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Abstract Stochastic hybrid systems arise in numerous applications of systems
with multiple models; e.g., air traffc management, flexible manufac-
turing systems, fault tolerant control systems etc. In a typical hybrid
system, the state space is hybrid in the sense that some components
take values in a Euclidean space, while some other components are dis-
crete. In this paper we propose two stochastic hybrid models, both of
which permit diffusion and hybrid jump. Such models are essential for
studying air traffic management in a stochastic framework.

Keywords: Stochastic hybrid systems, Markov processes, Ito-Skorohod type stochas-
tic differential equations, hybrid jumps.

Introduction

In this article we study some classes of stochastic hybrid models.
Stochastic hybrid systems arise in numerous applications of systems with
multiple modes, e.g., flexible manufacturing systems, air traffic manage-
ment, fault tolerant control systems etc. For various applications of
stochastic hybrid systems we refer to [3], [8], [1], [11]and the references
therein. In a typical hybrid system, the state space is hybrid in the sense
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that some components take values in a Euclidean space while some other
components are discrete. The evolution of continuous and discrete com-
ponents are intertwined in an intricate manner. This makes the anal-
ysis of a hybrid system quite involved and challenging. Several classes
of stochastic hybrid systems have been studied in the literature, e.g.,
counting processes with diffusion intensity [10], [13], diffusion processes
with Markovian switching parameters [11], [16], switching diffusions [8],
[9], piecewise deterministic processes [5], [15], Markov decision drift pro-
cesses [1]etc. All these stochastic hybrid systems arise in different kinds
of applications.

Here we address two kinds of stochastic hybrid models. In the first
model we construct a Markov process (X(t), θ(t)), where X(t) ∈ R

d

and θ(t) ∈ Θ = {1, 2, . . . , N}. Here X(t) is governed by a stochastic
differential equation of Ito-Skorohod type with drift coefficient, diffusion
matrix and the ’jump’ function depending on the discrete component
θ(t). Thus X(t) switches from one jump diffusion path to another as the
discrete component θ(t) moves from one state to another. On the other
hand, the discrete component θ(t) is a “controlled Markov chain” with
a transition matrix that depends on the continuous component X(t). A
change in the discrete state θ(t) makes a switching in the continuous
state. This apart the continuous state does jump at random times. At
times this may lead to a situation where a switching triggers a jump
and vice-versa. This model is discussed in the next section. Section
3 is devoted to the study of a very general stochastic hybrid system.
The state of the system at time t, denoted by (X(t), θ(t)) takes values
in ∪n(Sn × Θn), where Θn = {1, 2, . . . , Nn} and Sn is a subset of R

dn .
Between the jumps (X(t), θ(t)) is a switching diffusion. That is θ(·) is
a pure jump process taking values in Θn; between successive jumps of
θ(t), X(t) is a diffusion process. On the other hand, the infinitesimal
jump rates of θ(t) depends on X(t). Let An be a subset of Sn. If X(t)
starting from some point in Sn, hits An then it executes an instantaneous
jump to some Sm. The destination of X(t) at this moment is determined
by a pre-determined map. The discrete component at this moment is
also reset by a given map. We investigate a Markovian structure of this
system by introducing another switching component in the systems.

A typical construction of a hybrid systems is based on stochastic dif-
ferential equations driven by Wiener processes and Poisson random mea-
sures. For a comprehensive treatment of stochastic differential equation
driven by Wiener processes and Poisson random measure we refer to [6],
[7]and [12].
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1. Stochastic Hybrid Model I

In this section we construct a Markov process (X(t), θ(t)) taking val-
ues in R

d × Θ where Θ = {1, 2, . . . , N}. The evolution of the process is
governed by equations of the following form:

dX(t) = b(X(t), θ(t))dt + σ(X(t), θ(t))dW (t) +
∫

R
g(X(t), θ(t), u)p(dt, du)

P (θ(t + δt = j|θ(t) = i, X(s), θ(s), s ≤ t) = λij(X(t))δt + 0(δt), i 6= j

X(0) = X0, θ(0) = θ0.


