher ranks genes were
identified as the prognostic biomarkers. Further C-index was
used to validate the results, and it was found that in compari-
son to single omics, multi-omics works well with a c-index
value of 0.95. When contrasting the genes related to 13
types, seven genes (API5, SLK, BTBD2, VPS37A, PTARI,
ZRANBI, and EIF2B1) be linked with several cancer prog-
noses. Kumar et al. [107] presented survival models to iden-
tify biomarkers in pancreatic ductal adenocarcinoma
(PDAC). A sample of 153 PDAC patients was taken from
the TCGA database for multi-omics analysis, consisting of
DNA methylation, IncRNA, gene expression, and miRNA
data. Then preprocessing and feature extraction was per-
formed to identify the genes positively correlated with sur-
vival. For survival analysis, Cox and Kaplan—Meier estima-
tions were done. The experiment was performed, and the
results proved that the presented work performed well, with
an AUC value of 95%. It was also identified that five genes
comprising (B3GNT3, DMBTI, PVT1, DEPDCIB, and
Gata6-AS) are strongly connected with the survival of
PDAC patients. Zhuang et al. [108] used ML to identify gene
biomarkers or the prognosis of acute myelocytic leukemia
(AML). Copy Number Variation (CNV), RNASeq, and SNP
data were used, and ten feature genes comprising CAMK?2A,
FAT2, TCERG1, PTGIS, GDF9, DOC2B, PREX1, DNT-
TIP1, C220rf42, and CRISPLD1 were identified which were
then passed to univariate cox regression analysis to develop
a signature gene which is responsible for the prediction of
AML. The results are validated using GEO datasets. Dong
et al. [109] developed prognostic models for the early predic-
tion of LUAD using trans-omics biomarkers. The authors
integrated the clinical, DNA methylation, and gene-expres-
sion dataset of 825 patients and used the Ranger algorithm
for screening the biomarkers associated with prognosis. The
experiment was performed, and it is evident from the results
that the developed method improved the performance by
18.3% with an 87.2% AUC value. The concordance-index
value shows an improvement of 4% compared to various
existing models. Ouyang et al. [110] proposed an integration
method comprising fisher ratio, classified information index,
Spearman correlation coefficient (SCC), and decision trees
(DTs) ensemble for the discovery of biomarkers in

