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Abstract
Biomarkers, also known as biological markers, are substances like transcripts, deoxyribonucleic acid (DNA), genes, proteins, 
and metabolites that indicate whether a biological activity is normal or abnormal. Markers play an essential role in diagnosing 
and prognosis of diseases like cancer, diabetes, and Alzheimer’s. In past years, in healthcare, an enormous amount of omics 
data, including genomics, proteomics, transcriptomic, metabolomics, and interatomic data, is becoming available, which 
helps researchers to find markers or signatures needed for disease diagnosis and prognosis and to provide the best potential 
course of therapy. Furthermore, integrative omics, often known as multi-omics data, are also proliferating in biomarker 
analysis. Therefore, various computational methods in healthcare engineering, including machine learning (ML) and deep 
learning (DL), have emerged to identify the markers from the complex multi-omics data. This study examines the current 
state of the art and computational methods, including feature selection strategies, ML and DL approaches, and accessible 
tools to uncover markers in single and multi-omics data. The underlying challenges, recurring problems, limitations of 
computational techniques, and future approaches in biomarker research have been discussed.

1 Introduction

With the initiation of precision medication and treatment 
therapy, genes have become increasingly popular for accu-
rate diagnosis and prognosis of diseases in healthcare [1]. 
Biomarkers are commonly known as biological markers and 
biomarkers, that is, the identifiers that can be used to clas-
sify a biological event or condition and track certain bio-
logical events or processes. Due to their properties, genes, 
transcripts, proteins, and metabolites are categorized as 
biomarkers. Biomarkers are of seven types, including risk 
(markers showing a risk of getting a disease), diagnostic 
(markers confirming the existence of disease), prognostic 

(markers predicting the recurrence of disease), predictive 
(marker used to detect the reaction of the patient to specific 
therapy), monitoring (markers that are monitored periodi-
cally), safety (markers used to measure the toxicity before 
and after treatment) and response biomarkers (markers use 
to measure the response) [2]. This study is focused only on 
diagnostic, prognostic, and predictive biomarkers. Circular 
RNAs are recently identified diagnostic markers in Hepa-
tocellular carcinoma patients [3]. Further, long non-coding 
RNA (lncRNA), including H19 and UCA1, are recognized 
as diagnostic and prognostic markers in gastric cancer [4]. 
Figure 1 shows the example of some common genes of dif-
ferent types of cancers. These genes are needed in the diag-
nosis and prognosis of cancer. The main focus of this survey 
article is on diagnostic, prognostic, and predictive biomark-
ers identification. Numerous cutting-edge innovations, like 
next-generation sequencing and microarray technologies, 
have appeared in the last couple of decades, entering a new 
age of omics in identifying biomarkers [5]. A large volume 
of omics data, including genome, transcriptome, proteome, 
and metabolome, have been created and used in various 
projects like The cancer genome portal (TCGA) [6], Thera-
peutically Applicable Research to Generate Effective Treat-
ments (TARGET) [7] and International Cancer Genome 
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Consortium (ICGC) [8]. These omics resources are used 
to identify signatures for disease diagnosis and prediction. 
Sometimes, it is impossible to identify biomarkers using 
a single type of omics data [9]. Consequently, integrated 
omics or multi-omics is required for the discovery of bio-
markers. While the accessibility of multi-omics makes it a 
lot easier to assess markers/signatures for disease diagnosis 
and prognosis, identifying biomarkers that can accurately 
recognize or detect diseases in the presence of tens of mil-
lions of genes and billions of variants is still a challenging 
task [10]. The complexity of multi-omics data can be han-
dled by computational methods in healthcare engineering 
[11], including machine learning (ML) and deep learning 
(DL) approaches can be employed for the identification of 
biomarkers. ML and DL technologies have been reviewed 
for biomarker identification using single omics and multi-
omics datasets in this survey article. Features extracted and 
gene-prioritization are treated as biomarkers that are further 
passed to ML and DL for disease prognosis and diagnosis.

1.1  Motivation and Contribution

Identifying biomarkers is extremely difficult because of the 
enormous size of multi-omics datasets in healthcare sci-
ence. Therefore, there is a need to study the literature on 
biomarker identification using multi-omics data vastly. The 
contributions of this research are:

• A thorough analysis was undertaken to examine the 
importance of current approaches in improving bio-
marker identification.

• The study of existing feature selection techniques for bio-
marker identification, ML and DL techniques for diag-
nostic, prognostic, and predictive biomarker identifica-
tion using omics and multi-omics data is done.

• Tools required for biomarker identification using multi-
omics data, which can be easily accessible by the users, 
are reviewed.

• Based on available features, emerging methods and tools 
are compared. For research groups and data scientists, 
the comprehensive analysis aids in the selection of future 
research directions.

1.2  Existing Studies and Our Research

In recent years, several authors have conducted surveys 
on biomarker identification. For example, Swan et al. [12] 
offers a study on identifying biomarker using proteomics 
data with the help of ML. Qin et al. [13] proposed ML 
algorithms to identify predictive biomarkers as molecular 
networks using interatomic data. Further, popular intera-
tomic resources required for performing the experiments 
are also discussed. Jagga et al. [14] presented various ML 
and feature extraction techniques to discover diagnostic and 
prognostic markers. Popular omics resources and projects 
are also deliberated. Dragani et al. [15] reviewed various 
ML algorithms to discover diagnostic biomarkers required 
for early cancer prediction. Shi et al. [16] presented various 
machine learning algorithms, including supervised, unsu-
pervised, and clustering algorithms, to identify diagnos-
tic, prognostic, and predictive biomarkers using integrated 
omics data. Kaur et al. [17] identified the biomarkers using 
various machine learning diagnostic, predictive, and prog-
nostic biomarkers identification tools. The comparison of 
the proposed work with the existing studies is shown in 
Table 1.

Following a review of current surveys, it was discov-
ered that omics data tools are often used to address diag-
nostic biomarkers. The current ML, DL, and feature selec-
tion approach for discovering prognostic, diagnostic, and 
predictive biomarkers using omics and multi-omics data 
analysis must be summarized. This survey incorporates 
current methods and tools studies and is an improvement 
on previous studies. The comparison of the current state-
of-the-art work with our presented research is shown in 
Table 2 below.

Fig. 1  Examples of common 
cancer biomarkers
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1.3  Structure of Survey Paper

The study is divided into seven parts. Section 2 presents 
background information, including a description of biomark-
ers and their various types, multi-omics data, and learning 
used for biomarker identification. Section 3 discusses vari-
ous research questions and review techniques. A systematic 
analysis of existing approaches for biomarker identification 
using omics and multi-omics data is presented in Sect. 4. 
Based on general features, the techniques are evaluated and 
defined. Section 5 illustrates different biomarker identifica-
tion tools that are currently available. The analysis is out-
lined in Sect. 6, which includes open problems and future 
study directions. Section 7 brings the study to a conclusion 
and suggests future studies.

2  Background

2.1  Biomarkers

Biomarkers are the molecules like genes, DNA, proteins, 
and metabolite that signify whether a process going on in the 
body is regular or irregular, and it can be used as a symptom 
of any disease or disorder. Biomarkers are generated from 
the cancer tissue, and they can be present in any part of 
the body, including stool, blood, tumor tissue, urine, body 
fluids, and any other tissue or cell. Biomarkers are found in 
every disease, including cancer, multiple sclerosis, diabe-
tes, and heart diseases [18]. There are seven types of bio-
markers, including risk, diagnostic, prognostic, predictive, 
monitoring, safety, and response biomarkers. Figure 2 shows 
the types of biomarkers, and their explanation is described 
below:

2.1.1  Risk Biomarkers

A biomarker shows the risk of getting a disease or 
health issue in someone who might not currently have 
the disease or health problem. A genetic biomarker that 

determines whether a person has an elevated chance of 
contracting cancer later in life is an example of a risk 
biomarker. Risk biomarkers are most useful in clinical 
practice for guiding prevention measures. One of the 
commonly identified risk biomarkers is BRCA1/2 muta-
tion, which assesses the probability of producing breast 
carcinoma [2].

2.1.2  Diagnostic Biomarkers

A marker that predicts or confirms the existence of a 
disorder of interest or classifies people according to the 
disease subtype is a diagnostic marker. For example, 
diffuse large B-cell lymphoma patients can be divided 
into subgroups of distinct tumor cell signatures using 
gene expression profiling as a diagnostic biomarker 
[19].

2.1.3  Prognostic Biomarkers

A prognostic biomarker predicts the occurrence of 
a potential clinical condition, disease recurrence, or 
relapse in an identified sample [20]. Biomarkers, includ-
ing tumor size, the percentage of lymph nodes active for 
tumor cells, and the existence of malignancy, have been 
used to predict prognosis in the future. High low-density 
lipoproteins (LDL) cholesterol is an example of a prog-
nostic marker for a person who recently suffered from a 
heart attack [2].

2.1.4  Predictive Biomarkers

A predictive biomarker is a marker used as a test to clas-
sify people who are more likely to react to a particular 
medicinal substance or chemical product. A symptomatic 
gain may increase longevity, or an adverse effect may be 
the result [21]. A predictive biomarker is considered a 
gene prioritization problem where the gene can signify 
the occurrence of some particle disease with some known 
disease genes [16].

Table 1  Comparison of the proposed research with existing biomarker studies

Author [Ref] Omics Multi-omics Omics 
resources

Biomarker identification ML DL Tools

Diagnostic Prognostic Predictive

Swan et al. [12] ✓ ✗ ✗ ✓ ✗ ✗ ✓ ✗ ✗
Qin et al. [13] ✓ ✗ ✓ ✗ ✗ ✓ ✓ ✗ ✗
Jagga et al. [14] ✓ ✗ ✓ ✓ ✓ ✗ ✓ ✗ ✗
Dragani et al. [15] ✓ ✗ ✗ ✓ ✗ ✗ ✓ ✗ ✗
Shi et al. [16] ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗
Kaur et al. [17] ✗ ✓ ✗ ✓ ✓ ✓ ✓ ✗ ✓
Our survey ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
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Table 2  Popular omics databases and repositories

Omics type Links Description

Genomics NCBI Genome https:// www. ncbi. nlm. nih. gov/ genome This database includes complete information of the 
genomic data, including maps, assemblies, annota-
tions, and chromosomes

GOLD https:// gold. jgi. doe. gov/ It provides complete information about genome 
sequencing programs, as well as the metadata associ-
ated with them

JGI https:// genome. jgi. doe. gov/ portal/ It provides access to all the genomic databases along 
with their annotations

EBI’s Ensembl http:// asia. ensem bl. org/ index. html A browser for accessing and downloading genomic data 
of humans, mouse and other species

GDV https:// www. ncbi. nlm. nih. gov/ genome/ gdv/ A browser used for visualizing, exploring and retrieving 
genomic data of humans and integrate genomic data 
from various sources

dbGAP https:// www. ncbi. nlm. nih. gov/ gap/ A database of complete interaction between genomic 
and phenotype in humans

ENCODE https:// www. encod eproj ect. org/ It provides complete information about genomic data 
of humans including mapping of DNA elements and 
regulatory elements

dbVar https:// www. ncbi. nlm. nih. gov/ dbvar A database of structural variation of human genom-
ics and involve insertions, deletions, inversions and 
complex variants

UCSC Genome Browser https:// genome. ucsc. edu/ An online tool to analyze, download, and visualize 
genomic data

Transcriptome Array Express https:// www. ebi. ac. uk/ array expre ss/ It is a repository of gene expression dataset holding 
databases from all microarray platforms