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(1)

Here b, σ, g, λ are suitable functions, λij ≥ 0, i 6= j,
∑N

j=1 λij = 0, W (·)

is a standard Wiener process and p(·, ·) is a certain Poisson random
measure on R+ ×R to be specified shortly. Under certain conditions we
establish the existence of a pathwise unique solution of (1). We make
certain assumptions on b, σ, g, λ. Let

b : R
d × Θ → R

d

σ : R
d × Θ → R

d×d

g : R
d × Θ × R → R

λij : R
d → R, i, j = 1, 2, . . . , N.

We make the following assumptions on the above functions.

(A1) For each i = 1, 2, . . . , N, b(·, i) is bounded and Lipschitz continu-
ous.

(A2) For each i = 1, 2, . . . , N, σ(·, i) is bounded and Lipschitz contin-
uous.

(A3) For i, j = 1, 2, . . . , N, λij(·) are bounded and measurable, λij(·) ≥

0 for i 6= j, and
∑N

j=1 λij(·) = 0.

(A4) Let K1 be the support of g(·, ·, ·) and let U1 be the projection of
K1 on R. We assume that U1 is bounded.

Note that in (1), the process θ(t) is a pure jump process. Thus by
the results of [6], θ(t) may be represented by an integral with respect to
a Poisson random measure. Following [4], [8], [9]we proceed to obtain
this representation explicitly. To this end, we first embed Θ into R

N by
identifying i with ei, the ith unit vector in R

N . For i, j ∈ Θ, : x ∈ R
d,

let ∆ij(x) be consecutive (with respect to the lexicographic ordering on
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Θ × Θ) left closed, right open intervals on the real line, each having
length λij(x). Define a function

h : R
d × Θ × R → R

N

by

h(x, i, u) =







j − i if u ∈ ∆ij(x)

0 otherwise.
(2)

Let (X(t), θ(t)) be an R
d × Θ-valued process given by the following

stochastic differential equation of Ito-Skorohod type.

dX(t) = b(X(t), θ(t))dt + σ(X(t), θ(t))dW (t) +
∫

R
g(X(t−), θ(t−), u)p(dt, du),

dθ(t) =
∫

R
h(X(t−), θ(t−), u)p(dt, du)

for t ≥ 0, X(0) = X0, θ(0) = θ0.























(3)
Here:

(i) X0 is a prescribed R
d-valued random variable.

(ii) θ0 is a given Θ-valued random variable.

(iii) W (·) is a d-dimensional standard Wiener process.

(iv) p(dt, du) is a Poisson random measure with intensity dt × l(du),
where l is the Lebesgue measure on R.

By the construction of the function h in (2), it is clear that a solution
of (3) is also a solution of (1). Thus we prove the existence of an a.s.
unique strong solution of (3). To achieve this we use the method in [6].

Theorem 1 Assume (A1)-(A4). Let p(·, ·), W (·), X0, θ0 be independent.
Then the equation (3) has an a.s. unique strong solution.

PROOF : Let (Ω,F , P ) be the underlying (complete) probability space
on which p(·, ·), W (·), X0, θ0 are defined. Let p̃(·) be the Poisson process
on (Ω,F , P ) corresponding to the given Poisson random measure p(·, ·).
Let K2 = support of h(·, ·, ·) and U2 the projection of K2 on R. By (A3),
U2 is a bounded set. Let U = U1 ∪U2. Then U is also bounded. Let Dp̃

denote the domain of the Poisson process p̃(·). Let

D = {t ∈ Dp̃ : p̃(t) ∈ U}.



Modeling Stochastic Hybrid Systems 5

Since l(U) < ∞, D is a discrete set in (0,∞) a.s. Let τ1 < τ2 < . . . <

τn < . . . be the enumeration of all elements in D. Let

Ft = σ{W (s), p(A, B) | s ≤ t, A ∈ B([0, t]), B ∈ B(R)}.