hepatocellular liver carcinoma (LIHC) using unbalanced
datasets. The multi-omics datasets consisting of miRNA
expression data, somatic mutation data, and DNA-methyla-
tion data were utilized from TCGA, and 34 Differentially
expressed genes (DEGs) were identified. These identified
genes are used to discriminate tumor cells from normal cells
in LHC patients with an AUC value of 89%. Peng et al. [111]
proposed a DL framework called Capsule Network-based
Modelling of Multi-omics data (CapsNetMMD) to detect
signatures related to breast cancer. Sample of 770 breast
cancer patients, including DNA Methylation, miRNA
expression, and CNA, have been taken and converted into a
matrix form. It was then passed to CapsNetMMD for the
extraction of genes. The experiment was performed, and the
results were evaluated. The results were also compared with
different ML algorithms comprising XGBOOST, NN, SVM,
Adaboost, and KNN, and it was marked that CapsNetMMD
outperforms with 90% Accuracy. Lim et al. [S3] used a deep
learning framework called Artificial Neural Network (ANN)
to analyze genetic data and discover disease-related genes.
TCGA dataset of breast cancer patients was taken, and the
experiment was performed. For parameter optimization, the
lasso penalty activation function was used. The model was
compared using the Youden J index with other ML algo-
rithms, including meta LR and meta-SVM. It is estimated
from the results that the suggested DL framework is more
robust in the discovery of genes. Lai et al. [112] proposed
DNN to identify novel biomarkers from non-small cell lung
cancer patients (NSCLC). A sample of 614 patients with
gene expression and clinical data was integrated with 15
biomarkers to develop an integrative DNN model. The bio-
markers are discovered using the StepMiner algorithm. The
experiment was performed, and it was found that the pro-
posed framework works well by accurately identifying the
markers with 70% accuracy. Cui et al. [113] proposed u-net
to identify prognostic biomarkers. A sample of 191 patients
has been taken from the TCGA portal, and a u-net is applied
to segment the images. The Cox-proportional hazard model
has been used to predict survival. Four biomarkers compris-
ing x70,%93,% 107, and X 164 were discovered, guiding
lung cancer patients’ survival. Mo et al. [114] used RF to
identify prognostic biomarkers from breast cancer patients’
integrated omics (SNP, RNASeq, and CNV) dataset. The
integrated genes are then passed to the Random forest for
feature selection. This technique identified 120 candidate
genes. These genes were then passed to the Cox regression
model to identify prognostic genes. The experiment was per-
formed, and it is evident from the experiment that the pro-
posed algorithm successfully identifies six genes, including
CD24, PRRGI1, IQSEC3, MRGPRX, RCC2, and CASPS8
prognostic markers. Mo et al. [115] presented a clustering
approach to identify the prognostic value of bladder cancer
patients from the multi-omics dataset. A sample of 388
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patients, including Somatic mutation, DNA methylation,
RNASeq, and CNA, was passed to the iClusterBayes
method. This will divide the data into two clusters that are
basal and luminal subtypes clusters. These clusters are vali-
dated using Markov Chain Monte Carlo (MCMC) method.
Only those genes are considered whose posterior probability
is greater than 0.5. A total of 42 genes are identified, which
are further passed to statistical analysis tests, including Fish-
er’s exact test, two-sample t-test, and Analysis of Variance
(ANOVA) methods, which identifies seven genes, including
KRTS5, CD44 KRT6B/C, TGM1, KRT14, P13, and DSC3 as
prognostic markers. Zhang et al. [54] identified immune-
related prognostic signatures using a multi-omics dataset of
lung cancer patients. A sample of 553 RNA seq and 504
DNA methylation data was collected and passed to the
ESTIMATE algorithm to create the Tumor Microenviron-
ment (TME). A score is calculated on which the patients
with higher tumor priority are selected. Then, multi-omics
analysis extracted the relevant genes and passed them to the
cox and lasso regression model for further analysis. The
c-index value was calculated, and based on it, six expression
genes (FOXN4, PROZ, LCN15, CD70, UNCS5D, and
BIRC3), five methylation genes (cg04240491, cg08780166,
cg01090026, cg26904049, and cg25407540) and two muta-
tion genes (PTPRT and COL22A1) are identified as prog-
nostic markers. Xu et al. [116] used ML algorithms to iden-
tify prognostic markers of pancreatic adenocarcinoma
patients. RNA sequencing, SNP, and CNV datasets were
passed to GISTIC 2.0 and Mutsig 2.0 to preprocess the
omics data. Fifty-four candidate genes are identified and
then integrated and passed to the LASSO risk prediction
model, selecting nine markers comprising TSPYL4,
UNCI13B, KLHDC7B, MICALI1, AIM1 KLHL32,
DCBLDI1, ARHGAP18, and CACNA2D4 as the prognostic
markers. Chang et al. [117] proposed a pipeline to discover
the markers in colorectal cancer. The somatic copy number,
RNA expression, and gene expression data are used and
passed to Wilcoxon rank-sum test to identify DEGs. the
genes with a value greater than 0.3 are selected and passed
to cox regression analysis. Finally, PCC was calculated,
which identifies six-driver genes, including WDRS5B,
NDUFB4, IQCB1, GTF2E1, SEC22A., and KPNA1) which
show poor prognosis related to cancer. Yuan et al. [118]
developed clustering algorithms on multi-omics data to
identify the prognostic biomarkers in brain tumor. A sample
of 117 glioblastoma patients, including mRNA expression,
DNA copy, SNP, DNA methylation, and clinical informa-
tion, was used to experiment. MutSigCV was used to ana-
lyze SNP data, which decreased the number of false posi-
tives. For CNV data, GISTIC was used to extract the
important CNV genes. Then, the genes are integrated and
passed to a cluster of cluster analysis (CoCA) algorithm that
divides the data into HX-1 and HX-2. The survival analysis

@ Springer

of these clusters is performed, which identifies three meth-
ylations including DUSP1, PHOX2B, HOXA7 cg169573,
and 15 gene mutations including CYP27B1, PCDHI,
LPIN3, BCL6, GPR32, OR4Q3, SKIV2L, MAGI3, PCSKS5,
UBE3B, AKAP12, MAP4, F5, TP53BP1, and RHOBTB1
as the prognostic markers.