GEO https:// www. ncbi. nlm. nih. gov/ gds It is a data repository of genomics allowing download-
ing for various gene expression datasets

BioXpress https:// hive. bioch emist ry. gwu. edu/ bioxp ress A database of gene expression and miRNAs in which 
the expression levels are mapped to their genes,

Gene Expression Atlas https:// www. ebi. ac. uk/ gxa/ home It is a database of gene expression profiles collected 
under different biological conditions

GEA https:// www. ddbj. nig. ac. jp/ gea/ A database of genetic, genomic and sequencing data 
including microarray profiles

Proteomics PRIDE https:// www. ebi. ac. uk/ pride/ archi ve/ An online public available large data repository of mass 
spectrometry data based on proteomic data

YRC PDR http:// www. yeast rc. org/ pdr/ A protein data repository of images database including 
localization of proteins in the image

Peptide Atlas http:// www. pepti deatl as. org/ It is a multi-organism, freely open database of peptides 
discovered through tandem mass spectrometry prot-
eomics

GPMD https:// gpmdb. thegpm. org/ A repository of evidence for detectingproteins, and 
peptides using advanced tandem mass spectrometry-
based proteomics

ProteomicsDB https:// www. prote omics db. org/ An online public database of mass spectrometry protein 
data

Human Proteome Map http:// www. human prote omemap. org/ A database developed by integrating sequencing results 
of peptides

Metabolome HMDB https:// hmdb. ca/ A freely accessible database including metabolites 
information

Human MetaboLights https:// www. ebi. ac. uk/ metab oligh ts/ A database of derived information and metabolomics 
experiments

BiGG http:// bigg. ucsd. edu/ A database of metabolites and pathways developed for 
humans and other different species

MetabolomeExpress https:// www. metab olome- expre ss. org/ A public repository for GC/MS metabolomics datasets 
to be processed, interpreted, and shared

https://www.ncbi.nlm.nih.gov/genome
https://gold.jgi.doe.gov/
https://genome.jgi.doe.gov/portal/
http://asia.ensembl.org/index.html
https://www.ncbi.nlm.nih.gov/genome/gdv/
https://www.ncbi.nlm.nih.gov/gap/
https://www.encodeproject.org/
https://www.ncbi.nlm.nih.gov/dbvar
https://genome.ucsc.edu/
https://www.ebi.ac.uk/arrayexpress/
https://www.ncbi.nlm.nih.gov/gds
https://hive.biochemistry.gwu.edu/bioxpress
https://www.ebi.ac.uk/gxa/home
https://www.ddbj.nig.ac.jp/gea/
https://www.ebi.ac.uk/pride/archive/
http://www.yeastrc.org/pdr/
http://www.peptideatlas.org/
https://gpmdb.thegpm.org/
https://www.proteomicsdb.org/
http://www.humanproteomemap.org/
https://hmdb.ca/
https://www.ebi.ac.uk/metabolights/
http://bigg.ucsd.edu/
https://www.metabolome-express.org/
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2.1.5  Monitoring Biomarkers

A marker that is measured periodically over time to 
determine disease incidences, such as the emergence of 
new disease symptoms, the deterioration of preexisting 
anomalies, or changes in clinical outcomes or particu-
lar anomalies, is a monitoring biomarker. CA 125 is 
an example of monitoring biomarker in ovarian cancer 
patients to measure disease activity or burden before and 
after surgery [2].

2.1.6  Safety Biomarkers

A biomarker is assessed before or after access to a therapeu-
tic drug or an environmental agent to determine the probabil-
ity, occurrence, and severity of toxicity as an adverse impact. 
Serum creatinine is an example of a safety biomarker in 
patients on medications that impair kidney function [22].

2.1.7  Response Biomarkers

A biomarker indicating patient’s biological reaction to a 
medical substance or an environmental agent is a response 
biomarker. For example, plasma microRNAs act as a Hodg-
kin lymphoma response biomarker [23].

As biomarkers are molecules, omics and multi-omics data 
are required for their identification.

2.2  Multi‑omics Data

In recent years, multi-omics data have been used as molecu-
lar biomarkers using the integration of omics data types, 
including genomic, transcriptomic, proteomic, metabolites, 
and interatomic, for the prognosis and diagnosis of some 
specific diseases [24]. The discovery of disease biomarkers 
with multi-omics data would aid in the stratification of vari-
ous patient cohorts, but it would also include early diagno-
sis knowledge that may enhance patient care and possibly 
mitigate adverse outcomes [25]. There are different tools and 
techniques available for multi-omics data integration, which 
can be used for biomarker identification, disease diagnosis, 
and progression [26]. The types of omics data are discussed 
below.

2.2.1  Genome

The whole sequence of DNA in an organism, including all of 
its chromosomes, is referred to as a genome. Genomics seeks 

NCBI National Cancer for Biotechnology information, GOLD Genomics Online Database, JGI Joint Genome Institute, GDV Genome Data 
Viewer, ENCODE Encyclopedia of DNA elements, GEA Genomic Expression Archive, GEO Gene Expression Omnibus, PRIDE Proteomic 
Identification Database, YRC PDR Yeast Resource center protein data repository, HMDB Human Metabolome Database, GPMD Global Prot-
eomic Machine Database

Table 2  (continued)

Omics type Links Description

Interatomic METLIN https:// metlin. scrip ps. edu/ A repository for mass spectrometry metabolite data

STRING https:// string- db. org/ A freely available database of protein–protein interac-
tion

IntAct https:// www. ebi. ac. uk/ intact/ It's a freely accessible open-access data system and 
analysis forum for molecular interactions

KEGG http:// www. kegg. jp/ It is a repository of high-level functional data for vari-
ous species

Fig. 2  Types of biomarkers

https://metlin.scripps.edu/
https://string-db.org/
https://www.ebi.ac.uk/intact/
http://www.kegg.jp/
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to characterize and quantify all of the genes of an organism 
and their interrelationships and effects on the organism. The 
primary goal of genomics research in medicine is to find 
genetic variants linked to disease, therapeutic response, and 
patient prognosis [25].

2.2.2  Proteome

The entire universe of proteins in the cell is called proteome. 
Proteomics is a technique for detecting protein expression 
variations in response to a particular stimulus at a specific 
time and determining protein structure networks at the tis-
sue, organism, or cell level [27]. Proteomics is based on 
three vital technical elements: a tool for fractionating com-
plex protein or peptide combinations, mass spectrometry 
(MS) for acquiring the data needed to classify specific pro-
teins, and computational biology for analyzing and assem-
bling the MS data [28].

2.2.3  Transcriptome

A transcriptome is a collection of mRNA, miRNA, and 
lncRNA molecules in which their sequence produced in a 
particular cell is called “transcriptome.” RNA lies between 
proteins and DNA and acts as the primary function of DNA 
readouts [29]. RNA-Seq technique is used to profile the tran-
scripts or raw data.

2.2.4  Metabolome

The metabolome contains a complete collection of small-
molecule groups called metabolites, including carbohy-
drates, amino acids, sugars, and fatty acids. Similarly, 
quantitative measurements of metabolites are performed 
using the MS technique like proteins. Metabolomics tasks 
are executed at different metabolite levels, and any relative 

distributions and disturbances signify the disease when they 
occur outside of the normal range [30].

2.2.5  Interatomic

An interatomic is a multi-dimensional description of func-
tional associations between molecules inside a cell or 
throughout the whole organism. A protein–protein inter-
action comes under this category of omics data [31]. The 
popular omics resources, databases, and repositories, along 
with their description and links, is shown in Table 2

2.3  Learning for Biomarker Identification

Machine learning analysis in biomarker identification deals 
with the different types of omics data and their integration 
for disease prediction and prognosis and guides treatment 
therapies based on the identified biomarkers [14]. Figure 3 
shows ML and DL’s workflow for the biomarker identifica-
tion using multi-omics data. The steps involved in learning 
are data preprocessing, feature extraction, biomarker iden-
tification, and modeling, and are discussed.

2.3.1  Data Preprocessing

It is the method of transforming or encoding multi-data so 
that the computer can quickly process it. Data preprocess-
ing, including data cleaning in which the missing values and 
noisy values are removed; data transformation in which the 
data is converted into some specific range using normaliza-
tion and selection techniques; and data reduction in which 
the high-dimensional multi-omics dataset is reduced to low 
dimensional dataset [32]. The attribute selection and dimen-
sionality reduction techniques are described below under 
feature selection and extraction.

Fig. 3  Feature selection methods
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2.3.2  Feature Extraction and Selection

Feature Extraction reduces the feature space of high dimen-
sional multi-omics data to low dimensional feature space 
[33]. This low dimensional feature space consists of impor-
tant information only required for biomarker identification, 
disease detection, and prognosis. There are different tech-
niques available for the extraction of features for integrated 
omics, including Principal Component Analysis (PCA) 
[34], Canonical Correlation Analysis (CCA) [35], and Lin-
ear Discriminant analysis [35], and Non-Negative Matrix 
Factorization (NNMF) [36]. However, these techniques 
integrate only linear multi-omics data. In case non-linear 
integration is required, these fail to work, for example, in 
integrating gene expression and interatomic data. The Non-
linear feature extraction techniques are required to integrate 
non-linear data. These are Kernel Principal Component 
Analysis (KPCA) [37], Locally Linear Embedding (LLE) 
[38], t-distributed Stochastic Neighbor Embedding (t-SNE) 
[39], and auto-encoders [40]. However, feature extraction 
only returns a subset of features. Some relevant features need 
to be selected for biomarker identification, which is done 
using feature selection.

Feature selection is a method of electing valuable and 
informative features by removing duplicate and noisy fea-
tures [41]. Feature selection techniques are of three types, 
including filter, wrapper, and embedded methods and are 
shown in Fig. 3. The filter method works by assigning a rank 
to the features and selecting only higher-rank features. Dif-
ferent filter method techniques include Pearson Correlation 
Coefficient (PCC), chi-square, t-test, and Analysis of Vari-
ance [42], which works by finding the correlation between 
the features and target variable. In biomarker identification, 
chi-square and t-test are used by various researchers to rank 
the differentially expressed genes and select the top-ranked 
genes [43–45]. However, there is a disadvantage to filter 
selection. In the filter method, each feature works indepen-
dently, i.e., they do not interact with each other. Neverthe-
less, there is a complex relationship between the features in 
omics data, so the filter method does not work correctly in 
this scenario. Also, the filter method works independently of 
the classifier, resulting in poor performance of the selected 
features [46]. Wrapper methods are used to overcome these 
disadvantages. Wrapper methods work by selecting the 
features iteratively and evaluating their performance using 
a classifier. Initially, there was no feature set. Each time a 
feature is added and performance is checked. This is done 
until the most relevant features are not selected [33]. The 
wrapper method selects the features in two ways, including 
forward feature selection and backward feature selection. 
Some of the standard techniques of the wrapper method are 
Recursive Feature Elimination (RFE) [47], Sequential Fea-
ture Elimination (SFE) [48], and Genetic Algorithms [49]. 

Various authors have worked on wrapper methods for bio-
marker identification, for example, RFE is used to identify 
miRNA biomarkers [50], and hybrid wrapper methods are 
used in multi-omics data to identify diagnostic markers [a4]. 
There is complete interaction between features and classifier. 
Therefore, it solves the problem of the filter method, but the 
wrapper method leads to overfitting. The embedded methods 
have been introduced to solve this problem. The embedded 
method combines the function of both the filter and wrapper 
method. It works by integrating the feature selection algo-
rithm with the training algorithm and selecting the feature 
subset [51]. Least Absolute Shrinkage and Square Estimator 
(LASSO) is one of the most common techniques of feature 
selection which is implemented by several researchers in 
diagnostic and prognostic biomarker identification [52–54].