Then it is easy to see that τn is an Ft- stopping time for each n and
τn ↑ ∞ a.s. First we establish the existence and uniqueness of the
solution in the time interval [0, τ1]. To achieve this consider the following
stochastic differential equation:

Y (t) = X0 +

∫ t

0
b(Y (s), θ0)dt + σ(Y (s), θ0)dW (s). (4)

First assume X0 = x ∈ R
d and θ0 = i ∈ Θ for some x, i. Under (A1),

(A2), the equation (4) has an a.s. unique strong solution which depends
measurably on x i, : and : W (·). The solution for the initial condition
X0, θ0 is obtained by replacing (x, i) by (X0, θ0). Now set

X1(t) =







Y (t) if 0 ≤ t < τ1

Y (τ1−) + g(Y (τ1−), θ0, p̃(τ1)) if t = τ1

θ1(t) =







θ0 if 0 ≤ t < τ1

θ0 + h(Y (τ1−), θ0, p̃(τ1)) if t = τ1.

The process {X1(t), θ1(t)}t∈[0,τ1] is clearly the unique solution of (3) in

the time interval [0, τ1]. Next, let X̃ = X1(τ1), θ̃ = θ(τ1), : W̃ (·) =
W̃ (· + τ1) − W (τ1), and p̂ = (p̂(t)), where Dp̂ = {s : s + τ1 ∈ Dp̃} and
p̂(s) = p̃(s + τ1). Proceeding as before we can determine the process
(X̃2(t), θ̃2(t)) on [0, τ̂1] with respect to X̃, θ̃, W̃ and p̂. Clearly τ̂1 =
τ2 − τ1. Define (X(t), θ(t)) by

(X(t), θ(t)) =







(X1(t), θ1(t)) if t ∈ [0, τ1]

(X̃2(t − τ1), θ̃2(t − τ1)) if t ∈ [τ1, τ2].

It is now clear that (X(t), θ(t)) is the unique solution of (3) in the interval
[0, τ2]. Proceedings this way (X(t), θ(t)) is determined uniquely in [0, τn]
for every n. Hence a.s. (X(t), θ(t)) is determined uniquely for all time.
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Some comments are in order.

Remark 2.1
(i) The boundedness assumption on b and σ in (A1), (A2) may be

relaxed. It may be replaced by a growth condition of the following type:
there exists a constant C such

||b(x, i)||2 + ||σ(x, i)||2 ≤ C(1 + ||x||2).

Similarly the Lipschitz continuity assumption in (A1), (A2) may be re-
placed by locally Lipschitz continuity.

(ii) If for each i = 1, 2, . . . , N, σ(·, i)σ∗(·, i) is uniformly elliptic, i.e.,
the least eigenvalue of σ(·, i)σ∗(·, i) is uniformly bounded away from zero,
then we can drop any kind of continuity assumption on b(·, i). In fact
if b(·, i) is bounded and measurable and σ(·, i) is bounded and Lipschitz
and (A3), (A4) hold, then under the uniform ellipticity condition it can
be shown as in [8], [9], (3) has an a.s. unique strong solution.

(iii) It is clear from the construction that the process (X(t), θ(t)) is
Markov. Let L denote the extended generator of (X(t), θ(t)). Then for
f ∈ C2(Rd × Θ) ⊂ D(L), it can be shown that

L : f(x, i) = Lif(x, i) +
N

∑

j=1

∫

Rd

[f(y, j) − f(x, i)]νx,i(dy × {j}) (5)

where

Lif(x, i) =
d

∑

k=1

bk(x, i)
∂f(x, i)

∂xk

+
1

2

d
∑

j,k=1

d
∑

l=1

σjl(x, i)σkl(x, i)
∂2f(x, i)

∂xj∂xk

(6)
and

νx,i(A × {j}) =

∫

R

IA×{j}(x + g(x, i, u), i + h(x, i, u))du for A ∈ B(Rd).