4.3.3 Predictive Biomarkers

Dimitrakopolos et al. [119] developed a Network-based
Integration of Multi-omics data (NetICS) method to pri-
oritize cancer-related genes by integrating genetic aberra-
tions, mRNA and miRNA, and DNA expression datasets. A
bidirectional network diffusion is created, which generates
a rank list for each sample. This rank list is then passed
to rank aggregation techniques, generating a global rank-
ing. NetICS identified the top 5% genes from breast can-
cer (TP53, PTEN, ERBB2, and CDH1) and Lung Cancer
(EGFR, AKT1, KRAS, PIK3CA, and NRAS), respectively.
Shang et al. [120] developed an integrative rank method
to identify predictive markers in integrative omics data of
HCC patients. A multiplex network is generated using multi-
omics data by calculating the differentially mutual infor-
mation (DMI). This DMI is then passed to the PageRank
algorithm, and the final rank is obtained by aggregating the
rank of multiple networks with an accuracy of 81%. Guan
et al. [121] designed feature selection methods and support
machines to prioritize the predictive genes multi-omics
data. The PCC of genes was calculated, and their correla-
tion scores were combined to generate a rank. The ten most
predictive features are used, including ASAP2, BCLIL,
PTPRF, PTPN12, ANXA1, AJUBA, CYTIP, SH3D19,
CMTM4 EIF2C2, were selected. Yao et al. [122] proposed
a method, MetPriCNet, to prioritize and predict the metabo-
lites using a multi-omics dataset. The authors constructed
a composite network of genomic, phenome, metabolome,
and interactome datasets. This network consists of 25,269
nodes and 11,926,113 edges. This network is then passed to
MetPriCNet, which calculates their global distance similar-
ity. This method is applied to breast cancer patients, and it is
found that the higher rank metabolite in 3 genes, including
BARDI1, TP53, and AKT], interact with four seed genes
consisting of CDH1, KRAS, CHEK2, CDS1. Fortino et al.
[123] proposed fuzzy logic as feature selection, and Random
Forest for prioritizing the genes using multi-class Four gene-
expression dataset was taken and passed to fuzzy pattern dis-
covery method to select the most relevant and class-specific
features (FP). Then the selected feature set (FP) is passed to
the random forest, which removes the redundant features and
ranks the genes using a Mean decrease accuracy score. The
proposed method works well, with an accuracy of 96%. Fan
et al. [124] integrate multi-omics data, including genome,
epigenome, and transcriptome data, to identify and prioritize



A Systematic Review on Biomarker Identification for Cancer Diagnosis and Prognosis in...