2.3.3  Modelling

Both ML and DL can be used in the modeling of a dataset. 
ML is a data processing technique that automates the growth 
of analytical models. It is a branch of artificial intelligence 
that allows computers to learn from their mistakes, interpret 
data, identify patterns, and make educated decisions with 
little or no human interference. [55]. ML is of four types 
supervised learning, unsupervised learning, semi-supervised 
learning, and reinforcement learning. In supervised learning, 
a computer is trained with well-labeled data. Some of the 
datasets have already been labeled with the correct answer. 
Afterward, the machine provides the test data, which is ana-
lyzed by the supervised learning algorithm that generates an 
accurate result from classified data. Supervised Learning can 
be a classification problem or regression problem [56]. In 
classification, the outcome variable is a class or categorical 
variable, and in regression, the outcome variable is a real 
value. There are different supervised learning algorithms, 
including SVM, Linear regression, Random Forest (RF), 
Adaboost, K-Nearest Neighbor (KNN), Naïve Bayes (NB), 
and Decision Tree [57]. On the other side, Unsupervised 
learning is training a computer to work on knowledge that 
is neither categorized nor labeled. The machine works by 
organizing the unlabeled data into groups or clusters based 
on similarities, variations, and discrepancies without any 
previous data knowledge. Hierarchical clustering and 
K-mean clustering are unsupervised learning algorithms 
[58]. Semi-supervised is a mixture of both supervised and 
semi-supervised learning, but in this, the labeled data is of 
minimal size compared to unlabeled data [59]. Reinforce-
ment learning is about taking the proper steps to optimize 
the incentive in a given situation. Various algorithms and 
computers use it to determine the best possible action or 
direction in a given scenario [55]. Deep Learning is a form 
of ML inspired by the human brain's structure. Deep learn-
ing analyzes data using a predetermined conceptual form to 
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draw similar results as humans. Deep learning uses a multi-
layered system of algorithms known as neural networks [60]. 
The neural network’s architecture is focused on the configu-
ration of the human brain. Neural networks can be trained 
to recognize trends and interpret various kinds of data in 
the same way our brains do. The brain attempts to compare 
new knowledge to existing items once we encounter it. Deep 
neural networks operate on the same principle. Classifica-
tion, clustering, regression, and many other tasks can be 
performed in neural networks. We can aggregate or filter 
unlabeled data using neural networks based on the similarity 
between the samples. The are many algorithms available in 
DL comprising convolutional neural network (CNN), recur-
rent neural networks (RNN), U-net, deep belief networks 
(DBN), long short term memory (LSTM), and many more 
which help in the classification and prognosis of diseases 
[61]. The complete workflow of biomarker identification 
using ML and DL is shown in Fig. 4.

In this research, classification is used for disease diagno-
sis, regression for disease prognosis, and feature selection 
and extraction are used as biomarker identification. Once 
the biomarkers are identified, they are passed to machine 
and deep learning algorithms which further classify them 
into diagnostic, prognostic, and predictive markers. Their 
survival analysis is checked with various models for prog-
nostic markers, including univariate cox, multi-variate cox, 
and LASSO model. The risk score is calculated from which 
higher risk markers are identified as prognostic markers. 

Based on this, drugs and treatment therapies can be recom-
mended. On the other side, predictive markers are consid-
ered a gene-prioritization problem from which a biomarker 
can be discovered from some known disease biomarkers. 
Several gene-prioritized algorithms have been reviewed for 
the identification of predictive markers. The complete tax-
onomy of biomarker identification is shown in Fig. 5.

2.4  Biomarker Identification Research Evolution

The first biomarker identified was a protein biomarker 
discovered by Bence-Jones in 1847 in multiple myeloma 
patients [62]. It was approved by FDA in 1986 when they 
are reported again in serum markers of myeloma patients 
[63]. In 1867, Sir Michal Forster identified urinary amyl-
ase marker in pancreatic cancer patients. The biological 
marker term was introduced in 1950 and gained popularity 
in the 1980s [64]. Carcinoembryonic antigen (CEA) was 
identified by Dr. Joseph gold in 1965 and was discovered in 
the malignant tissues of cancer patients [65]. In the 1970s, 
three more markers, i.e., Cancer Antigen (CA) CA 199, CA 
15-3, and CA 125, were discovered in colorectal, breast, 
and ovarian cancer patients. Furthermore, prostate-specific 
antigen (PSA) was discovered in the 1980s, and till now, a 
variety of biomarkers have been discovered [65]. The com-
plete history of biomarkers is shown in Fig. 6 below. Fig-
ure 7 shows the trends of the biomarker identification using 
multi-omics data, which shows an increase in 2018–2021. 

Fig. 4  Workflow of biomarker identification using ML and DL
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Fig. 5  Biomarker identification 
taxonomy

Fig. 6  History of biomarkers
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It also shows the percentage of publications in biomarker 
identification using multi-omics data. In this research, clas-
sification is used for disease diagnosis, regression for disease 
prognosis, and feature selection and extraction are used as 
biomarker identification. Once the biomarkers are identified, 
they are passed to machine and deep learning algorithms 
which further classify them into diagnostic, prognostic, and 
predictive markers. Their survival analysis is checked with 
various models for prognostic markers, including univariate 
cox, multi-variate cox, and LASSO model. The risk score 
is calculated from which higher risk markers are identified 
as prognostic markers. Based on this, drugs and treatment 
therapies can be recommended. On the other side, predictive 
markers are considered a gene-prioritization problem from 
which a biomarker can be discovered from some known dis-
ease biomarkers. Several gene-prioritized algorithms have 
been reviewed for the identification of predictive markers. 

The complete taxonomy of biomarker identification is shown 
in Fig. 5.

3  Review Method

Following the methods of Kitchenham et al. [66], a thorough 
study of tools and techniques required for biomarker identifica-
tion using multi-omics data analysis is conducted to summarize 
current work and highlight scientific limitations. The analysis 
process begins with several research problems to be answered, 
as outlined in Sect. 3.1. The fundamental goal of this study is to 
address the most recent approaches and tools used for identify-
ing biomarkers by responding to the research problems. Vari-
ous keywords have been used to search the articles in different 
libraries required for literature review. Lastly, the data collection 
process is simplified by using an inclusion–exclusion process.

Fig. 7  Trends in biomarker identification using multi-omics data
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3.1  Research Problems

This survey gives detailed information about the most 
recent tools and technologies required for biomarker 
identification by responding to the following research 
problems.

P1:  What do you mean by biomarkers, and what are its 
various types?

P2:  What do you mean by multi-omics data?
P3:  What are feature extraction and selection techniques? 

What are its types, and why are they needed?
P4:  What strategies have been developed for identifying 

biomarkers using omics and multi-omics data?
P5:  What are the tools developed for biomarker identi-

fication using multi-omics data?
P6:  In the field of biomarker identification, what are the 

current problems and opportunities?

3.2  Article Resources

The different online sites have been used to search the 
articles from various publications, including Springer, 
IEEE explore, Google Scholar, Elsevier, Web of Sci-
ence, Science Direct,  and Wiley Online Library. 
Various documents like research articles, conference 
papers, survey articles, editorial materials, and book 
chapters can be retrieved from the aforementioned 
resources.

3.3  Criterion Used for Searching

We start with the title “biomarker identification”, “biomarker 
identification in multi-omics”, “techniques used for biomarker 
identification in multi-omics data”, “tools for biomarker 

identification in multi-omics data”. Using these keywords, 
different string has been formed and are shown as below:

• “Biomarker identification” + “omics”
• “Biomarker identification” + “multi-omics”
• “Diagnostic biomarker identification” + “omics” + 

“machine learning”
• “Prognostic biomarker identification” + “omics” + 

“machine learning”
• “Predictive biomarker identification” + “omics” + 

“machine learning”
• “Diagnostic biomarker identification” + “multi-omics” 

+ “machine learning”
• “Prognostic biomarker identification” + “multi-omics” 

+ “machine learning”
• “Predictive biomarker identification” + “multi-omics” + 

“machine learning”
• “Biomarker identification” + “multi-omics” + “deep 

learning”
• “Biomarker identification” + “multi-omics” + ” tools”

Scientific papers from numerous publications, journals, 
chapters, and conferences have been included in the search.

3.4  Inclusion–Exclusion Process

In the data inclusion and exclusion method, 98 studies were 
chosen for this study. The discovery process begins with 
a search string that returns unrelated papers to the report. 
Figure 8 depicts the beginning of the process, which starts 
with 1510 research papers returned. With the title-based 
exclusion, the count is decreased to 704. The number is 
reduced to 420 based on the related abstract. Since consid-
ering the entire text, only 180 articles remained. Ultimately, 
98 research articles were chosen for the literature review.

Fig. 8  Data inclusion and exclu-
sion process
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4  Biomarker Identification Literature 
Review

In this section, a thorough review of feature selection tech-
niques required for identifying biomarkers using multi-
omics data set is performed, followed by the identifying 
biomarkers using omics and multi-omics data with the help 
of ML and DL.

4.1  Feature Selection and Extraction Techniques 
for Biomarker Identification

Feature Selection and extraction work by reducing feature 
space's dimensionality and selecting the most relevant fea-
tures. The complete description of feature extraction and 
selection is discussed in Sect. 2. Here we discussed some of 
the work done by the authors on feature selection techniques. 
Malik et al. [67] used maximal-relevance and minimal redun-
dancy (mRMR) feature selection technique on gene expres-
sion and DNA methylation data to reduce their dimensional-
ity. A sample of prostate cancer patients has been taken, then 
passed to preprocessing and mRMR method, which selects 
the most relevant genes as the top-ranked markers. Fujita 
et al. [68] used a feature selection method to discover bio-
markers using a multi-omics dataset. The authors took the 
dataset in three matrix forms and applied the JNMF method, 
which generates four clusters by reducing the dimensional-
ity of the matrices. This method also reduces noisy values 
and selects the relevant features, further passed for training 
purposes. This method successfully identifies the candidate 
genes and finds the association between the genes and the 
drugs given for treatment. Jia et al. [69] used PCA to reduce 
the dimension of enormous feature space from miRNA, 
mRNA, DNA, and single nucleotide polymorphisms (SNP) 
data of pancreatic cancer and identified 12 risk biomarkers. 
First, the dimensionality is reduced using PCA, and then 
the most relevant features are selected using Filter methods, 
including chi-square and t-test. The proposed method iden-
tified 12 markers successfully. These methods work well 
for linear multi-omics data integration only. For non-linear 
integration, non-linear methods are required, as explained in 
Sect. 2. Southekal et al. [70] used the t-SNE feature extrac-
tion method to identify markers from Gene expression and 
DNA methylation dataset of 35 cancer types. Dataset was 
taken and passed to preprocessing and t-SNE algorithm to 
reduce dimensionality. Further, a filter method identified 
a correlation between the features and selected top-ranked 
genes. The survival analysis was performed to check the risk 
scores for the selected genes based on selected genes. Simi-
larly, Moon et al. [71] use deep learning auto-encoders with 
Kernel PCA to identify candidate biomarkers using integra-
tive omics datasets. The authors used the DNA methylation 

and Gene Expression dataset and passed it to preprocessing 
stage to remove the noisy values. Further, the preprocessed 
data is passed to PCA and stacked auto-encoder to convert 
the data from multi-dimensional space to a single dimension. 
Then the differentially expressed genes are identified, perfor-
mance is checked, and candidate markers are selected related 
to the disease. Hamzeh et al. [72] used to filter and wrapper 
methods to identify prostate cancer patients’ biomarkers. At 
first, preprocessing of the dataset is performed, passed to 
filter methods including Information Gain and chi-square 
test to rank the genes. Further, the wrapper method mRMR 
method to select the most relevant biomarkers. Multiple 
algorithms of ML, including NB, RF, and KNN, have been 
used to check the performance. Further, feature extraction/
selection and ML and DL algorithms are used in the next 
section to identify different types of biomarkers (Prognos-
tic, Diagnostic, and Predictive Biomarkers) using omics and 
multi-omics datasets.