(iv) Note that the times at which jumps or switchings occur are deter-
mined by the stopping times τn, n = 1, 2, . . . . But at every τn, a jump or a
switching may not occur. For example if at t = τ1, g(Y (τ1−), θ0, p̃(τ1)) =
0, there is no jump in the trajectory of X(t) at this time. Similarly, if
h(Y (τ1−), θ0, p̃(τ1)) = 0, then θ(t) remains at θ0 and thus there is no
switching in the trajectory of X(t) at this time. If g(Y (τ1−), θ0, p̃(τ1)) 6=
0 but h(Y (τ1−), θ0, p̃(τ1) = 0, then there will be a jump at t = τ1,
but no switching at t = τ1. Similarly if g(Y (τ1−), θ0, p̃(τ1)) = 0, but
h(Y (τ1−), θ0, p̃(τ1)) 6= 0, there is no jump but only a switching oc-
curs at t = τ1. On the other hand if g(Y (τ1−), θ0, p̃(τ1) 6= 0 and
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h(Y (τ1−), θ0, p̃(τ1)) 6= 0 there is a simultaneous jump and switching
at t = τ1. This kind of mechanism goes on for t > τ1.

(v) We now focus our attention to a specific case where jumps and
switching always occur simultaneously. Let

g̃ : R
d × Θ → R

d

be a function which is bounded and measurable. Let the function g(·, ·, ·)
be given by

g(x, i, u) =







g̃(x, j) if u ∈ ∆ij(x)

0 otherwise.
(7)

If g(·, ·, ·) is of the above form, then from (2) and (7), it is clear that the
jumps and switchings always occur together. In this specific case the
extended generator of (X(t), θ(t)) can be expressed explicitly in terms
of b, σ, g̃ and λij . Let L denote the extended generator of (X(t), θ(t)).
Let f : R

d ×Θ → R be a smooth function. Then using Ito’s formula one
can show that

L : f(x, i) = Lif(x, i) +
N

∑

j=1

λi,j(x)(f(x + g(x, i)) − f(x, i)

where Lif(x, i) is as in (6).
(vi) Consider the non-degenerate case, i.e., when for each i, σ(·, i)σ∗(·, i)

is uniformly elliptic. In this case if for each i, b(·, i) is bounded and mea-
surable, and σ(·, i) is bounded and Lipschitz continuous, (A3) holds and
g(·, ·, ·) is of the form (7), then one can show as in [9]that the process
(X(t), θ(t)) is strong Feller.

2. Stochastic Hybrid Model II

In this section we study a very general stochastic hybrid system. We
refer to [2], [14]for analogous controlled stochastic hybrid systems. The
state of the system at time t, denoted by (X(t), θ(t)), takes values in
∪∞

n=1(Sn × Θn), where Θn = {1, 2, . . . , Mn} and Sn is a subset of R
dn .

Between the jumps of X(t) the state equations are of the form

dX(t) = bn(X(t), θ(t))dt + σn(X(t), θ(t))dWn(t)

P (θ(t + δt) = j|θ(t) = i, X(s), θ(s), s ≤ t)

= λn
ij(X(t))δt + 0(δt), i 6= j,

X(0) = X0, θ(0) = θ0,







































(8)
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where for each n ∈ N

bn : Sn × Θn → R
dn

σn : Sn × Θn → R
dn×dn

λn
ij : Sn → R

are suitable functions, λn
ij(·) ≥ 0, i 6= j, :

∑Mn

j=1 λn
ij(·) = 0, : X0, θ0 are

Sn− and Θn− valued random variables, and Wn(·) is a standard dn-
dimensional Wiener process. For each n ∈ N, let An ⊂ Sn, : Dn ⊂
Sn. The set An is the set of instantaneous jump, whereas Dn is the
destination set. If at some random time X(t) hits An, then it executes
an instantaneous jump. The destination of (X(t), θ(t)) at this juncture
is determined by a map

gn : An × Θn → ∪m(Dm × Θm).