the functional Differentially methylated regions (fDMRs).
Authors first filter the DMRs, and based on the expression
alteration scores, ranks are generated and further aggregated
to identify and prioritize the genes. This method identifies
ten genes as predictive markers using ranks. Further, classifi-
cation and survival analysis of identified genes is performed.
Chen et al. [125] suggested a BRIDGE method for candidate
genes prioritization by integrating gene sequence similari-
ties, protein—protein interaction, gene ontology annotations,
gene-expression patterns, and gene pathway memberships.
The authors used a regression model with the LASSO pen-
alty to assign a weight to different genes. The test is vali-
dated in two case studies, including obesity, and diabetes,
from which it is found that eight genes of obesity and 28
genes of diabetes patients lie in the top 100 rank list. Zhang
et al. [126] develop a network-based approach to identifying
and prioritizing predictive genes by integrating mutation,
gene expression, and the PPI dataset. This approach works
by identifying the neighbor genes. A relationship between
the various differentially co-expressed genes (DCGs) and
functional genes is made, and then the weight is calculated
to check the impact of DSCs on the functional genes. This
procedure is applied to three datasets, including kidney renal
clear cell carcinoma (KIRC), thyroid carcinoma (THCA),
and head and neck carcinoma (HNSC), to identify the genes.
The experiment was performed, and it was found that the
proposed method identifies the top five genes, including
EGFR, EP300, NRAS, LYN, PTPN11, TP53, PIK3CA,
EGFR, EP300, FADD, PBRM1, SETD2, BAP1, SRC and
EP300 for THCA, HNSC, and KIRC respectively. Valde-
olivas et al. [127] proposed a random walk with a restart
method to prioritize the genes on multiplex (RWR-M)
and multiplex heterogeneous networks (RWR-MH). First,
a graph of the PPI network, pathway interaction, and co-
expressed genes is created. The integrated network consists
of 17,559 nodes and 1,659,084 edges which are then passed
to RWR-M and RWR-MH to explore the different func-
tionalities and associations of the graph. This is applied to
Wiedemann Rautenstrauch syndrome patients, identifying
three genes (Fig. 4, RNF113A and LMNA) strongly related
to the disease. Wei et al. [128] proposed a method for Driver
gene discovery with an improved random walk method
(Driver_IRW) using transcriptomic and interaction net-
work data integration. A network was created, and then the
edge, betweenness, and Katz centralities were found using
the constructed network. These scores are integrated and
passed to a random walk with an improved method to calcu-
late their rank. Finally, top-ranked genes are selected as the
predictive markers. Zeng et al. [129] proposed a tree-based
ensemble model called random interaction forest (RIF) to
prioritize candidates and generate predictive scores. First,
a decision tree is created, and the rank is calculated. The
authors identify the top 10 genes and compare the results

with other existing methods. Yang et al. [130] proposed a
machine learning framework called MapGene to prioritize
the candidate genes using high functional modules and gene
interactions dataset. First, a PPI network is made of both dis-
ease and network interactions, and then module correlation
(MC) is calculated using the MapGene algorithm and identi-
fies the top rank genes as predictive markers. The proposed
framework is also compared with several base models, and
it is found that MapGene outperforms with a precision and
recall value of 87% and 90%, respectively. Table 4 shows the
work done by various authors on biomarker identification
using ML and DL from multi-omics.