4.2  Biomarker Identification Using ML and DL 
for Omics Data

The biomarker identification is divided into three sections: 
identification of diagnostic, prognostic, and predictive bio-
markers using omics data with the ML and DL approaches.

4.2.1  Diagnostic Biomarkers

Diagnostic markers are the markers used to confirm the 
presence of disease and identify the markers in different 
sub-types of cancer. For example, Zhao et al. [73] used the 
machine learning algorithm RF to identify novel diagnos-
tic biomarkers in hepatocellular carcinoma. miRNA genes 
of 373 patients were downloaded from TCGA data and 
passed to the Random Forest model for biomarker identi-
fication. The experiment was validated on the GSE63046 
dataset. The results found that the proposed method identi-
fied five diagnostic biomarkers. Kloten et al. [74] presented 
a technique to discover the new markers in breast cancer 
patients. The authors examined the promoter methylation 
of seven putative tumor suppressor genes (ITIH5, SFRP1, 
WIF1, SFRP2, RASSFIA, SFRP5, and DKK3). Our find-
ings showed that ITIH5 and DKK3 promoters methylation 
as possible biomarkers achieve a precision of 93%. Rehman 
et al. [75] proposed machine learning algorithms to vali-
date the importance of miRNA as breast cancer biomarkers. 
miRNA sample of breast cancer patients has been taken and 
passed to the preprocessing stage to eliminate all the missing 
values from the dataset. It is further given to feature selec-
tion techniques comprising LASSO, Chi-Squared (CHI2), 
and Information Gain (IG) to rank the features according to 
their importance. The training of these samples is performed 
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using machine learning algorithms comprising RF and 
SVM, and it was investigated that 11 top-ranked miRNAs 
as biomarkers can be beneficial in predicting breast cancer 
and are treated as diagnostic biomarkers. Alkhateeb et al. 
[76] introduced machine learning algorithms to identify the 
transcripts for prediction and guide the treatment related to 
prostate cancer progression. Transcripts dataset have been 
taken and passed to preprocessing stage for cleaning the 
dataset, which is then passed on featuring extraction tech-
nique to obtain the differentially expressed genes. Machine 
learning algorithms, including SVM, RF, NB, and Decision 
Tree (DT), were used for modeling, and it has been evident 
that SVM outpaced with 90% accuracy. It was also found 
that HEATR5B, DDC, GABPB1-AS1, NREP, PTGFR, 
SCARNA22, FLVCR2, DOCK9, IK2F3, CLASP1, and 
USP13 are the potential biomarkers used for the progression 
of prostate cancer. Jin et al. [77] developed a model using 
a semi-restricted Boltzmann machine named ECMarker to 
predict biomarkers for the different stages of diseases like 
the early prediction of cancer. Gene-expression of non-small 
lung cancer patients was taken, and the ECMarker model 
was applied, which achieved an accuracy of 85%. The nine 
genes are identified as the diagnostic biomarkers, includ-
ing KRAS, ALK, BRAF, PIK3CA, NRAS, AKTI, RET, 
EGFR, and ROS1. It was also used to prioritize biomarkers 
genes responsible for the early prediction of lung cancer. 
Tyanova et al. [78] discriminate between three breast cancer 
subtypes using a protein expression dataset to detect pro-
tein biomarkers using a machine learning model. Embedded 
feature selection techniques were followed by training and 
cross-validation using a SVM model. The experiment was 
performed, and it was identified that the detected biomarkers 
correctly classified the breast cancer subtypes with an AUC 
value of 91%. A total of eight markers (Her2, Grb7, MCM5, 
STMN1, GLS, RCL1, C9ORF114, and ENO1) are detected 
as diagnostic biomarkers. Xie et al. [43] used ML methods to 
identify diagnostic biomarkers using a metabolomics data-
set. A sample of 110 patients was collected from the Hubei 
Taihe Hospital and passed to PCA to select the metabolites. 
Then the Statistical analysis is performed considering only 
those metabolites having a value less than 0.05. Further, 
the selected metabolites were passed to ML comprising RF, 
KNN, SVM, NN, NB, and Adaboost, and it was found that 
NN performed best with accuracy, specificity, sensitivity, 
and AUC value of 99%. It was also found that ten metabo-
lomics biomarkers including l-Kynurenine, Proline, Sper-
midine, Palmitoyl-l-carnitine, Amino-hippuric acid, Pheny-
lalanine, Taurine, l-Valine, o-Tyr, Carnitine plays a critical 
function in tumor diagnosis. Muazzam [79] used deep neural 
networks (DNN) to identify diagnostic biomarkers using the 
RNA-Seq dataset of breast cancer patients. First, the size of 
the dataset is reduced and then passed to the Stacked De-
noising encoder for biomarker identification. Further, the 

identified biomarkers are passed to DNN to classify cancer 
patients. Pathway analysis identifies three genes (PIK3C2G, 
PCDHB8, WNT10A) in multiple cancers. Khattri et al. [44] 
proposed an ML algorithm for identifying diagnostic mark-
ers using transcriptomic data from Pancreatic Adenocarci-
noma (PDAC) patients. Dataset was collected from Array 
Express and GEO and passed to preprocessing and t-test 
to discover genes. The identified genes were then passed to 
SVM to classify cancer patients. The experiment was per-
formed, and the tested result proved that the proposed frame-
work successfully identified nine genes comprising IFI27, 
CTSD, ITGB5, EFNA4, PLBD1, GGH, HTATIP2, CTSA, 
and IL1R2 with 97% accuracy. Liu et al. [45] presented two 
multilayers feed-forward NN using DL to identify markers 
using a DNA methylation dataset. The t-statistics test was 
passed to LASSO and the RF algorithm to identify genes. 
This test identifies 12 CpG markers and 13 promotor mark-
ers. Further, these markers are passed to the Deep learning 
model, which achieved a sensitivity of 92% for CpG markers 
and 89% for promotor markers. Toth et al. [80] presented 
a random forest-based classification model to detect bio-
markers for prostate cancer. DNA methylation dataset was 
downloaded from TCGA and passed to the preprocessing 
and feature extraction stage to extract the relevant features. 
It was then given to the random forest model to identify the 
biomarker for prostate cancer. The results are evaluated, and 
it was proved that the random forest-based modeling identi-
fied the top 30 methylation genes and performed best with 
an AUC value of 77%.

4.2.2  Prognostic Biomarkers

Prognostic markers are used to predict the occurrence of a 
potential clinical condition, disease recurrence, or relapse in 
an identified sample. The work done by the various authors 
in prognostic markers is described as follows. Ma et al. [81] 
proposed machine learning algorithms to identify 16 gene 
prognosis markers to predict lung adenocarcinoma (LUAD). 
Clinical and RNA-seq dataset from the TCGA portal was 
used for the experiment. At first, survival-related genes 
were identified using Cox and random survival forest (RSF) 
method, and then prognostic-related genes were identified 
from integrated clinical and RNA-seq data. Furthermore, 
to validate the results, GEO was used. The experiment was 
performed and compared with existing prediction models. 
The result was calculated using three metrics comprising 
hazard ratio (HR), concordance index (CI), and p-value, and 
it is evident from the results that the proposed method out-
performs with the c-index value of 67%. It was also found 
that 13 new biomarkers, including PITX3, LINC00908, 
GJB3, MELTF, CRCT1, LOC105370802, BAIAP2L2, 
GABRA2, RHOV, ARF3, KRT18, TRIM7, ZNF710.AS1 
and LOC100996732 were identified as compared to existing 
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studies. Hossain et al. [82] used machine learning algorithms 
to discover biomarkers related to ovarian cancer. Clinical 
and Gene-expression information of OC patients has been 
integrated and passed to ML models, which discover the 
biomarkers affecting Ovarian Cancer patients. Cai et al. 
[83] used a machine learning algorithm random survival 
forest to identify prognostic biomarkers of HCC patients. 
Gene signatures from two HCC datasets were used and 
passed to a random survival forest to predict the gene sig-
natures. Then a Protein–Protein Interaction (PPI) network 
is generated, and it identifies RAD21, CDK1, and HDAC2 
markers. Further to check the validity of identified mark-
ers, a multi-variate Cox survival analysis was performed, 
showing that CDK1 is the only prognostic marker for HCC 
patients. Ghosal et al. [84] use ML algorithms to identify 
the prognostic markers in noncoding RNAs dataset. First, 
data is passed to a statistical test to identify the differen-
tially expressed genes, then passed to the multi-variate cox 
regression model. Further, four ML algorithms comprising 
LASSO, elastic net, cart, and ridge were used to classify the 
sample into five cancer subtypes. Then Kaplan–Meier analy-
sis identified five lincRNAs (LINC00472, RP4‐806 M20.3, 
RP1‐40E16.9, RP11‐254F7.2 RP11‐455B3.1) as prognostic 
markers. Li et al. [85] used weighted gene-coexpression net-
work analysis (WGCNA), LASSO, and multi-variated cox 
analysis for the identification of prognostic markers using 
the RNA-Seq dataset of cervical cancer (CC) patients. The 
proposed algorithms identified two biomarkers, including 
ACAP1 and RASGRP1, by calculating their risk score using 
the LASSO cox algorithm of machine learning. Liu et al. 
[86] aimed to identify prognostic genes of Osteosarcoma 
using machine learning. RNA-Seq samples of 94 Osteosar-
coma were collected and passed to ML to identify prognos-
tic markers. The experiment was performed, and the results 
evidenced that the proposed framework identifies four mark-
ers (RPL7AP28, RPL11-551L14.1, RP11-326A19.5, and 
RP4-706A16.3). Yu et al. [50] identify miRNA prognostic 
markers using ML algorithms. A sample of 119 patients was 
collected from the TCGA database, where data from TCGA 
is used as a validation set. At first, differentially expressed 
miRNAs were calculated using a p-value. The optimal fea-
ture subset is selected using Recursive Feature Elimination 
(RFE). The selected optimal features are passed to the SVM 
model, classifying the patients into early-stage and last-stage 
samples. Then the risk is calculated using the survival analy-
sis method univariate cox regression model, which identi-
fies five prognostic markers. Xing et al. [87] used survival-
related cox regression analysis models to identify prognostic 
small nucleolar RNAs (snoRNAs). The data is passed to 
LASSO regression, and snoRNAs having a p-value less than 
0.5 are selected as candidate biomarkers. Then these markers 
are passed to Cox proportional hazard model (multi-vari-
ate) to identify the prognostic markers. Further, correlation 

analysis was performed to validate the identified markers. 
The presented approach identified five snoRNAs as prog-
nostic markers. Long et al. [88] proposed a deep learning 
method to identify prognostic markers in cervical cancer 
patients. Dataset was downloaded from GEO and Array and 
passed to statistical analysis test to identify differentially 
expressed genes. These genes are passed to a deep learning 
model for cancer classification. Further, survival analysis 
is also calculated using cox models, and it identified two 
genes (ZNF281, EPHB6) as the prognostic markers for cer-
vical cancer. Using a deep multilayer perceptron network 
algorithm, Wong et al. [89] identify prognostic genes for 
glioblastoma (GBM). Gene expression data was collected 
and passed to partial likelihood to calculate the loss func-
tion required for survival analysis. The features extracted 
were then passed univariate and multi-variate regression 
models, identifying the ten prognostic makers comprising 
TNR, POSTN, BCAN, TMSB15B, GAD1, SCG3, NNMT, 
PLA2G2A, ELAVL4, and CHI3L1 by calculating the con-
cordance index value.