After reaching the destination, the process (X(t), θ(t)) follows the same
evolutionary mechanism over and over again.

To ensure the existence of such a pair of processes we need to make
certain assumptions.

For each n ∈ N, let Sn be the closure of a connected open subset of
some Euclidean space R

dn . For each n ∈ N, An and Dn are closed, and
An ∩ Dn = φ.

We now make the following assumptions.

(A5) For each n ∈ N and i ∈ Θn, bn(·, i) is Lipschitz continuous.

(A6) For each n ∈ N and i ∈ Θn, σn(·, i) is Lipschitz continuous.

(A7) For each n ∈ N, i, j ∈ Θn, λn
ij(·) are bounded and measurable.

(A8) The maps gn, n ∈ N, are bounded and uniformly continuous.

(A9) infn d(An, Dn) > 0.

Let (Ω,F , P ) be the underlying (complete) probability space on which
Wn(·), X0, θ0 are defined. As in the previous section θ(t) can be ex-
pressed as an integral with respect to a Poisson random measure. Let
p(·, ·) be R+ × R-valued Poisson random measure with the intensity
dt × l(du) as in the previous section. Construct the maps

hn : R
dn × Θn × R → R

Mn

as in the previous section such that

dθ(t) =

∫

R

hn(X(t−), θ(t−), u)p(dt, du). (9)
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Let
Fn

t = σ{Wn(s), p(A, B)|s ≤ t, A ∈ B([0, t]), B ∈ B(R)}.

Let X0, θ0, W
n(·), p(·, ·) be independent. Then as in the previous section,

we can show that under (A5), (A6) and (A7), the equation (8) has an
a.s. unique strong solution, denoted by (Xn(t), θn(t)) which takes values
in R

dn × Θn. Let

τ1 = inf{t ≥ 0| : X(t) ∈ An}. (10)

Then τ1 is an Fn
t stopping time. Now define the process (X(t), θ(t)) by

(X(t), θ(t)) =







(Xn(t), θn(t)), 0 ≤ t < τ1

gn(Xn(τ1−), θn(τ1−)), t = τ1.

(11)

Note that (X(τ1), θ(τ1)) ∈ Dm × Θm, for some m ∈ N. From τ1 on the
system continues with the same mechanism from the state (X(τ1), θ(τ1)).
Let

Ft = ∨nF
n
t .

Thus there is a sequence of Ft stopping times 0 = τ0 ≤ τ1 < τ2 < τ3 <

. . . < τm < . . . such that τm ↑ ∞ a.s. and in the interval [τm, τm+1), :
m = 0, 1, . . . the process (X(t), θ(t)) evolves according to (8) for some
index n ∈ N. At times τm, m ≥ 1, there is an instantaneous jump
determined by the map gm.

Note that, though in each interval of the type [τm, τm+1), the evo-
lution of (X(t), θ(t)) follows a Markovian type dynamics, the process
(X(t), θ(t)), : t ∈ [0,∞), is not a Markov process. This is because
we have not thus far accounted for a dynamical variable η(t), to be
introduced shortly, which is intricately linked with the evolution of
(X(t), θ(t)). Let η(t) be an N valued process defined by

η(t) = n if (X(t), θ(t)) ∈ Sn × Θn. (12)

The process η(t) is a piecewise constant process, it changes from n to m

when (X(t), θ(t)) jumps from the regime Sn×Θn to the regime Sm×Θm.
Thus η(t) is an indicator of a regime and a change in η(t) means a
switching in the regimes in which (X(t), θ(t)) evolves. One can show
that the process (X(t), θ(t), η(t)) is Markov. To see this more clearly
we investigate the equations governing the process (X(t), θ(t), η(t)). To
this end, let

S̃ = {(x, i, n)|x ∈ Sn, i ∈ Θn}

Ã = {(x, i, n)|x ∈ An, i ∈ Θn}

D̃ = {(x, i, n)|x ∈ Dn, i ∈ Θn}
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Clearly (X(t), θ(t), η(t)) is an S̃-valued process. The set Ã is the set
where jumps occur and D̃ is the destination set for this process. The
sets ∪n(Sn × Θn), ∪n(An × Θn) and ∪n(Dn × Θn) can be embedded in
S̃, Ã and D̃ respectively.