5 Biomarker Identification Using Tools

In this, the work done by various authors in biomarker iden-
tification using multi-omics data with the help of tools is
described. All the tree biomarkers, including prognostic,
diagnostic, and predictive markers, are considered here.
Singh et al. [131] presented a framework for Data Integra-
tion Analysis for Biomarker discovery using Latent compo-
nents (DIABLO) using a multi-omics dataset. This tool can
identify the biomarkers from both simulated and real inte-
grated omics data. mixOmics is used to implement the tool.
Kaur et al. [132] developed a web server called HCCpred to
identify diagnostic biomarkers and prognostic biomarkers
from gene-expression datasets in Hepatocellular Carcinoma
(HCC) patients. Raw data were extracted from 30 studies
and passed to feature extraction techniques. The extracted
genes were then passed to model training which successfully
identified three genes (FCN3, CLEC1B, and PRC1). Kaur
et al. [133] developed a tool called CancerLSP to identify
biomarkers in Liver Hepatocellular Carcinoma (LCC).
Genomic and epigenomic data, that is, transcripts and Cpg
methylation data, were downloaded from the TCGA portal
and passed to machine learning models (SVM, RF, NB,
SMO, and J48). These algorithms are implemented in Weka,
which successfully identified 21 Cpg sites and 20 transcript
profiles related to LCC. Gevaert et al. [134] presented an
Imaging-AMARETTO software tool for the identification of
biomarkers from multi-omics, clinical, and imaging data
fusion. Multi-omics data were downloaded from TCGA, and
imaging data were used from Ivy Glioblastoma Atlas Project
(IvyGAP). The tool was implemented on glioblastoma mul-
tiform (GBM) patients, successfully identifying three key
drivers, including STAT3, AHR, and CCR2. Sangaralingam
et al. [135] presented O-miner, a powerful online platform
for combining and analyzing multi-omics data. The method
aids in the discovery of critical pathways and the prioritiza-
tion of biomarkers in databases that include gene, transcrip-
tome, methylation, clinical and biological data. The pipe-
lines created for the tool use Bioconductor packages and
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statistical methods and run in R and Python environment.
Abstract et al. [136] developed an open-source ML tool
called omics-learn for biomarker discovery. A genomic and
proteomics dataset was used for the experiment. Python
libraries are used to develop the tool, and it can be down-
loaded using a local server. This tool used the XGBoost
model for training the dataset. The visualization and web
interface of omics-learn are built using StreamL.it. Leclercq
et al. [137] developed a biomarker discovery tool called Bio-
DiscML using multi-omics data comprising genomic, prot-
eomic, and pathological datasets. BioDiscML followed a
variety of ML algorithms to identify the optimal set of bio-
markers. This tool uses a vast range of ML classifiers within
a completely integrated framework that often includes data
pre-processing, making it easier for non-machine learning
experts to complete their tasks. Song et al. [138] proposed
an integrative analysis tool called iProFun for the biomarker
identification using Proteomic, CNA, and DNA Methylation
datasets. This tool was used on Ovarian cancer patients. The
collected data were pre-processed and integrated for further
evaluation. Ghannoum et al. [139] presented an open-source
pipeline named DIscBIO to identify the genes using tran-
scriptomic data. The authors used two scRNA-seq datasets
to demonstrate the pipeline capabilities. All analyses are
accessible as notebooks with R coding, explanatory lan-
guage, output data, and images. The pipeline is implemented
in four steps: data pre-processing, cellular clustering, retriev-
ing DEGs, and signature discovery. Netanelly et al. [140]
developed a framework Profiler of Multi-omics data
(PROMO) for analyzing, pre-processing, clustering, and
visualizing the single omics and multi-omics data simultane-
ously. Further, this tool is also used for biomarker discovery
and survival analysis. In this tool, statistical tests are used to
identify DEGs, which are further passed to Cox models for
survival analysis. Tang et al. [141] developed a web server
Gene Expression Profiling Interactive Analysis (GEPIA2),
for the biomarker identification using the gene-expression
dataset. GEPIA2 works efficiently for 84 cancer subtypes.
This tool also helps to classify cancer based on different
subtypes. This website is freely accessible and implemented
using HTML, javascript, and Php language. Wang et al.
[142] developed an online survival web server OScc to vali-
date the prognostic signatures from the gene-expression
dataset. This tool is tested on four gene-expression datasets
retrieved from GEO and TCGA platforms. This tool will
generate a survival curve for p-value, hazard ratio, and log-
rank test. Treatment will be provided to the high-risk
patients based on the values achieved. Champion et al. [143]
software algorithm AMARETTO for discovering cancer
genes by incorporating gene expression, DNA methylation,
and CNYV datasets. Then co-expressed target genes are con-
nected to the driver genes, known as regulatory modules.
Then these driver genes are converted into a network to