4.2.3  Predictive Biomarkers

A predictive biomarker is a test that can classify people who 
are more likely to react to a specific medicinal substance or 
chemical product. A symptomatic gain may increase longev-
ity, or an adverse effect may be the result. In this research, 
a predictive biomarker is considered as a gene prioritiza-
tion problem where the gene can signify the occurrence 
of some particle disease with some known disease genes. 
Therefore, the work done on gene prioritization algorithms 
is discussed in this section. Nam et al. [90] designed a Gene 
Ranker method to identify genes using a gene expression 
dataset. First, a PPI network was created and used as a base 
network. Then, the network is generated using WGCNA. 
An integrated network is generated and passed to the gene 
ranker algorithm to generate a score. The higher rank genes, 
including OTC, B3GNT9, and Clorf167 are identified as 
the predictive markers. The ten known genes, including 
CSNK2A3, IFNL2, UCN3, POU3F4, TIW1, IL22, UCN2, 
PSG1, HTRA1, and CD68 are also identified. These genes 
have a strong relationship with the above-mentioned identi-
fied genes. Zhao et al. [91] presented a graph convolutional 
network (GCN) to prioritize protein coding genes using the 
lncRNAs dataset. The lncRNA dataset was used and passed 
to the feature selection technique in which the gene expres-
sion and position of the gene is identified, and the gene 
network is created. This network is then passed to a graph 
convolutional network, which prioritizes the target genes of 
lncRNAs. The method is also validated and compared with 
existing methods, and it is found that GCN works well with 
an AUC and AUPR value of 90% and 91%, respectively. 
Zhang et al. [92] proposed a network-based Deep-learning 



A Systematic Review on Biomarker Identification for Cancer Diagnosis and Prognosis in…

1 3

Approach for identifying genes by prioritizing them. First, 
a human molecular interaction network (HMIN) was con-
structed in which nodes represent the proteins corresponding 
to their gene and edges represent the interaction between the 
genes. This network is then passed to a graph convolutional 
network (GNN), which trains the dataset and prioritizes the 
genes based on their influence on the patients. The experi-
ment was performed, and it is evident from the results that 
the proposed framework works well by selecting ten genes, 
including RUNX1T1, MAG12, GRIA3, MVCRP2, AKAP6, 
PTPRD, AUTS2, MYO9A, AB12, and PLXNA2 respec-
tively. Jiang et al. [93] presented a generative adversarial 
network (GAN) with de-noising auto-encoder (DAE) as the 
generator and multilayer perceptron Multilayer Perceptron 
(MLP) as a discriminator (GAN-DAEMLP) to prioritize 
genes by taking miRNA dataset. The dataset sample was 
taken and passed to GAN-DAEMLP, which calculates the 
disease and non-disease prediction score. Finally, a risk 
score is calculated, and a genes risk list is generated. The 
experiment was performed, and it is proved from the results 
that the GAN-DAEMLP performed best by selecting ten 
disease-related genes. Table 3 shows the work done by vari-
ous authors using ML and DL for omics data.

4.3  Biomarker Identification Using Machine 
and Deep Learning for Multi‑omics Data

As single omics is not enough for the correct discovery of 
biomarkers, multi-omics analysis is required. This section 
performs biomarker identification from multi-omics data 
using ML and DL for each diagnostic, prognostic and pre-
dictive marker.

4.3.1  Diagnostic Biomarkers

Sinkalaet al. [94] proposed machine learning algorithms 
that accurately identify the set of proteins, mRNAs, miR-
NAs, and DNA methylation biomarkers to classify the pan-
cancer into its subtypes. Sample of pan-cancer patients has 
been obtained from TCGA and cBioPortal, which were then 
passed on featuring an extraction technique called neighbor-
hood component analysis (NCA) which identifies marker 
sets involving 49 methylated genes, 50 mRNAs, 20 miR-
NAs, and 14 proteins. After that, KNN and SVM models are 
applied, which effectively classify the cancer subtypes with 
99% and 97% accuracy, respectively. Hamzeh et al. [95] used 
ML to calculate the Gleason score for prostate cancer and 
to identify the potential biomarker for each Gleason group 
accurately. mRNA and miRNA genes were taken from the 
NCBI GEO repository and passed to hybrid feature selec-
tion techniques to extract features. The experiment was per-
formed, and it has been found that the proposed framework 
works well with 93% accuracy. PIAS3 and UBE2V2 were 

also identified, which will strongly correlate with prostate 
cancer progression. Xu et al. [96] identified biomarkers 
related to cervical cancer using a hybrid feature selection 
ML method by integrating multi-omics data. DNA meth-
ylation profiles of 12 types of cancer have been taken, and 
adopted machine learning techniques were applied. The 
results were evaluated, and it has been found that four can-
cer-specific markers comprising cg12205729 (GABRA2), 
cg07211381 (RAB3C), cg26490054 (SLC5A8), and 
cg20708961 (ZNF257) could identify the tumor cells with 
92% AUC value. Guo et al. [97] presented a deep learn-
ing framework using a denoising autoencoder to identify 
subtypes of ovarian cancer and to identify genes related 
to ovarian cancer. The multi-omics dataset was collected 
using TCGA Assembler and integrated using denoising 
autoencoder. Further, the dataset was passed to the k-mean 
clustering technique to select the relevant features. These 
features were then given to the L1-penalized logistic regres-
sion (LR) to recognize the subtypes. Long et al. [98] used 
statistical learning and ML algorithms to identify biomark-
ers in pancreatic cancer patients. Transcriptomic, Genomic, 
and protein datasets were taken and passed a statistical test. 
Further, the identified survival analysis is performed using 
the Cox survival model. The identified biomarkers were 
also passed to the random forest model to classify cancer 
into normal and tumor patients. The proposed framework 
also shows that the protein expression of identified genes is 
highly correlated in pancreatic cancer patients. As diagnos-
tic and prognostic markers, the proposed framework iden-
tified four genes, including LAMC2, ANXA2, ADAM9, 
and APLP2. Long et al. [99] used Different random forest 
features selection approaches comprising Boruta, AUC-RF, 
and Vita to identify diagnostic biomarkers. Transcriptomic 
data, including mRNA and miRNA sequencing data, was 
passed on, featuring extraction techniques identifying eight 
diagnostic biomarkers. Further, to check the performance 
of identified signatures, ML algorithms including RF, LR, 
NB, and KNN were used, showing that the identified mark-
ers are highly correlated in colorectal cancer. Feng et al. 
[100] proposed joint kernel learning on the multi-omics 
dataset to identify diagnostic genes from lung and liver 
cancer. The isoform expression profile, DNA methylation, 
and gene expression sample were collected and passed to 
the KPCA method for feature extraction. Then the extracted 
features were converted to kernel metrics using the Gauss-
ian Kernel function, which is then passed to the clustering 
algorithm. The clustering algorithms divide the features 
into clusters for different cancers. The proposed framework 
identifies GMPS, EPHA10, C10orf54, and MAGEA6 for 
lung cancer and FAU, DEPDC6, VPS24, LOC100133469, 
RCBTB2, and SLC35B4 for liver cancer. Kwon et al. [101] 
proposed an ML algorithm to discover diagnostic signatures 
in pancreatic cancer patients. miRNA and mRNA expression 
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data samples are integrated and passed to the SVM model 
to identify biomarkers. Further, validation is performed to 
select more relevant features using two independent datasets, 
including GEO and TCGA data repositories. This method 
identifies six biomarkers and 705 multi-markers related to 
the identified markers. Joshi et al. [102] proposed a DNN 
named Sparse CRossmodel Superlayered Neural Network 
(SCR-SNN) to integrate mRNA and DNA Methylation data 
and the biomarker identification for lung cancer patients. 
The dataset was passed to PCA for data filtering. Further 
Biomarker selection is performed using SCR-SNN, includ-
ing LR with L1 penalty, L1-regulatized NN, and L1-regu-
larized cross modular NN. The proposed method identifies 
15 markers, including WFDC5, TATDN1, LPP, CPLX2, 
CXCL13, COLI17A1, CEL, CDSN, TMPRSS2, FOXD1, 
DSC1, LPIN2, MMS4A8, B3GALT2, and AQP10 as the 
diagnostic markers for lung cancer patients. The proposed 
method is also compared with exiting ML algorithms 
employed on a single omics dataset. Cheng et al. [103] use 
LR to identify diagnostic biomarkers using an integrated 
omics dataset of HCC patients. Correlation between gene 
expression and DNA profiles is performed using PCC. 
The proposed method identified six profiles including 
DSE (cg11481534), FAM55C (cg03509671, cg21908638, 
and cg11223367), NEBL (cg23565942), and GALNT3 
(cg05569109) as the diagnostic markers with a sensitivity 
value of 92%. Zhang et al. [104] used cox survival analysis 
and the BayesNet model to identify diagnostic biomarkers 
from breast cancer patients using a DNA methylation and 
gene expression dataset. Dataset was collected and passed 
to statistical tests to identify potential biomarkers. These 
markers are then passed to the BayesNet model to classify 
the patients from healthy candidates. Further, the candidate 
markers are passed to the Cox regression model to iden-
tify the survival value, which identified seven differentially 
methylated sites (DMSs) comprising TUFT1, TRERF1, 
CCND1, SRGAP1, PER1, ENPP2, and PER1 as diagnostic 
and prognostic markers. Zhang et al. [105] used the RF fea-
ture selection method to identify the diagnostic biomarkers 
using osteoporosis patients’ lncRNAs, mRNAs, and miR-
NAs dataset. A network was created of 105 nodes passed to 
functional analysis, which shows the involvement of DysCe-
Net in osteoporosis. Further, RF was used, which identified 
25 features as diagnostic biomarkers. The identified genes 
are also validated using the LOOCV method, which shows 
that the identified genes show good performance in cancer 
classification. Liu et al. [52] identifies diagnostic and prog-
nostic markers using machine learning algorithms, includ-
ing RF and LASSO-Cox, from epigenetic, transcriptomic, 
and metabolomics dataset. 9398 CPGs and 2478 genes were 
collected and passed to Random forest, which selected 134 
CpGs and 54 genes from the integrated dataset. These are 
then passed to LASSO for the identification of diagnostic Ta
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markers. Moreover, prognosis analysis is performed using 
univariate Cox and LASSO cox methods. The proposed 
framework identifies five diagnostic and eight prognostic 
markers, respectively.