Let d0 denote the injection map of ∪n(Dn ×Θn) into D̃. Define three
maps

g̃i : Ã → D̃, : i = 1, 2, :: h̃ : Ã → N

g̃1(x, i, n) = the first component in d0(gn(x, i))

g̃2(x, i, n) = the second component in d0(gn(x, i))

h̃(x, i, n) = the third argument in d0(gn(x, i)).























(13)

To describe the evolution of (X(t), θ(t), η(t)) there is a sequence of Ft

stopping times
τ1 < τ2 < τ3 < . . . < τm < . . .

τm ↑ ∞ a.s. which are the successive hitting times of Ã, such that for
t = τm

(X(τm), θ(τm)) = (g̃1(X(τm−), θ(τm−), η(τm−)), g̃2(X(τm−), θ(τm−), η(τm−)))

η(τm) = h̃(X(τm−), θ(τm−), η(τm−)),







(14)
where g̃i, h̃ are defined in (13). For τm < t < τm+1

dX(t) = b(X(t), θ(t), η(t))dt + σ(X(t), θ(t)), η(t))dW η(t)(t)

dθ(t) =
∫

R
h(X(t−), θ(t−), η(t−)u)p(dt, du)







(15)
where b(x, i, n) = bn(x, i), σ(x, i, n) = σn(x, i), h(x, i, n, u) = hn(x, i, u).

The stopping time τm+1 is defined by

τm+1 = inf{t > τm|(X(t−), θ(t−), η(t−)) ∈ Ã}.

The equations for (X(t), θ(t), η(t)) may thus be summarized as follows:

dX(t) = [b(X(t), θ(t), η(t))

+
∞

∑

m=0

[g̃1(X(τm−), θ(τm−), η(τm−)) − X(τm−)]δ(t − τm)]dt

+ σ(X(t), θ(t), η(t))dW η(t)(t),
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dθ(t) =

∫

R

h(X(t−), θ(t−), η(t−)u)p(dt, du)

+
∞

∑

m=0

[g̃2(X(τm−), θ(τm−), η(τm−)) − θ(τm−)]δ(t − τm)]dt

dη(t) =
∞

∑

m=0

[h̃(X(τm−), θ(τm−), η(τm−)) − η(τm−)]I{τm≤t}

where δ is the Dirac measure.
¿From the above equation it is clear that the S̃-valued process (X(t), θ(t), η(t))

is a Markov process. Note that the stochastic hybrid model constructed
in this section generalizes the stochastic hybrid models studied in [2],
[14]. In the stochastic hybrid model studied in [2], there is no discrete
component like θ(t). In [14]the discrete component θ(t) is included,
but this component remains unchanged when the continuous compo-
nent X(t) makes an instantaneous jump. In our model we have removed
this restriction on the dynamics of θ(t), and allow it to change when
X(t) changes. Thus we automatically have simultaneous jumps and
switchings. Moreover in [14], the same functions b, σ, λij are used in ev-
ery component of the state space Sn × Θn, whereas in our model, these
functions depend on the index n. Thus our dynamics are more general
than the one treated in [14]. Hence we have constructed a stochastic
hybrid model which is more general than the models in [2]and [14].

3. Conclusion

In this paper we have explicitly constructed two stochastic hybrid sys-
tems. We established the existance and uniqueness of a strong solution
in both cases, and showed that both solutions are Markov processes.
The important point is that both models allow for simultaneous jumps
in the trajectory and model parameters, the “so-called” case of a hybrid
jump.
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