@ Springer

identify cancer genes. AMARETTO is applied to patients
from 11 different sites, and it is considered the best tool for
identifying cancer genes. Jang et al. [144] developed a web
application called Cancer Patient Stratification and Survival
Analysis (CAPSAA) to evaluate predictive values of candi-
date biomarkers by dynamically visualizing the survival
stratification for different subgroups of patients. The sub-
groups are made from gene expression, CNA, and mutation
data downloaded from TCGA coherent. Hierarchical cluster-
ing is done to divide the patients into subgroups, and this
tool is implemented on Lung Cancer patients, which is freely
accessible. Xie et al. [145] designed a repository MOBCdb
to integrate genetic, clinical, transcriptomic, and epigenomic
results. The database was created to enable users to collect
data from breast cancer patients’ SNV, gene expression, and
microRNA. And DNA methylation. An interface is available
in MOBCdb for concurrently visualizing multi-omics data
from different samples. This data is also subjected to a sur-
vival study using MOBCdb’s survival module. MOBCdb
aids precision medicine by detecting new markers in differ-
ent subtypes of breast cancer through its comprehensive web
interface. Mohammed et al. [146] developed a pipeline
named CancerDiscover to predict cancer classes and identify
the cancer biomarkers. The tool assists with normalization
and offers various function filtering approaches to select the
best performing functions. High-throughput raw datasets can
be analyzed automatically and reliably with CancerDiscover.
CancerDiscover is an open-source platform that is free to
download. Chong et al. [147] presented an update to Meta-
boAnalyst (version 4.0) to analyze metabolomic data. This
tool has added four new features to the previous version of
MetaboAnalyst, including real-time R command monitoring
and show, as well as the introduction of the MetaboAnalystR
kit, a Pathway module to predict pathway behavior,
Metaanalysis module for comprehensive signature recogni-
tion, and a Network explorer which integrates transcrip-
tomic, metagenomics, and metabolomics dataset. Zeng et al.
[148] developed Immuno-Oncology Biological Research
(IOBR) to identify gene signatures based on a multi-omics
dataset. This tool provides batch analysis of the gene mark-
ers and their association with IncRNA profiling, clinical
phenotypes, genetic characteristics, and the signatures pro-
duced from single-cell RNA sequencing data. Moreover, this
tool integrates deconvolution methodologies with various
signature construction tools to identify gene signatures. This
tool is freely available to use, and it is an effective and flex-
ible tool. Liu et al. [149] developed a web server GSCALite
to analyze gene sets related to cancer. This tool includes
identifying differential expressed genes from mRNA expres-
sion, CNV, Methylation, and SNV data and the survival
analysis using these genes, detection of genomic variation
along with survival analysis, cancer pathway activity analy-
sis, and identification of drug sensitivity related to genes.
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Table 5 Existing tools for biomarker identification

[Ref] Type of data Tool Year Technology Link

[131] Genomic+ Metabolome mixOmics 2019 R/Bioconductor http://mixomics.org/

[132] Gene-Expression Web Server 2020 Cloud https://webs.iiitd.edu.in/raghava/
hccepred/

[133] Genomic+ Epienomic CancerLSP 2019 Weka http://webs.iiitd.edu.in/raghava/
cancerlsp/

[134] Genomic+ Radiology +Clinical Imaging-AMARETTO 2020 Bioconductor/R Jupiter notebook http://portals.broadinstitute.org/

[135] Transcriptome 4+ genome +Meth-  O-miner 2019
ylation

[136] Genomic + Proteomic Omics-Learn 2021

[137] Genomic + Proteomic + patho- BioDiscML 2019
logical

[138] CNA+DNA Methylation+Pro-  iProFun 2019
teome

[139] Transcriptomic Data (scRNA- DIscBIO 2021
seq)