4.3.2  Prognostic Biomarkers

Zhao et al. [106] suggested a technique to the rank gene by 
calculating a score to identify the biomarkers. An integrated 
dataset of 13 cancer types was taken, and gene ranking was 
performed using the Cox (multivariate) proportional method. 
The experiment was performed, and higher ranks genes were 
identified as the prognostic biomarkers. Further C-index was 
used to validate the results, and it was found that in compari-
son to single omics, multi-omics works well with a c-index 
value of 0.95. When contrasting the genes related to 13 
types, seven genes (API5, SLK, BTBD2, VPS37A, PTAR1, 
ZRANB1, and EIF2B1) be linked with several cancer prog-
noses. Kumar et al. [107] presented survival models to iden-
tify biomarkers in pancreatic ductal adenocarcinoma 
(PDAC). A sample of 153 PDAC patients was taken from 
the TCGA database for multi-omics analysis, consisting of 
DNA methylation, lncRNA, gene expression, and miRNA 
data. Then preprocessing and feature extraction was per-
formed to identify the genes positively correlated with sur-
vival. For survival analysis, Cox and Kaplan–Meier estima-
tions were done. The experiment was performed, and the 
results proved that the presented work performed well, with 
an AUC value of 95%. It was also identified that five genes 
comprising (B3GNT3, DMBT1, PVT1, DEPDC1B, and 
Gata6-AS) are strongly connected with the survival of 
PDAC patients. Zhuang et al. [108] used ML to identify gene 
biomarkers or the prognosis of acute myelocytic leukemia 
(AML). Copy Number Variation (CNV), RNASeq, and SNP 
data were used, and ten feature genes comprising CAMK2A, 
FAT2, TCERG1, PTGIS, GDF9, DOC2B, PREX1, DNT-
TIP1, C22orf42, and CRISPLD1 were identified which were 
then passed to univariate cox regression analysis to develop 
a signature gene which is responsible for the prediction of 
AML. The results are validated using GEO datasets. Dong 
et al. [109] developed prognostic models for the early predic-
tion of LUAD using trans-omics biomarkers. The authors 
integrated the clinical, DNA methylation, and gene-expres-
sion dataset of 825 patients and used the Ranger algorithm 
for screening the biomarkers associated with prognosis. The 
experiment was performed, and it is evident from the results 
that the developed method improved the performance by 
18.3% with an 87.2% AUC value. The concordance-index 
value shows an improvement of 4% compared to various 
existing models. Ouyang et al. [110] proposed an integration 
method comprising fisher ratio, classified information index, 
Spearman correlation coefficient (SCC), and decision trees 
(DTs) ensemble for the discovery of biomarkers in 

hepatocellular liver carcinoma (LIHC) using unbalanced 
datasets. The multi-omics datasets consisting of miRNA 
expression data, somatic mutation data, and DNA-methyla-
tion data were utilized from TCGA, and 34 Differentially 
expressed genes (DEGs) were identified. These identified 
genes are used to discriminate tumor cells from normal cells 
in LHC patients with an AUC value of 89%. Peng et al. [111] 
proposed a DL framework called Capsule Network-based 
Modelling of Multi-omics data (CapsNetMMD) to detect 
signatures related to breast cancer. Sample of 770 breast 
cancer patients, including DNA Methylation, miRNA 
expression, and CNA, have been taken and converted into a 
matrix form. It was then passed to CapsNetMMD for the 
extraction of genes. The experiment was performed, and the 
results were evaluated. The results were also compared with 
different ML algorithms comprising XGBOOST, NN, SVM, 
Adaboost, and KNN, and it was marked that CapsNetMMD 
outperforms with 90% Accuracy. Lim et al. [53] used a deep 
learning framework called Artificial Neural Network (ANN) 
to analyze genetic data and discover disease-related genes. 
TCGA dataset of breast cancer patients was taken, and the 
experiment was performed. For parameter optimization, the 
lasso penalty activation function was used. The model was 
compared using the Youden J index with other ML algo-
rithms, including meta LR and meta-SVM. It is estimated 
from the results that the suggested DL framework is more 
robust in the discovery of genes. Lai et al. [112] proposed 
DNN to identify novel biomarkers from non-small cell lung 
cancer patients (NSCLC). A sample of 614 patients with 
gene expression and clinical data was integrated with 15 
biomarkers to develop an integrative DNN model. The bio-
markers are discovered using the StepMiner algorithm. The 
experiment was performed, and it was found that the pro-
posed framework works well by accurately identifying the 
markers with 70% accuracy. Cui et al. [113] proposed u-net 
to identify prognostic biomarkers. A sample of 191 patients 
has been taken from the TCGA portal, and a u-net is applied 
to segment the images. The Cox-proportional hazard model 
has been used to predict survival. Four biomarkers compris-
ing × 70, × 93, × 107, and × 164 were discovered, guiding 
lung cancer patients’ survival. Mo et al. [114] used RF to 
identify prognostic biomarkers from breast cancer patients’ 
integrated omics (SNP, RNASeq, and CNV) dataset. The 
integrated genes are then passed to the Random forest for 
feature selection. This technique identified 120 candidate 
genes. These genes were then passed to the Cox regression 
model to identify prognostic genes. The experiment was per-
formed, and it is evident from the experiment that the pro-
posed algorithm successfully identifies six genes, including 
CD24, PRRG1, IQSEC3, MRGPRX, RCC2, and CASP8 
prognostic markers. Mo et al. [115] presented a clustering 
approach to identify the prognostic value of bladder cancer 
patients from the multi-omics dataset. A sample of 388 
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patients, including Somatic mutation, DNA methylation, 
RNASeq, and CNA, was passed to the iClusterBayes 
method. This will divide the data into two clusters that are 
basal and luminal subtypes clusters. These clusters are vali-
dated using Markov Chain Monte Carlo (MCMC) method. 
Only those genes are considered whose posterior probability 
is greater than 0.5. A total of 42 genes are identified, which 
are further passed to statistical analysis tests, including Fish-
er’s exact test, two-sample t-test, and Analysis of Variance 
(ANOVA) methods, which identifies seven genes, including 
KRT5, CD44 KRT6B/C, TGM1, KRT14, PI3, and DSC3 as 
prognostic markers. Zhang et al. [54] identified immune-
related prognostic signatures using a multi-omics dataset of 
lung cancer patients. A sample of 553 RNA seq and 504 
DNA methylation data was collected and passed to the 
ESTIMATE algorithm to create the Tumor Microenviron-
ment (TME). A score is calculated on which the patients 
with higher tumor priority are selected. Then, multi-omics 
analysis extracted the relevant genes and passed them to the 
cox and lasso regression model for further analysis. The 
c-index value was calculated, and based on it, six expression 
genes (FOXN4, PROZ, LCN15, CD70, UNC5D, and 
BIRC3), five methylation genes (cg04240491, cg08780166, 
cg01090026, cg26904049, and cg25407540) and two muta-
tion genes (PTPRT and COL22A1) are identified as prog-
nostic markers. Xu et al. [116] used ML algorithms to iden-
tify prognostic markers of pancreatic adenocarcinoma 
patients. RNA sequencing, SNP, and CNV datasets were 
passed to GISTIC 2.0 and Mutsig 2.0 to preprocess the 
omics data. Fifty-four candidate genes are identified and 
then integrated and passed to the LASSO risk prediction 
model, selecting nine markers comprising TSPYL4, 
UNC13B, KLHDC7B, MICAL1, AIM1 KLHL32, 
DCBLD1, ARHGAP18, and CACNA2D4 as the prognostic 
markers. Chang et al. [117] proposed a pipeline to discover 
the markers in colorectal cancer. The somatic copy number, 
RNA expression, and gene expression data are used and 
passed to Wilcoxon rank-sum test to identify DEGs. the 
genes with a value greater than 0.3 are selected and passed 
to cox regression analysis. Finally, PCC was calculated, 
which identifies six-driver genes, including WDR5B, 
NDUFB4, IQCB1, GTF2E1, SEC22A., and KPNA1) which 
show poor prognosis related to cancer. Yuan et al. [118] 
developed clustering algorithms on multi-omics data to 
identify the prognostic biomarkers in brain tumor. A sample 
of 117 glioblastoma patients, including mRNA expression, 
DNA copy, SNP, DNA methylation, and clinical informa-
tion, was used to experiment. MutSigCV was used to ana-
lyze SNP data, which decreased the number of false posi-
tives. For CNV data, GISTIC was used to extract the 
important CNV genes. Then, the genes are integrated and 
passed to a cluster of cluster analysis (CoCA) algorithm that 
divides the data into HX-1 and HX-2. The survival analysis 

of these clusters is performed, which identifies three meth-
ylations including DUSP1, PHOX2B, HOXA7 cg169573, 
and 15 gene mutations including CYP27B1, PCDH1, 
LPIN3, BCL6, GPR32, OR4Q3, SKIV2L, MAGI3, PCSK5, 
UBE3B, AKAP12, MAP4, F5, TP53BP1, and RHOBTB1 
as the prognostic markers.

4.3.3  Predictive Biomarkers

Dimitrakopolos et al. [119] developed a Network-based 
Integration of Multi-omics data (NetICS) method to pri-
oritize cancer-related genes by integrating genetic aberra-
tions, mRNA and miRNA, and DNA expression datasets. A 
bidirectional network diffusion is created, which generates 
a rank list for each sample. This rank list is then passed 
to rank aggregation techniques, generating a global rank-
ing. NetICS identified the top 5% genes from breast can-
cer (TP53, PTEN, ERBB2, and CDH1) and Lung Cancer 
(EGFR, AKT1, KRAS, PIK3CA, and NRAS), respectively. 
Shang et al. [120] developed an integrative rank method 
to identify predictive markers in integrative omics data of 
HCC patients. A multiplex network is generated using multi-
omics data by calculating the differentially mutual infor-
mation (DMI). This DMI is then passed to the PageRank 
algorithm, and the final rank is obtained by aggregating the 
rank of multiple networks with an accuracy of 81%. Guan 
et al. [121] designed feature selection methods and support 
machines to prioritize the predictive genes multi-omics 
data. The PCC of genes was calculated, and their correla-
tion scores were combined to generate a rank. The ten most 
predictive features are used, including ASAP2, BCL9L, 
PTPRF, PTPN12, ANXA1, AJUBA, CYTIP, SH3D19, 
CMTM4 EIF2C2, were selected. Yao et al. [122] proposed 
a method, MetPriCNet, to prioritize and predict the metabo-
lites using a multi-omics dataset. The authors constructed 
a composite network of genomic, phenome, metabolome, 
and interactome datasets. This network consists of 25,269 
nodes and 11,926,113 edges. This network is then passed to 
MetPriCNet, which calculates their global distance similar-
ity. This method is applied to breast cancer patients, and it is 
found that the higher rank metabolite in 3 genes, including 
BARD1, TP53, and AKT1, interact with four seed genes 
consisting of CDH1, KRAS, CHEK2, CDS1. Fortino et al. 
[123] proposed fuzzy logic as feature selection, and Random 
Forest for prioritizing the genes using multi-class Four gene-
expression dataset was taken and passed to fuzzy pattern dis-
covery method to select the most relevant and class-specific 
features (FP). Then the selected feature set (FP) is passed to 
the random forest, which removes the redundant features and 
ranks the genes using a Mean decrease accuracy score. The 
proposed method works well, with an accuracy of 96%. Fan 
et al. [124] integrate multi-omics data, including genome, 
epigenome, and transcriptome data, to identify and prioritize 



A Systematic Review on Biomarker Identification for Cancer Diagnosis and Prognosis in…

1 3

the functional Differentially methylated regions (fDMRs). 
Authors first filter the DMRs, and based on the expression 
alteration scores, ranks are generated and further aggregated 
to identify and prioritize the genes. This method identifies 
ten genes as predictive markers using ranks. Further, classifi-
cation and survival analysis of identified genes is performed. 
Chen et al. [125] suggested a BRIDGE method for candidate 
genes prioritization by integrating gene sequence similari-
ties, protein–protein interaction, gene ontology annotations, 
gene-expression patterns, and gene pathway memberships. 
The authors used a regression model with the LASSO pen-
alty to assign a weight to different genes. The test is vali-
dated in two case studies, including obesity, and diabetes, 
from which it is found that eight genes of obesity and 28 
genes of diabetes patients lie in the top 100 rank list. Zhang 
et al. [126] develop a network-based approach to identifying 
and prioritizing predictive genes by integrating mutation, 
gene expression, and the PPI dataset. This approach works 
by identifying the neighbor genes. A relationship between 
the various differentially co-expressed genes (DCGs) and 
functional genes is made, and then the weight is calculated 
to check the impact of DSCs on the functional genes. This 
procedure is applied to three datasets, including kidney renal 
clear cell carcinoma (KIRC), thyroid carcinoma (THCA), 
and head and neck carcinoma (HNSC), to identify the genes. 
The experiment was performed, and it was found that the 
proposed method identifies the top five genes, including 
EGFR, EP300, NRAS, LYN, PTPN11, TP53, PIK3CA, 
EGFR, EP300, FADD, PBRM1, SETD2, BAP1, SRC and 
EP300 for THCA, HNSC, and KIRC respectively. Valde-
olivas et al. [127] proposed a random walk with a restart 
method to prioritize the genes on multiplex (RWR-M) 
and multiplex heterogeneous networks (RWR-MH). First, 
a graph of the PPI network, pathway interaction, and co-
expressed genes is created. The integrated network consists 
of 17,559 nodes and 1,659,084 edges which are then passed 
to RWR-M and RWR-MH to explore the different func-
tionalities and associations of the graph. This is applied to 
Wiedemann Rautenstrauch syndrome patients, identifying 
three genes (Fig. 4, RNF113A and LMNA) strongly related 
to the disease. Wei et al. [128] proposed a method for Driver 
gene discovery with an improved random walk method 
(Driver_IRW) using transcriptomic and interaction net-
work data integration. A network was created, and then the 
edge, betweenness, and Katz centralities were found using 
the constructed network. These scores are integrated and 
passed to a random walk with an improved method to calcu-
late their rank. Finally, top-ranked genes are selected as the 
predictive markers. Zeng et al. [129] proposed a tree-based 
ensemble model called random interaction forest (RIF) to 
prioritize candidates and generate predictive scores. First, 
a decision tree is created, and the rank is calculated. The 
authors identify the top 10 genes and compare the results 

with other existing methods. Yang et al. [130] proposed a 
machine learning framework called MapGene to prioritize 
the candidate genes using high functional modules and gene 
interactions dataset. First, a PPI network is made of both dis-
ease and network interactions, and then module correlation 
(MC) is calculated using the MapGene algorithm and identi-
fies the top rank genes as predictive markers. The proposed 
framework is also compared with several base models, and 
it is found that MapGene outperforms with a precision and 
recall value of 87% and 90%, respectively. Table 4 shows the 
work done by various authors on biomarker identification 
using ML and DL from multi-omics.

5  Biomarker Identification Using Tools

In this, the work done by various authors in biomarker iden-
tification using multi-omics data with the help of tools is 
described. All the tree biomarkers, including prognostic, 
diagnostic, and predictive markers, are considered here. 
Singh et al. [131] presented a framework for Data Integra-
tion Analysis for Biomarker discovery using Latent compo-
nents (DIABLO) using a multi-omics dataset. This tool can 
identify the biomarkers from both simulated and real inte-
grated omics data. mixOmics is used to implement the tool. 
Kaur et al. [132] developed a web server called HCCpred to 
identify diagnostic biomarkers and prognostic biomarkers 
from gene-expression datasets in Hepatocellular Carcinoma 
(HCC) patients. Raw data were extracted from 30 studies 
and passed to feature extraction techniques. The extracted 
genes were then passed to model training which successfully 
identified three genes (FCN3, CLEC1B, and PRC1). Kaur 
et al. [133] developed a tool called CancerLSP to identify 
biomarkers in Liver Hepatocellular Carcinoma (LCC). 
Genomic and epigenomic data, that is, transcripts and Cpg 
methylation data, were downloaded from the TCGA portal 
and passed to machine learning models (SVM, RF, NB, 
SMO, and J48). These algorithms are implemented in Weka, 
which successfully identified 21 Cpg sites and 20 transcript 
profiles related to LCC. Gevaert et al. [134] presented an 
Imaging-AMARETTO software tool for the identification of 
biomarkers from multi-omics, clinical, and imaging data 
fusion. Multi-omics data were downloaded from TCGA, and 
imaging data were used from Ivy Glioblastoma Atlas Project 
(IvyGAP). The tool was implemented on glioblastoma mul-
tiform (GBM) patients, successfully identifying three key 
drivers, including STAT3, AHR, and CCR2. Sangaralingam 
et al. [135] presented O-miner, a powerful online platform 
for combining and analyzing multi-omics data. The method 
aids in the discovery of critical pathways and the prioritiza-
tion of biomarkers in databases that include gene, transcrip-
tome, methylation, clinical and biological data. The pipe-
lines created for the tool use Bioconductor packages and 
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statistical methods and run in R and Python environment. 
Abstract et al. [136] developed an open-source ML tool 
called omics-learn for biomarker discovery. A genomic and 
proteomics dataset was used for the experiment. Python 
libraries are used to develop the tool, and it can be down-
loaded using a local server. This tool used the XGBoost 
model for training the dataset. The visualization and web 
interface of omics-learn are built using StreamLit. Leclercq 
et al. [137] developed a biomarker discovery tool called Bio-
DiscML using multi-omics data comprising genomic, prot-
eomic, and pathological datasets. BioDiscML followed a 
variety of ML algorithms to identify the optimal set of bio-
markers. This tool uses a vast range of ML classifiers within 
a completely integrated framework that often includes data 
pre-processing, making it easier for non-machine learning 
experts to complete their tasks. Song et al. [138] proposed 
an integrative analysis tool called iProFun for the biomarker 
identification using Proteomic, CNA, and DNA Methylation 
datasets. This tool was used on Ovarian cancer patients. The 
collected data were pre-processed and integrated for further 
evaluation. Ghannoum et al. [139] presented an open-source 
pipeline named DIscBIO to identify the genes using tran-
scriptomic data. The authors used two scRNA-seq datasets 
to demonstrate the pipeline capabilities. All analyses are 
accessible as notebooks with R coding, explanatory lan-
guage, output data, and images. The pipeline is implemented 
in four steps: data pre-processing, cellular clustering, retriev-
ing DEGs, and signature discovery. Netanelly et al. [140] 
developed a framework Profiler of Multi-omics data 
(PROMO) for analyzing, pre-processing, clustering, and 
visualizing the single omics and multi-omics data simultane-
ously. Further, this tool is also used for biomarker discovery 
and survival analysis. In this tool, statistical tests are used to 
identify DEGs, which are further passed to Cox models for 
survival analysis. Tang et al. [141] developed a web server 
Gene Expression Profiling Interactive Analysis (GEPIA2), 
for the biomarker identification using the gene-expression 
dataset. GEPIA2 works efficiently for 84 cancer subtypes. 
This tool also helps to classify cancer based on different 
subtypes. This website is freely accessible and implemented 
using HTML, javascript, and Php language. Wang et al. 
[142] developed an online survival web server OScc to vali-
date the prognostic signatures from the gene-expression 
dataset. This tool is tested on four gene-expression datasets 
retrieved from GEO and TCGA platforms. This tool will 
generate a survival curve for p-value, hazard ratio, and log-
rank test. Treatment will be provided to the high-risk 
patients based on the values achieved. Champion et al. [143] 
software algorithm AMARETTO for discovering cancer 
genes by incorporating gene expression, DNA methylation, 
and CNV datasets. Then co-expressed target genes are con-
nected to the driver genes, known as regulatory modules. 
Then these driver genes are converted into a network to 

identify cancer genes. AMARETTO is applied to patients 
from 11 different sites, and it is considered the best tool for 
identifying cancer genes. Jang et al. [144] developed a web 
application called Cancer Patient Stratification and Survival 
Analysis (CAPSAA) to evaluate predictive values of candi-
date biomarkers by dynamically visualizing the survival 
stratification for different subgroups of patients. The sub-
groups are made from gene expression, CNA, and mutation 
data downloaded from TCGA coherent. Hierarchical cluster-
ing is done to divide the patients into subgroups, and this 
tool is implemented on Lung Cancer patients, which is freely 
accessible. Xie et al. [145] designed a repository MOBCdb 
to integrate genetic, clinical, transcriptomic, and epigenomic 
results. The database was created to enable users to collect 
data from breast cancer patients’ SNV, gene expression, and 
microRNA. And DNA methylation. An interface is available 
in MOBCdb for concurrently visualizing multi-omics data 
from different samples. This data is also subjected to a sur-
vival study using MOBCdb’s survival module. MOBCdb 
aids precision medicine by detecting new markers in differ-
ent subtypes of breast cancer through its comprehensive web 
interface. Mohammed et  al. [146] developed a pipeline 
named CancerDiscover to predict cancer classes and identify 
the cancer biomarkers. The tool assists with normalization 
and offers various function filtering approaches to select the 
best performing functions. High-throughput raw datasets can 
be analyzed automatically and reliably with CancerDiscover. 
CancerDiscover is an open-source platform that is free to 
download. Chong et al. [147] presented an update to Meta-
boAnalyst (version 4.0) to analyze metabolomic data. This 
tool has added four new features to the previous version of 
MetaboAnalyst, including real-time R command monitoring 
and show, as well as the introduction of the MetaboAnalystR 
kit, a Pathway module to predict pathway behavior, 
Metaanalysis module for comprehensive signature recogni-
tion, and a Network explorer which integrates transcrip-
tomic, metagenomics, and metabolomics dataset. Zeng et al. 
[148] developed Immuno-Oncology Biological Research 
(IOBR) to identify gene signatures based on a multi-omics 
dataset. This tool provides batch analysis of the gene mark-
ers and their association with lncRNA profiling, clinical 
phenotypes, genetic characteristics, and the signatures pro-
duced from single-cell RNA sequencing data. Moreover, this 
tool integrates deconvolution methodologies with various 
signature construction tools to identify gene signatures. This 
tool is freely available to use, and it is an effective and flex-
ible tool. Liu et al. [149] developed a web server GSCALite 
to analyze gene sets related to cancer. This tool includes 
identifying differential expressed genes from mRNA expres-
sion, CNV, Methylation, and SNV data and the survival 
analysis using these genes, detection of genomic variation 
along with survival analysis, cancer pathway activity analy-
sis, and identification of drug sensitivity related to genes. 
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Dong et al. [150] developed an Online Survival analysis web 
server for Diffuse Large Cell Lymphoma (OSdlbcl) to iden-
tify prognostic value for some specific gene. Clinical follow-
up information and gene expression profiles of 1100 samples 
were used from TCGA and GEO databases. Moreover, DNA 
methylation data was also used for prediction purposes. This 
tool will develop a Kaplan–Meier (KM) plot, which will give 
the p-value, hazard ratio, and log rank for some specific gene 
symbol. Table 5 shows the existing work on biomarker iden-
tification using multi-omics data with the help of tools used.

6  Discussion

This survey focuses on various methods and techniques for 
the identification of biomarkers using multi-omics data are 
described. The most recent and important research papers 
are analyzed in this survey. The goal of this review is to 
concentrate on biomarker identification approaches includ-
ing ML and DL and tools using multi-omics data, as this is 
anticipated to be a popular topic in the future due to the need 
for targeted therapy.