[140] Genomic + Transcrip- PROMO 2019
tomic + Meabolome

[141] Gene-expression+RNA GEPIA2 2018
Sequencing

[142] Gene-expression 0OSCC 2019

[143] Gene-expression+CNV+DNA  AMARETTO 2017
Methylation

[144] CNV + Gene Expres- CAPSAA 2019
sion + Somantic Mutation

[145] Gene expression+SNV+DNA  MOBCdb 2018
methylation

[146] Gene Expression+ Sequencing CancerDiscover 2017

[147] Metabolome + transcrip- MetaboAnalyst 4.0 2018
tome + metagenome

[148] IncRNA +RNA + genomic IOBR 2020

[149] mRNA+CNV + SNV +Methyla- GSCALite 2018
tion

[150] Gene Expression+DNA Metyla- OSdlbcl 2020

tion

R/Python

Python
Java/Weka

R

R/Jupiter

Matlab

Javascript/PhP
R/java/cloud

R

Clojure/Fig Wheel

Perl, R, MySQL
WEKA, Affy R package
R/Google Cloud Server

R

R scripts/maftool

J2EE platform

pochetlab/JCO_CCI_Imaging-
AMARETTO/Imaging-AMARE
TTO_Software_Resources.html

http://www.o-miner.org

https://omiclearn.com/

https://github.com/mickaellec
lercq/BioDiscML

https://github.com/songxiaoyu/
iProFun

https://github.com/ocbe-uio/DIscB
10

http://acgt.cs.tau.ac.il/promo/

https://gepia2.cancer-pku.cn/#
index

http://bioinfo.henu.edu.cn/CESC/
CESClList.jsp

https://bitbucket.org/gevaertlab/
pancanceramaretto

http://capssa.ewha.ac.kr/
http://bigd.big.ac.cn/MOBCd b/

https://github.com/HelikarLab/
CancerDiscover

https://github.com/xia-lab/Metab
oAnalystR

https://github.com/IOBR/IOBR

http://bioinfo.life.hust.edu.cn/web/
GSCALite/

https://bioinfo.henu.edu.cn/
DLBCL/DLBCLList.jsp

Dong et al. [150] developed an Online Survival analysis web
server for Diffuse Large Cell Lymphoma (OSdlbcl) to iden-
tify prognostic value for some specific gene. Clinical follow-
up information and gene expression profiles of 1100 samples
were used from TCGA and GEO databases. Moreover, DNA
methylation data was also used for prediction purposes. This
tool will develop a Kaplan—Meier (KM) plot, which will give
the p-value, hazard ratio, and log rank for some specific gene
symbol. Table 5 shows the existing work on biomarker iden-
tification using multi-omics data with the help of tools used.

6 Discussion

This survey focuses on various methods and techniques for
the identification of biomarkers using multi-omics data are
described. The most recent and important research papers
are analyzed in this survey. The goal of this review is to
concentrate on biomarker identification approaches includ-
ing ML and DL and tools using multi-omics data, as this is
anticipated to be a popular topic in the future due to the need
for targeted therapy.

@ Springer
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The biomarker and its various types including risk,
prognostic, diagnostic, predictive, safety, monitoring and
response are addressed in answer to the first research prob-
lem. Using omics and multi-omics data, a lot of research is
being done on identifying diagnostic, prognostic, and pre-
dictive markers.

The multi-omics data, the types of omics data (genom-
ics, transcriptomic, proteomic, metabolome, and interac-
tome) and the available databases required for biomarker
identification is presented in answer to second research
problem.

The answer to third problem is addressed by explain-
ing the feature extraction and selection and their tech-
niques including filter method, wrapper method and
embedded methods along with their advantages and dis-
advantages. In literature, the work done on biomarker
identification using feature selection and extraction tech-
niques is described.

The techniques required for biomarker identification
including ML and DL for biomarker identification are pre-
sented in answer to fourth research problem. The work done
by researchers for diagnostic, prognostic and predictive bio-
marker identification using omics and multi-omics data with
the help of ML and are described in literature.

In answer to the fifth research issue, a list of current
publicly available tools is discussed, along with their
limitations. The link to access them is also provided. The
majority of tools are open source, and people can use them
to complete their activities. Some tools are built on a cloud
network using servers, and packages are made accessible
on request.

Finally, the last research problem is addressed by review-
ing the challenges of identifying biomarkers using multi-
omics data. Recommendations for future research for
biomarker discovery are presented based on a systematic
analysis of related publications in the literature.