Table 5  Existing tools for biomarker identification

[Ref] Type of data Tool Year Technology Link

[131] Genomic + Metabolome mixOmics 2019 R/Bioconductor http:// mixom ics. org/
[132] Gene-Expression Web Server 2020 Cloud https:// webs. iiitd. edu. in/ ragha va/ 

hccpr ed/
[133] Genomic + Epienomic CancerLSP 2019 Weka http:// webs. iiitd. edu. in/ ragha va/ 

cance rlsp/
[134] Genomic + Radiology + Clinical Imaging-AMARETTO 2020 Bioconductor/R Jupiter notebook http:// porta ls. broad insti tute. org/ 

poche tlab/ JCO_ CCI_ Imagi ng- 
AMARE TTO/ Imagi ng- AMARE 
TTO_ Softw are_ Resou rces. html

[135] Transcriptome + genome + Meth-
ylation

O-miner 2019 R/Python http:// www.o- miner. org

[136] Genomic + Proteomic Omics-Learn 2021 Python https:// omicl earn. com/
[137] Genomic + Proteomic + patho-

logical
BioDiscML 2019 Java/Weka https:// github. com/ micka ellec 

lercq/ BioDi scML
[138] CNA + DNA Methylation + Pro-

teome
iProFun 2019 R https:// github. com/ songx iaoyu/ 

iProF un
[139] Transcriptomic Data (scRNA-

seq)
DIscBIO 2021 R/Jupiter https:// github. com/ ocbe- uio/ DIscB 

IO
[140] Genomic + Transcrip-

tomic + Meabolome
PROMO 2019 Matlab http:// acgt. cs. tau. ac. il/ promo/

[141] Gene-expression + RNA 
Sequencing

GEPIA2 2018 Javascript/PhP https:// gepia2. cancer- pku. cn/# 
index

[142] Gene-expression OSCC 2019 R/java/cloud http:// bioin fo. henu. edu. cn/ CESC/ 
CESCL ist. jsp

[143] Gene-expression + CNV + DNA 
Methylation

AMARETTO 2017 R https:// bitbu cket. org/ gevae rtlab/ 
panca ncera maret to

[144] CNV + Gene Expres-
sion + Somantic Mutation

CAPSAA 2019 Clojure/Fig Wheel http:// capssa. ewha. ac. kr/

[145] Gene expression + SNV + DNA 
methylation

MOBCdb 2018 Perl, R, MySQL http:// bigd. big. ac. cn/ MOBCd b/

[146] Gene Expression + Sequencing CancerDiscover 2017 WEKA, Affy R package https:// github. com/ Helik arLab/ 
Cance rDisc over

[147] Metabolome + transcrip-
tome + metagenome

MetaboAnalyst 4.0 2018 R/Google Cloud Server https:// github. com/ xia- lab/ Metab 
oAnal ystR

[148] lncRNA + RNA + genomic IOBR 2020 R https:// github. com/ IOBR/ IOBR
[149] mRNA + CNV + SNV + Methyla-

tion
GSCALite 2018 R scripts/maftool http:// bioin fo. life. hust. edu. cn/ web/ 

GSCAL ite/
[150] Gene Expression + DNA Metyla-

tion
OSdlbcl 2020 J2EE platform https:// bioin fo. henu. edu. cn/ 

DLBCL/ DLBCL List. jsp

http://mixomics.org/
https://webs.iiitd.edu.in/raghava/hccpred/
https://webs.iiitd.edu.in/raghava/hccpred/
http://webs.iiitd.edu.in/raghava/cancerlsp/
http://webs.iiitd.edu.in/raghava/cancerlsp/
http://portals.broadinstitute.org/pochetlab/JCO_CCI_Imaging-AMARETTO/Imaging-AMARETTO_Software_Resources.html
http://portals.broadinstitute.org/pochetlab/JCO_CCI_Imaging-AMARETTO/Imaging-AMARETTO_Software_Resources.html
http://portals.broadinstitute.org/pochetlab/JCO_CCI_Imaging-AMARETTO/Imaging-AMARETTO_Software_Resources.html
http://portals.broadinstitute.org/pochetlab/JCO_CCI_Imaging-AMARETTO/Imaging-AMARETTO_Software_Resources.html
http://www.o-miner.org
https://omiclearn.com/
https://github.com/mickaelleclercq/BioDiscML
https://github.com/mickaelleclercq/BioDiscML
https://github.com/songxiaoyu/iProFun
https://github.com/songxiaoyu/iProFun
https://github.com/ocbe-uio/DIscBIO
https://github.com/ocbe-uio/DIscBIO
http://acgt.cs.tau.ac.il/promo/
https://gepia2.cancer-pku.cn/#index
https://gepia2.cancer-pku.cn/#index
http://bioinfo.henu.edu.cn/CESC/CESCList.jsp
http://bioinfo.henu.edu.cn/CESC/CESCList.jsp
https://bitbucket.org/gevaertlab/pancanceramaretto
https://bitbucket.org/gevaertlab/pancanceramaretto
http://capssa.ewha.ac.kr/
http://bigd.big.ac.cn/MOBCd
https://github.com/HelikarLab/CancerDiscover
https://github.com/HelikarLab/CancerDiscover
https://github.com/xia-lab/MetaboAnalystR
https://github.com/xia-lab/MetaboAnalystR
https://github.com/IOBR/IOBR
http://bioinfo.life.hust.edu.cn/web/GSCALite/
http://bioinfo.life.hust.edu.cn/web/GSCALite/
https://bioinfo.henu.edu.cn/DLBCL/DLBCLList.jsp
https://bioinfo.henu.edu.cn/DLBCL/DLBCLList.jsp
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The biomarker and its various types including risk, 
prognostic, diagnostic, predictive, safety, monitoring and 
response are addressed in answer to the first research prob-
lem. Using omics and multi-omics data, a lot of research is 
being done on identifying diagnostic, prognostic, and pre-
dictive markers.

The multi-omics data, the types of omics data (genom-
ics, transcriptomic, proteomic, metabolome, and interac-
tome) and the available databases required for biomarker 
identification is presented in answer to second research 
problem.

The answer to third problem is addressed by explain-
ing the feature extraction and selection and their tech-
niques including filter method, wrapper method and 
embedded methods along with their advantages and dis-
advantages. In literature, the work done on biomarker 
identification using feature selection and extraction tech-
niques is described.

The techniques required for biomarker identification 
including ML and DL for biomarker identification are pre-
sented in answer to fourth research problem. The work done 
by researchers for diagnostic, prognostic and predictive bio-
marker identification using omics and multi-omics data with 
the help of ML and are described in literature.

In answer to the fifth research issue, a list of current 
publicly available tools is discussed, along with their 
limitations. The link to access them is also provided. The 
majority of tools are open source, and people can use them 
to complete their activities. Some tools are built on a cloud 
network using servers, and packages are made accessible 
on request.

Finally, the last research problem is addressed by review-
ing the challenges of identifying biomarkers using multi-
omics data. Recommendations for future research for 
biomarker discovery are presented based on a systematic 
analysis of related publications in the literature.

6.1  Challenges in Biomarker Identification

Some problems have been faced while performing the 
review of existing techniques for biomarker identification 
using multi-omics data which are shown in Fig. 9 and are 
described below.

• Unbalanced dataset: For biomarker identification, omics 
data including genome, transcriptome, protein, metabo-
lites, and peptides are used. The available dataset is pre-
sent in unbalanced form. It means that the variables and 
attributes are too big than the sample size. This leads 
to overfitting problem. Therefore, it is very difficult to 
identify biomarkers using unbalanced dataset. This prob-
lem can be eliminated by integrating the different type 
of dataset and used that integrated dataset for biomarker 

identification. The feature extraction technique called 
mRMR can be also be employed to solve this problem.

• Heterogeneous datasets: In biomarker identification, 
some of the molecular profiles are highly heterogene-
ous. They can be divided into categorical and continuous 
and sometimes may be scattered into multiple inputs. It 
makes the biomarker identification difficult. Therefore, 
different machine learning algorithm including graph 
network, clustering approaches and deep learning tech-
niques can be applied to remove heterogeneity.

• Missing Data: In multi-omics biomarker identification, 
data missing ness is a major challenge. Image noise, 
batch impacts, and hybridization failures all cause data 
missing ness in microarray data. Due to this complica-
tion, appropriate imputation of missed values based on 
practice, a mixture of methods, and trial and error is 
required. One of the most common ML algorithm i.e. 
KNN is used to impute the missing values. Instead, we 
can also use median of the attribute and impute that 
median in place of the missing value.

• Difficulty in identification of driver genes: There are dif-
ferent types of omics data. Sometimes it is not possible to 
identify driver genes on the basis of single type of data. 
For example: we identify the genes using the genomic 
data, but these may not be enough for disease detection. 
Therefore, another type is also required to identify the 
cancer genes. Hence, multi-omics is required to identify 
the driver genes required for disease diagnosis and prog-
nosis.

• Difficulty to identify functional genes: Genomic data 
focus of DNA data to identify mutations related to can-
cer. The DNA involves different changes starting from 
small somatic mutations, several insertions, deletions and 
large CNV data for the identification of cancer muta-
tions. The mutation further varies in different sub types 
of cancer. Therefore, it is difficult to identify which func-
tion gene is growing the cancer. To solve this challenge, 

Fig. 9  Challenges in biomarker identification
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different deep learning techniques and gene prioritization 
algorithms are required.

6.2  Future Research Directions

Based on the current literature, the following are potential 
future directions in this field of study.

• The present research is mainly focused on a single type 
of dataset. Multi-omics integration is required efficient 
analysis [74, 78, 80, 96, 110].

• Effective non-parametric methods comprising CHI2, 
Kruskal–Wallis, Wilcoxon rank-sum test, and Spear-
man’s rank correlation are required for the identification 
of biomarkers [106].

• Deep learning (DL) algorithms are required for the iden-
tification of biomarkers necessary for the prognosis of 
cancer and provide a more powerful tool for targeted 
therapy [45, 50, 52, 82, 99, 101].

• A broad sample size dataset is needed to allow for a thor-
ough examination of the disease's progression, diagnosis, 
and treatment [83, 89, 122].

• AI-based technologies can be used to identify predictive 
biomarkers which will significantly increase the predic-
tion accuracy [107].

• The present research lacks treatment therapies which can 
be provided using the identified biomarkers [78, 95, 97, 
99, 118].

• Limited methods exist for biomarker identification due 
to the heterogeneity of omics data sets [98, 113].

• Next Generation Sequencing data analysis can be done 
for biomarker identification using ML, DL, Quantum 
Neural Nets and Quantum Computing in future for bet-
ter performance [151].

7  Conclusion

The collection of different forms of omics data in the 
post-genomics period allows for the screening of specific 
markers for accurate diagnosis and prognosis, which is 
essential in personalized medicine. Unfortunately, iden-
tifying biomarkers from a large volume of omics data, 
particularly when there are complex interactions between 
molecules, is a difficult task. In this article, different exist-
ing approaches, feature extraction/selection techniques, 
tools and technologies for the identification of diagnostic, 
prognostic, and predictive biomarkers using omics and 
multi-omics data have been studied. Their comparative 
study has been performed by analyzing the ML and DL 
approaches used by the authors. From the research, it is 
found that single type of data is not enough for identifica-
tion of genes in patients. Therefore, multi-omics data is 

required for accurate discovery of markers and to guide 
treatment therapies based on the identified markers. We 
hope that by conducting this survey, researchers will be 
able to learn which algorithms can be used to identify the 
biomarkers and how to apply specific techniques including 
ML and DL, and tools to precision medicine.
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