6.1 Challenges in Biomarker Identification

Some problems have been faced while performing the
review of existing techniques for biomarker identification
using multi-omics data which are shown in Fig. 9 and are
described below.

e Unbalanced dataset: For biomarker identification, omics
data including genome, transcriptome, protein, metabo-
lites, and peptides are used. The available dataset is pre-
sent in unbalanced form. It means that the variables and
attributes are too big than the sample size. This leads
to overfitting problem. Therefore, it is very difficult to
identify biomarkers using unbalanced dataset. This prob-
lem can be eliminated by integrating the different type
of dataset and used that integrated dataset for biomarker
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Difficulty in identification

of functional genes

Fig.9 Challenges in biomarker identification

identification. The feature extraction technique called
mRMR can be also be employed to solve this problem.

e Heterogeneous datasets: In biomarker identification,
some of the molecular profiles are highly heterogene-
ous. They can be divided into categorical and continuous
and sometimes may be scattered into multiple inputs. It
makes the biomarker identification difficult. Therefore,
different machine learning algorithm including graph
network, clustering approaches and deep learning tech-
niques can be applied to remove heterogeneity.

e Missing Data: In multi-omics biomarker identification,
data missing ness is a major challenge. Image noise,
batch impacts, and hybridization failures all cause data
missing ness in microarray data. Due to this complica-
tion, appropriate imputation of missed values based on
practice, a mixture of methods, and trial and error is
required. One of the most common ML algorithm i.e.
KNN is used to impute the missing values. Instead, we
can also use median of the attribute and impute that
median in place of the missing value.

¢ Difficulty in identification of driver genes: There are dif-
ferent types of omics data. Sometimes it is not possible to
identify driver genes on the basis of single type of data.
For example: we identify the genes using the genomic
data, but these may not be enough for disease detection.
Therefore, another type is also required to identify the
cancer genes. Hence, multi-omics is required to identify
the driver genes required for disease diagnosis and prog-
nosis.

e Difficulty to identify functional genes: Genomic data
focus of DNA data to identify mutations related to can-
cer. The DNA involves different changes starting from
small somatic mutations, several insertions, deletions and
large CNV data for the identification of cancer muta-
tions. The mutation further varies in different sub types
of cancer. Therefore, it is difficult to identify which func-
tion gene is growing the cancer. To solve this challenge,
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different deep learning techniques and gene prioritization
algorithms are required.

6.2 Future Research Directions

Based on the current literature, the following are potential
future directions in this field of study.

e The present research is mainly focused on a single type
of dataset. Multi-omics integration is required efficient
analysis [74, 78, 80, 96, 110].

e Effective non-parametric methods comprising CHI2,
Kruskal-Wallis, Wilcoxon rank-sum test, and Spear-
man’s rank correlation are required for the identification
of biomarkers [106].

e Deep learning (DL) algorithms are required for the iden-
tification of biomarkers necessary for the prognosis of
cancer and provide a more powerful tool for targeted
therapy [45, 50, 52, 82, 99, 101].

e A broad sample size dataset is needed to allow for a thor-
ough examination of the disease's progression, diagnosis,
and treatment [83, 89, 122].

e Al-based technologies can be used to identify predictive
biomarkers which will significantly increase the predic-
tion accuracy [107].

e The present research lacks treatment therapies which can
be provided using the identified biomarkers [78, 95, 97,
99, 118].

¢ Limited methods exist for biomarker identification due
to the heterogeneity of omics data sets [98, 113].

e Next Generation Sequencing data analysis can be done
for biomarker identification using ML, DL, Quantum
Neural Nets and Quantum Computing in future for bet-
ter performance [151].

7 Conclusion

The collection of different forms of omics data in the
post-genomics period allows for the screening of specific
markers for accurate diagnosis and prognosis, which is
essential in personalized medicine. Unfortunately, iden-
tifying biomarkers from a large volume of omics data,
particularly when there are complex interactions between
molecules, is a difficult task. In this article, different exist-
ing approaches, feature extraction/selection techniques,
tools and technologies for the identification of diagnostic,
prognostic, and predictive biomarkers using omics and
multi-omics data have been studied. Their comparative
study has been performed by analyzing the ML and DL
approaches used by the authors. From the research, it is
found that single type of data is not enough for identifica-
tion of genes in patients. Therefore, multi-omics data is

required for accurate discovery of markers and to guide
treatment therapies based on the identified markers. We
hope that by conducting this survey, researchers will be
able to learn which algorithms can be used to identify the
biomarkers and how to apply specific techniques including
ML and DL, and tools to precision medicine.
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